// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen-inl.h" #include "macro-assembler.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id) { // TODO(428): Don't pass the function in a static variable. ExternalReference passed = ExternalReference::builtin_passed_function(); __ movq(kScratchRegister, passed.address(), RelocInfo::EXTERNAL_REFERENCE); __ movq(Operand(kScratchRegister, 0), rdi); // The actual argument count has already been loaded into register // rax, but JumpToBuiltin expects rax to contain the number of // arguments including the receiver. __ incq(rax); __ JumpToBuiltin(ExternalReference(id)); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ push(rbp); __ movq(rbp, rsp); // Store the arguments adaptor context sentinel. __ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Push the function on the stack. __ push(rdi); // Preserve the number of arguments on the stack. Must preserve both // rax and rbx because these registers are used when copying the // arguments and the receiver. ASSERT(kSmiTagSize == 1); __ lea(rcx, Operand(rax, rax, times_1, kSmiTag)); __ push(rcx); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // Retrieve the number of arguments from the stack. Number is a Smi. __ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Leave the frame. __ movq(rsp, rbp); __ pop(rbp); // Remove caller arguments from the stack. // rbx holds a Smi, so we convery to dword offset by multiplying by 4. ASSERT_EQ(kSmiTagSize, 1 && kSmiTag == 0); ASSERT_EQ(kPointerSize, (1 << kSmiTagSize) * 4); __ pop(rcx); __ lea(rsp, Operand(rsp, rbx, times_4, 1 * kPointerSize)); // 1 ~ receiver __ push(rcx); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : actual number of arguments // -- rbx : expected number of arguments // -- rdx : code entry to call // ----------------------------------- Label invoke, dont_adapt_arguments; __ IncrementCounter(&Counters::arguments_adaptors, 1); Label enough, too_few; __ cmpq(rax, rbx); __ j(less, &too_few); __ cmpq(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ j(equal, &dont_adapt_arguments); { // Enough parameters: Actual >= expected. __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Copy receiver and all expected arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(rax, Operand(rbp, rax, times_pointer_size, offset)); __ movq(rcx, Immediate(-1)); // account for receiver Label copy; __ bind(©); __ incq(rcx); __ push(Operand(rax, 0)); __ subq(rax, Immediate(kPointerSize)); __ cmpq(rcx, rbx); __ j(less, ©); __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // Copy receiver and all actual arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(rdi, Operand(rbp, rax, times_pointer_size, offset)); __ movq(rcx, Immediate(-1)); // account for receiver Label copy; __ bind(©); __ incq(rcx); __ push(Operand(rdi, 0)); __ subq(rdi, Immediate(kPointerSize)); __ cmpq(rcx, rax); __ j(less, ©); // Fill remaining expected arguments with undefined values. Label fill; __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); __ bind(&fill); __ incq(rcx); __ push(kScratchRegister); __ cmpq(rcx, rbx); __ j(less, &fill); // Restore function pointer. __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } // Call the entry point. __ bind(&invoke); __ call(rdx); // Leave frame and return. LeaveArgumentsAdaptorFrame(masm); __ ret(0); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ jmp(rdx); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { // Stack Layout: // rsp: return address // +1: Argument n // +2: Argument n-1 // ... // +n: Argument 1 = receiver // +n+1: Argument 0 = function to call // // rax contains the number of arguments, n, not counting the function. // // 1. Make sure we have at least one argument. { Label done; __ testq(rax, rax); __ j(not_zero, &done); __ pop(rbx); __ Push(Factory::undefined_value()); __ push(rbx); __ incq(rax); __ bind(&done); } // 2. Get the function to call from the stack. { Label done, non_function, function; // The function to call is at position n+1 on the stack. __ movq(rdi, Operand(rsp, rax, times_pointer_size, +1 * kPointerSize)); __ testl(rdi, Immediate(kSmiTagMask)); __ j(zero, &non_function); __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(equal, &function); // Non-function called: Clear the function to force exception. __ bind(&non_function); __ xor_(rdi, rdi); __ jmp(&done); // Function called: Change context eagerly to get the right global object. __ bind(&function); __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); __ bind(&done); } // 3. Make sure first argument is an object; convert if necessary. { Label call_to_object, use_global_receiver, patch_receiver, done; __ movq(rbx, Operand(rsp, rax, times_pointer_size, 0)); __ testl(rbx, Immediate(kSmiTagMask)); __ j(zero, &call_to_object); __ CompareRoot(rbx, Heap::kNullValueRootIndex); __ j(equal, &use_global_receiver); __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); __ j(equal, &use_global_receiver); __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx); __ j(below, &call_to_object); __ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE); __ j(below_equal, &done); __ bind(&call_to_object); __ EnterInternalFrame(); // preserves rax, rbx, rdi // Store the arguments count on the stack (smi tagged). ASSERT(kSmiTag == 0); __ shl(rax, Immediate(kSmiTagSize)); __ push(rax); __ push(rdi); // save edi across the call __ push(rbx); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ movq(rbx, rax); __ pop(rdi); // restore edi after the call // Get the arguments count and untag it. __ pop(rax); __ shr(rax, Immediate(kSmiTagSize)); __ LeaveInternalFrame(); __ jmp(&patch_receiver); // Use the global receiver object from the called function as the receiver. __ bind(&use_global_receiver); const int kGlobalIndex = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; __ movq(rbx, FieldOperand(rsi, kGlobalIndex)); __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset)); __ bind(&patch_receiver); __ movq(Operand(rsp, rax, times_pointer_size, 0), rbx); __ bind(&done); } // 4. Shift stuff one slot down the stack. { Label loop; __ lea(rcx, Operand(rax, +1)); // +1 ~ copy receiver too __ bind(&loop); __ movq(rbx, Operand(rsp, rcx, times_pointer_size, 0)); __ movq(Operand(rsp, rcx, times_pointer_size, 1 * kPointerSize), rbx); __ decq(rcx); __ j(not_zero, &loop); } // 5. Remove TOS (copy of last arguments), but keep return address. __ pop(rbx); __ pop(rcx); __ push(rbx); __ decq(rax); // 6. Check that function really was a function and get the code to // call from the function and check that the number of expected // arguments matches what we're providing. { Label invoke, trampoline; __ testq(rdi, rdi); __ j(not_zero, &invoke); __ xor_(rbx, rbx); __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); __ bind(&trampoline); __ Jump(Handle(builtin(ArgumentsAdaptorTrampoline)), RelocInfo::CODE_TARGET); __ bind(&invoke); __ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movsxlq(rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); __ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset)); __ lea(rdx, FieldOperand(rdx, Code::kHeaderSize)); __ cmpq(rax, rbx); __ j(not_equal, &trampoline); } // 7. Jump (tail-call) to the code in register edx without checking arguments. ParameterCount expected(0); __ InvokeCode(rdx, expected, expected, JUMP_FUNCTION); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { // Stack at entry: // rsp: return address // rsp+8: arguments // rsp+16: receiver ("this") // rsp+24: function __ EnterInternalFrame(); // Stack frame: // rbp: Old base pointer // rbp[1]: return address // rbp[2]: function arguments // rbp[3]: receiver // rbp[4]: function static const int kArgumentsOffset = 2 * kPointerSize; static const int kReceiverOffset = 3 * kPointerSize; static const int kFunctionOffset = 4 * kPointerSize; __ push(Operand(rbp, kFunctionOffset)); __ push(Operand(rbp, kArgumentsOffset)); __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); if (FLAG_check_stack) { // We need to catch preemptions right here, otherwise an unlucky preemption // could show up as a failed apply. Label retry_preemption; Label no_preemption; __ bind(&retry_preemption); ExternalReference stack_guard_limit = ExternalReference::address_of_stack_guard_limit(); __ movq(kScratchRegister, stack_guard_limit); __ movq(rcx, rsp); __ subq(rcx, Operand(kScratchRegister, 0)); // rcx contains the difference between the stack limit and the stack top. // We use it below to check that there is enough room for the arguments. __ j(above, &no_preemption); // Preemption! // Because runtime functions always remove the receiver from the stack, we // have to fake one to avoid underflowing the stack. __ push(rax); __ push(Immediate(Smi::FromInt(0))); // Do call to runtime routine. __ CallRuntime(Runtime::kStackGuard, 1); __ pop(rax); __ jmp(&retry_preemption); __ bind(&no_preemption); Label okay; // Make rdx the space we need for the array when it is unrolled onto the // stack. __ movq(rdx, rax); __ shl(rdx, Immediate(kPointerSizeLog2 - kSmiTagSize)); __ cmpq(rcx, rdx); __ j(greater, &okay); // Too bad: Out of stack space. __ push(Operand(rbp, kFunctionOffset)); __ push(rax); __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION); __ bind(&okay); } // Push current index and limit. const int kLimitOffset = StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize; const int kIndexOffset = kLimitOffset - 1 * kPointerSize; __ push(rax); // limit __ push(Immediate(0)); // index // Change context eagerly to get the right global object if // necessary. __ movq(rdi, Operand(rbp, kFunctionOffset)); __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Compute the receiver. Label call_to_object, use_global_receiver, push_receiver; __ movq(rbx, Operand(rbp, kReceiverOffset)); __ testl(rbx, Immediate(kSmiTagMask)); __ j(zero, &call_to_object); __ CompareRoot(rbx, Heap::kNullValueRootIndex); __ j(equal, &use_global_receiver); __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); __ j(equal, &use_global_receiver); // If given receiver is already a JavaScript object then there's no // reason for converting it. __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx); __ j(below, &call_to_object); __ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE); __ j(below_equal, &push_receiver); // Convert the receiver to an object. __ bind(&call_to_object); __ push(rbx); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ movq(rbx, rax); __ jmp(&push_receiver); // Use the current global receiver object as the receiver. __ bind(&use_global_receiver); const int kGlobalOffset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; __ movq(rbx, FieldOperand(rsi, kGlobalOffset)); __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset)); // Push the receiver. __ bind(&push_receiver); __ push(rbx); // Copy all arguments from the array to the stack. Label entry, loop; __ movq(rax, Operand(rbp, kIndexOffset)); __ jmp(&entry); __ bind(&loop); __ movq(rcx, Operand(rbp, kArgumentsOffset)); // load arguments __ push(rcx); __ push(rax); // Use inline caching to speed up access to arguments. Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // It is important that we do not have a test instruction after the // call. A test instruction after the call is used to indicate that // we have generated an inline version of the keyed load. In this // case, we know that we are not generating a test instruction next. // Remove IC arguments from the stack and push the nth argument. __ addq(rsp, Immediate(2 * kPointerSize)); __ push(rax); // Update the index on the stack and in register rax. __ movq(rax, Operand(rbp, kIndexOffset)); __ addq(rax, Immediate(Smi::FromInt(1))); __ movq(Operand(rbp, kIndexOffset), rax); __ bind(&entry); __ cmpq(rax, Operand(rbp, kLimitOffset)); __ j(not_equal, &loop); // Invoke the function. ParameterCount actual(rax); __ shr(rax, Immediate(kSmiTagSize)); __ movq(rdi, Operand(rbp, kFunctionOffset)); __ InvokeFunction(rdi, actual, CALL_FUNCTION); __ LeaveInternalFrame(); __ ret(3 * kPointerSize); // remove function, receiver, and arguments } void Builtins::Generate_JSConstructCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax: number of arguments // -- rdi: constructor function // ----------------------------------- Label non_function_call; // Check that function is not a smi. __ testl(rdi, Immediate(kSmiTagMask)); __ j(zero, &non_function_call); // Check that function is a JSFunction. __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &non_function_call); // Jump to the function-specific construct stub. __ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movq(rbx, FieldOperand(rbx, SharedFunctionInfo::kConstructStubOffset)); __ lea(rbx, FieldOperand(rbx, Code::kHeaderSize)); __ jmp(rbx); // edi: called object // eax: number of arguments __ bind(&non_function_call); // Set expected number of arguments to zero (not changing eax). __ movq(rbx, Immediate(0)); __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); __ Jump(Handle(builtin(ArgumentsAdaptorTrampoline)), RelocInfo::CODE_TARGET); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { // Enter a construct frame. __ EnterConstructFrame(); // Store a smi-tagged arguments count on the stack. __ shl(rax, Immediate(kSmiTagSize)); __ push(rax); // Push the function to invoke on the stack. __ push(rdi); // Try to allocate the object without transitioning into C code. If any of the // preconditions is not met, the code bails out to the runtime call. Label rt_call, allocated; if (FLAG_inline_new) { Label undo_allocation; #ifdef ENABLE_DEBUGGER_SUPPORT ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(); __ movq(kScratchRegister, debug_step_in_fp); __ cmpq(Operand(kScratchRegister, 0), Immediate(0)); __ j(not_equal, &rt_call); #endif // Verified that the constructor is a JSFunction. // Load the initial map and verify that it is in fact a map. // rdi: constructor __ movq(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi __ testl(rax, Immediate(kSmiTagMask)); __ j(zero, &rt_call); // rdi: constructor // rax: initial map (if proven valid below) __ CmpObjectType(rax, MAP_TYPE, rbx); __ j(not_equal, &rt_call); // Check that the constructor is not constructing a JSFunction (see comments // in Runtime_NewObject in runtime.cc). In which case the initial map's // instance type would be JS_FUNCTION_TYPE. // rdi: constructor // rax: initial map __ CmpInstanceType(rax, JS_FUNCTION_TYPE); __ j(equal, &rt_call); // Now allocate the JSObject on the heap. __ movzxbq(rdi, FieldOperand(rax, Map::kInstanceSizeOffset)); __ shl(rdi, Immediate(kPointerSizeLog2)); // rdi: size of new object __ AllocateObjectInNewSpace(rdi, rbx, rdi, no_reg, &rt_call, NO_ALLOCATION_FLAGS); // Allocated the JSObject, now initialize the fields. // rax: initial map // rbx: JSObject (not HeapObject tagged - the actual address). // rdi: start of next object __ movq(Operand(rbx, JSObject::kMapOffset), rax); __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex); __ movq(Operand(rbx, JSObject::kPropertiesOffset), rcx); __ movq(Operand(rbx, JSObject::kElementsOffset), rcx); // Set extra fields in the newly allocated object. // rax: initial map // rbx: JSObject // rdi: start of next object { Label loop, entry; __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ lea(rcx, Operand(rbx, JSObject::kHeaderSize)); __ jmp(&entry); __ bind(&loop); __ movq(Operand(rcx, 0), rdx); __ addq(rcx, Immediate(kPointerSize)); __ bind(&entry); __ cmpq(rcx, rdi); __ j(less, &loop); } // Add the object tag to make the JSObject real, so that we can continue and // jump into the continuation code at any time from now on. Any failures // need to undo the allocation, so that the heap is in a consistent state // and verifiable. // rax: initial map // rbx: JSObject // rdi: start of next object __ or_(rbx, Immediate(kHeapObjectTag)); // Check if a non-empty properties array is needed. // Allocate and initialize a FixedArray if it is. // rax: initial map // rbx: JSObject // rdi: start of next object // Calculate total properties described map. __ movzxbq(rdx, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset)); __ movzxbq(rcx, FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset)); __ addq(rdx, rcx); // Calculate unused properties past the end of the in-object properties. __ movzxbq(rcx, FieldOperand(rax, Map::kInObjectPropertiesOffset)); __ subq(rdx, rcx); // Done if no extra properties are to be allocated. __ j(zero, &allocated); __ Assert(positive, "Property allocation count failed."); // Scale the number of elements by pointer size and add the header for // FixedArrays to the start of the next object calculation from above. // rbx: JSObject // rdi: start of next object (will be start of FixedArray) // rdx: number of elements in properties array __ AllocateObjectInNewSpace(FixedArray::kHeaderSize, times_pointer_size, rdx, rdi, rax, no_reg, &undo_allocation, RESULT_CONTAINS_TOP); // Initialize the FixedArray. // rbx: JSObject // rdi: FixedArray // rdx: number of elements // rax: start of next object __ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex); __ movq(Operand(rdi, JSObject::kMapOffset), rcx); // setup the map __ movl(Operand(rdi, FixedArray::kLengthOffset), rdx); // and length // Initialize the fields to undefined. // rbx: JSObject // rdi: FixedArray // rax: start of next object // rdx: number of elements { Label loop, entry; __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ lea(rcx, Operand(rdi, FixedArray::kHeaderSize)); __ jmp(&entry); __ bind(&loop); __ movq(Operand(rcx, 0), rdx); __ addq(rcx, Immediate(kPointerSize)); __ bind(&entry); __ cmpq(rcx, rax); __ j(below, &loop); } // Store the initialized FixedArray into the properties field of // the JSObject // rbx: JSObject // rdi: FixedArray __ or_(rdi, Immediate(kHeapObjectTag)); // add the heap tag __ movq(FieldOperand(rbx, JSObject::kPropertiesOffset), rdi); // Continue with JSObject being successfully allocated // rbx: JSObject __ jmp(&allocated); // Undo the setting of the new top so that the heap is verifiable. For // example, the map's unused properties potentially do not match the // allocated objects unused properties. // rbx: JSObject (previous new top) __ bind(&undo_allocation); __ UndoAllocationInNewSpace(rbx); } // Allocate the new receiver object using the runtime call. // rdi: function (constructor) __ bind(&rt_call); // Must restore rdi (constructor) before calling runtime. __ movq(rdi, Operand(rsp, 0)); __ push(rdi); __ CallRuntime(Runtime::kNewObject, 1); __ movq(rbx, rax); // store result in rbx // New object allocated. // rbx: newly allocated object __ bind(&allocated); // Retrieve the function from the stack. __ pop(rdi); // Retrieve smi-tagged arguments count from the stack. __ movq(rax, Operand(rsp, 0)); __ shr(rax, Immediate(kSmiTagSize)); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ push(rbx); __ push(rbx); // Setup pointer to last argument. __ lea(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ movq(rcx, rax); __ jmp(&entry); __ bind(&loop); __ push(Operand(rbx, rcx, times_pointer_size, 0)); __ bind(&entry); __ decq(rcx); __ j(greater_equal, &loop); // Call the function. ParameterCount actual(rax); __ InvokeFunction(rdi, actual, CALL_FUNCTION); // Restore context from the frame. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. __ testl(rax, Immediate(kSmiTagMask)); __ j(zero, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense. __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); __ j(above_equal, &exit); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ movq(rax, Operand(rsp, 0)); // Restore the arguments count and leave the construct frame. __ bind(&exit); __ movq(rbx, Operand(rsp, kPointerSize)); // get arguments count __ LeaveConstructFrame(); // Remove caller arguments from the stack and return. ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(rcx); __ lea(rsp, Operand(rsp, rbx, times_4, 1 * kPointerSize)); // 1 ~ receiver __ push(rcx); __ IncrementCounter(&Counters::constructed_objects, 1); __ ret(0); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Expects five C++ function parameters. // - Address entry (ignored) // - JSFunction* function ( // - Object* receiver // - int argc // - Object*** argv // (see Handle::Invoke in execution.cc). // Platform specific argument handling. After this, the stack contains // an internal frame and the pushed function and receiver, and // register rax and rbx holds the argument count and argument array, // while rdi holds the function pointer and rsi the context. #ifdef _WIN64 // MSVC parameters in: // rcx : entry (ignored) // rdx : function // r8 : receiver // r9 : argc // [rsp+0x20] : argv // Clear the context before we push it when entering the JS frame. __ xor_(rsi, rsi); __ EnterInternalFrame(); // Load the function context into rsi. __ movq(rsi, FieldOperand(rdx, JSFunction::kContextOffset)); // Push the function and the receiver onto the stack. __ push(rdx); __ push(r8); // Load the number of arguments and setup pointer to the arguments. __ movq(rax, r9); // Load the previous frame pointer to access C argument on stack __ movq(kScratchRegister, Operand(rbp, 0)); __ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset)); // Load the function pointer into rdi. __ movq(rdi, rdx); #else // !defined(_WIN64) // GCC parameters in: // rdi : entry (ignored) // rsi : function // rdx : receiver // rcx : argc // r8 : argv __ movq(rdi, rsi); // rdi : function // Clear the context before we push it when entering the JS frame. __ xor_(rsi, rsi); // Enter an internal frame. __ EnterInternalFrame(); // Push the function and receiver and setup the context. __ push(rdi); __ push(rdx); __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Load the number of arguments and setup pointer to the arguments. __ movq(rax, rcx); __ movq(rbx, r8); #endif // _WIN64 // Set up the roots register. ExternalReference roots_address = ExternalReference::roots_address(); __ movq(r13, roots_address); // Current stack contents: // [rsp + 2 * kPointerSize ... ]: Internal frame // [rsp + kPointerSize] : function // [rsp] : receiver // Current register contents: // rax : argc // rbx : argv // rsi : context // rdi : function // Copy arguments to the stack in a loop. // Register rbx points to array of pointers to handle locations. // Push the values of these handles. Label loop, entry; __ xor_(rcx, rcx); // Set loop variable to 0. __ jmp(&entry); __ bind(&loop); __ movq(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0)); __ push(Operand(kScratchRegister, 0)); // dereference handle __ addq(rcx, Immediate(1)); __ bind(&entry); __ cmpq(rcx, rax); __ j(not_equal, &loop); // Invoke the code. if (is_construct) { // Expects rdi to hold function pointer. __ Call(Handle(Builtins::builtin(Builtins::JSConstructCall)), RelocInfo::CODE_TARGET); } else { ParameterCount actual(rax); // Function must be in rdi. __ InvokeFunction(rdi, actual, CALL_FUNCTION); } // Exit the JS frame. Notice that this also removes the empty // context and the function left on the stack by the code // invocation. __ LeaveInternalFrame(); // TODO(X64): Is argument correct? Is there a receiver to remove? __ ret(1 * kPointerSize); // remove receiver } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } } } // namespace v8::internal