1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35 #include "v8.h"
36
37 #include "arguments.h"
38 #include "execution.h"
39 #include "ic-inl.h"
40 #include "factory.h"
41 #include "runtime.h"
42 #include "serialize.h"
43 #include "stub-cache.h"
44 #include "regexp-stack.h"
45 #include "ast.h"
46 #include "regexp-macro-assembler.h"
47 // Include native regexp-macro-assembler.
48 #ifdef V8_NATIVE_REGEXP
49 #if V8_TARGET_ARCH_IA32
50 #include "ia32/regexp-macro-assembler-ia32.h"
51 #elif V8_TARGET_ARCH_X64
52 #include "x64/regexp-macro-assembler-x64.h"
53 #elif V8_TARGET_ARCH_ARM
54 #include "arm/regexp-macro-assembler-arm.h"
55 #else // Unknown architecture.
56 #error "Unknown architecture."
57 #endif // Target architecture.
58 #endif // V8_NATIVE_REGEXP
59
60 namespace v8 {
61 namespace internal {
62
63
64 // -----------------------------------------------------------------------------
65 // Implementation of Label
66
pos() const67 int Label::pos() const {
68 if (pos_ < 0) return -pos_ - 1;
69 if (pos_ > 0) return pos_ - 1;
70 UNREACHABLE();
71 return 0;
72 }
73
74
75 // -----------------------------------------------------------------------------
76 // Implementation of RelocInfoWriter and RelocIterator
77 //
78 // Encoding
79 //
80 // The most common modes are given single-byte encodings. Also, it is
81 // easy to identify the type of reloc info and skip unwanted modes in
82 // an iteration.
83 //
84 // The encoding relies on the fact that there are less than 14
85 // different relocation modes.
86 //
87 // embedded_object: [6 bits pc delta] 00
88 //
89 // code_taget: [6 bits pc delta] 01
90 //
91 // position: [6 bits pc delta] 10,
92 // [7 bits signed data delta] 0
93 //
94 // statement_position: [6 bits pc delta] 10,
95 // [7 bits signed data delta] 1
96 //
97 // any nondata mode: 00 [4 bits rmode] 11, // rmode: 0..13 only
98 // 00 [6 bits pc delta]
99 //
100 // pc-jump: 00 1111 11,
101 // 00 [6 bits pc delta]
102 //
103 // pc-jump: 01 1111 11,
104 // (variable length) 7 - 26 bit pc delta, written in chunks of 7
105 // bits, the lowest 7 bits written first.
106 //
107 // data-jump + pos: 00 1110 11,
108 // signed intptr_t, lowest byte written first
109 //
110 // data-jump + st.pos: 01 1110 11,
111 // signed intptr_t, lowest byte written first
112 //
113 // data-jump + comm.: 10 1110 11,
114 // signed intptr_t, lowest byte written first
115 //
116 const int kMaxRelocModes = 14;
117
118 const int kTagBits = 2;
119 const int kTagMask = (1 << kTagBits) - 1;
120 const int kExtraTagBits = 4;
121 const int kPositionTypeTagBits = 1;
122 const int kSmallDataBits = kBitsPerByte - kPositionTypeTagBits;
123
124 const int kEmbeddedObjectTag = 0;
125 const int kCodeTargetTag = 1;
126 const int kPositionTag = 2;
127 const int kDefaultTag = 3;
128
129 const int kPCJumpTag = (1 << kExtraTagBits) - 1;
130
131 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
132 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
133
134 const int kVariableLengthPCJumpTopTag = 1;
135 const int kChunkBits = 7;
136 const int kChunkMask = (1 << kChunkBits) - 1;
137 const int kLastChunkTagBits = 1;
138 const int kLastChunkTagMask = 1;
139 const int kLastChunkTag = 1;
140
141
142 const int kDataJumpTag = kPCJumpTag - 1;
143
144 const int kNonstatementPositionTag = 0;
145 const int kStatementPositionTag = 1;
146 const int kCommentTag = 2;
147
148
WriteVariableLengthPCJump(uint32_t pc_delta)149 uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
150 // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
151 // Otherwise write a variable length PC jump for the bits that do
152 // not fit in the kSmallPCDeltaBits bits.
153 if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
154 WriteExtraTag(kPCJumpTag, kVariableLengthPCJumpTopTag);
155 uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
156 ASSERT(pc_jump > 0);
157 // Write kChunkBits size chunks of the pc_jump.
158 for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
159 byte b = pc_jump & kChunkMask;
160 *--pos_ = b << kLastChunkTagBits;
161 }
162 // Tag the last chunk so it can be identified.
163 *pos_ = *pos_ | kLastChunkTag;
164 // Return the remaining kSmallPCDeltaBits of the pc_delta.
165 return pc_delta & kSmallPCDeltaMask;
166 }
167
168
WriteTaggedPC(uint32_t pc_delta,int tag)169 void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
170 // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
171 pc_delta = WriteVariableLengthPCJump(pc_delta);
172 *--pos_ = pc_delta << kTagBits | tag;
173 }
174
175
WriteTaggedData(intptr_t data_delta,int tag)176 void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
177 *--pos_ = data_delta << kPositionTypeTagBits | tag;
178 }
179
180
WriteExtraTag(int extra_tag,int top_tag)181 void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
182 *--pos_ = top_tag << (kTagBits + kExtraTagBits) |
183 extra_tag << kTagBits |
184 kDefaultTag;
185 }
186
187
WriteExtraTaggedPC(uint32_t pc_delta,int extra_tag)188 void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
189 // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
190 pc_delta = WriteVariableLengthPCJump(pc_delta);
191 WriteExtraTag(extra_tag, 0);
192 *--pos_ = pc_delta;
193 }
194
195
WriteExtraTaggedData(intptr_t data_delta,int top_tag)196 void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
197 WriteExtraTag(kDataJumpTag, top_tag);
198 for (int i = 0; i < kIntptrSize; i++) {
199 *--pos_ = data_delta;
200 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
201 data_delta = data_delta >> kBitsPerByte;
202 }
203 }
204
205
Write(const RelocInfo * rinfo)206 void RelocInfoWriter::Write(const RelocInfo* rinfo) {
207 #ifdef DEBUG
208 byte* begin_pos = pos_;
209 #endif
210 Counters::reloc_info_count.Increment();
211 ASSERT(rinfo->pc() - last_pc_ >= 0);
212 ASSERT(RelocInfo::NUMBER_OF_MODES < kMaxRelocModes);
213 // Use unsigned delta-encoding for pc.
214 uint32_t pc_delta = rinfo->pc() - last_pc_;
215 RelocInfo::Mode rmode = rinfo->rmode();
216
217 // The two most common modes are given small tags, and usually fit in a byte.
218 if (rmode == RelocInfo::EMBEDDED_OBJECT) {
219 WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
220 } else if (rmode == RelocInfo::CODE_TARGET) {
221 WriteTaggedPC(pc_delta, kCodeTargetTag);
222 } else if (RelocInfo::IsPosition(rmode)) {
223 // Use signed delta-encoding for data.
224 intptr_t data_delta = rinfo->data() - last_data_;
225 int pos_type_tag = rmode == RelocInfo::POSITION ? kNonstatementPositionTag
226 : kStatementPositionTag;
227 // Check if data is small enough to fit in a tagged byte.
228 // We cannot use is_intn because data_delta is not an int32_t.
229 if (data_delta >= -(1 << (kSmallDataBits-1)) &&
230 data_delta < 1 << (kSmallDataBits-1)) {
231 WriteTaggedPC(pc_delta, kPositionTag);
232 WriteTaggedData(data_delta, pos_type_tag);
233 last_data_ = rinfo->data();
234 } else {
235 // Otherwise, use costly encoding.
236 WriteExtraTaggedPC(pc_delta, kPCJumpTag);
237 WriteExtraTaggedData(data_delta, pos_type_tag);
238 last_data_ = rinfo->data();
239 }
240 } else if (RelocInfo::IsComment(rmode)) {
241 // Comments are normally not generated, so we use the costly encoding.
242 WriteExtraTaggedPC(pc_delta, kPCJumpTag);
243 WriteExtraTaggedData(rinfo->data() - last_data_, kCommentTag);
244 last_data_ = rinfo->data();
245 } else {
246 // For all other modes we simply use the mode as the extra tag.
247 // None of these modes need a data component.
248 ASSERT(rmode < kPCJumpTag && rmode < kDataJumpTag);
249 WriteExtraTaggedPC(pc_delta, rmode);
250 }
251 last_pc_ = rinfo->pc();
252 #ifdef DEBUG
253 ASSERT(begin_pos - pos_ <= kMaxSize);
254 #endif
255 }
256
257
AdvanceGetTag()258 inline int RelocIterator::AdvanceGetTag() {
259 return *--pos_ & kTagMask;
260 }
261
262
GetExtraTag()263 inline int RelocIterator::GetExtraTag() {
264 return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
265 }
266
267
GetTopTag()268 inline int RelocIterator::GetTopTag() {
269 return *pos_ >> (kTagBits + kExtraTagBits);
270 }
271
272
ReadTaggedPC()273 inline void RelocIterator::ReadTaggedPC() {
274 rinfo_.pc_ += *pos_ >> kTagBits;
275 }
276
277
AdvanceReadPC()278 inline void RelocIterator::AdvanceReadPC() {
279 rinfo_.pc_ += *--pos_;
280 }
281
282
AdvanceReadData()283 void RelocIterator::AdvanceReadData() {
284 intptr_t x = 0;
285 for (int i = 0; i < kIntptrSize; i++) {
286 x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
287 }
288 rinfo_.data_ += x;
289 }
290
291
AdvanceReadVariableLengthPCJump()292 void RelocIterator::AdvanceReadVariableLengthPCJump() {
293 // Read the 32-kSmallPCDeltaBits most significant bits of the
294 // pc jump in kChunkBits bit chunks and shift them into place.
295 // Stop when the last chunk is encountered.
296 uint32_t pc_jump = 0;
297 for (int i = 0; i < kIntSize; i++) {
298 byte pc_jump_part = *--pos_;
299 pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
300 if ((pc_jump_part & kLastChunkTagMask) == 1) break;
301 }
302 // The least significant kSmallPCDeltaBits bits will be added
303 // later.
304 rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
305 }
306
307
GetPositionTypeTag()308 inline int RelocIterator::GetPositionTypeTag() {
309 return *pos_ & ((1 << kPositionTypeTagBits) - 1);
310 }
311
312
ReadTaggedData()313 inline void RelocIterator::ReadTaggedData() {
314 int8_t signed_b = *pos_;
315 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
316 rinfo_.data_ += signed_b >> kPositionTypeTagBits;
317 }
318
319
DebugInfoModeFromTag(int tag)320 inline RelocInfo::Mode RelocIterator::DebugInfoModeFromTag(int tag) {
321 if (tag == kStatementPositionTag) {
322 return RelocInfo::STATEMENT_POSITION;
323 } else if (tag == kNonstatementPositionTag) {
324 return RelocInfo::POSITION;
325 } else {
326 ASSERT(tag == kCommentTag);
327 return RelocInfo::COMMENT;
328 }
329 }
330
331
next()332 void RelocIterator::next() {
333 ASSERT(!done());
334 // Basically, do the opposite of RelocInfoWriter::Write.
335 // Reading of data is as far as possible avoided for unwanted modes,
336 // but we must always update the pc.
337 //
338 // We exit this loop by returning when we find a mode we want.
339 while (pos_ > end_) {
340 int tag = AdvanceGetTag();
341 if (tag == kEmbeddedObjectTag) {
342 ReadTaggedPC();
343 if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
344 } else if (tag == kCodeTargetTag) {
345 ReadTaggedPC();
346 if (*(reinterpret_cast<int*>(rinfo_.pc())) == 0x61) {
347 tag = 0;
348 }
349 if (SetMode(RelocInfo::CODE_TARGET)) return;
350 } else if (tag == kPositionTag) {
351 ReadTaggedPC();
352 Advance();
353 // Check if we want source positions.
354 if (mode_mask_ & RelocInfo::kPositionMask) {
355 // Check if we want this type of source position.
356 if (SetMode(DebugInfoModeFromTag(GetPositionTypeTag()))) {
357 // Finally read the data before returning.
358 ReadTaggedData();
359 return;
360 }
361 }
362 } else {
363 ASSERT(tag == kDefaultTag);
364 int extra_tag = GetExtraTag();
365 if (extra_tag == kPCJumpTag) {
366 int top_tag = GetTopTag();
367 if (top_tag == kVariableLengthPCJumpTopTag) {
368 AdvanceReadVariableLengthPCJump();
369 } else {
370 AdvanceReadPC();
371 }
372 } else if (extra_tag == kDataJumpTag) {
373 // Check if we want debug modes (the only ones with data).
374 if (mode_mask_ & RelocInfo::kDebugMask) {
375 int top_tag = GetTopTag();
376 AdvanceReadData();
377 if (SetMode(DebugInfoModeFromTag(top_tag))) return;
378 } else {
379 // Otherwise, just skip over the data.
380 Advance(kIntptrSize);
381 }
382 } else {
383 AdvanceReadPC();
384 if (SetMode(static_cast<RelocInfo::Mode>(extra_tag))) return;
385 }
386 }
387 }
388 done_ = true;
389 }
390
391
RelocIterator(Code * code,int mode_mask)392 RelocIterator::RelocIterator(Code* code, int mode_mask) {
393 rinfo_.pc_ = code->instruction_start();
394 rinfo_.data_ = 0;
395 // relocation info is read backwards
396 pos_ = code->relocation_start() + code->relocation_size();
397 end_ = code->relocation_start();
398 done_ = false;
399 mode_mask_ = mode_mask;
400 if (mode_mask_ == 0) pos_ = end_;
401 next();
402 }
403
404
RelocIterator(const CodeDesc & desc,int mode_mask)405 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
406 rinfo_.pc_ = desc.buffer;
407 rinfo_.data_ = 0;
408 // relocation info is read backwards
409 pos_ = desc.buffer + desc.buffer_size;
410 end_ = pos_ - desc.reloc_size;
411 done_ = false;
412 mode_mask_ = mode_mask;
413 if (mode_mask_ == 0) pos_ = end_;
414 next();
415 }
416
417
418 // -----------------------------------------------------------------------------
419 // Implementation of RelocInfo
420
421
422 #ifdef ENABLE_DISASSEMBLER
RelocModeName(RelocInfo::Mode rmode)423 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
424 switch (rmode) {
425 case RelocInfo::NONE:
426 return "no reloc";
427 case RelocInfo::EMBEDDED_OBJECT:
428 return "embedded object";
429 case RelocInfo::EMBEDDED_STRING:
430 return "embedded string";
431 case RelocInfo::CONSTRUCT_CALL:
432 return "code target (js construct call)";
433 case RelocInfo::CODE_TARGET_CONTEXT:
434 return "code target (context)";
435 case RelocInfo::CODE_TARGET:
436 return "code target";
437 case RelocInfo::RUNTIME_ENTRY:
438 return "runtime entry";
439 case RelocInfo::JS_RETURN:
440 return "js return";
441 case RelocInfo::COMMENT:
442 return "comment";
443 case RelocInfo::POSITION:
444 return "position";
445 case RelocInfo::STATEMENT_POSITION:
446 return "statement position";
447 case RelocInfo::EXTERNAL_REFERENCE:
448 return "external reference";
449 case RelocInfo::INTERNAL_REFERENCE:
450 return "internal reference";
451 case RelocInfo::NUMBER_OF_MODES:
452 UNREACHABLE();
453 return "number_of_modes";
454 }
455 return "unknown relocation type";
456 }
457
458
Print()459 void RelocInfo::Print() {
460 PrintF("%p %s", pc_, RelocModeName(rmode_));
461 if (IsComment(rmode_)) {
462 PrintF(" (%s)", data_);
463 } else if (rmode_ == EMBEDDED_OBJECT) {
464 PrintF(" (");
465 target_object()->ShortPrint();
466 PrintF(")");
467 } else if (rmode_ == EXTERNAL_REFERENCE) {
468 ExternalReferenceEncoder ref_encoder;
469 PrintF(" (%s) (%p)",
470 ref_encoder.NameOfAddress(*target_reference_address()),
471 *target_reference_address());
472 } else if (IsCodeTarget(rmode_)) {
473 Code* code = Code::GetCodeFromTargetAddress(target_address());
474 PrintF(" (%s) (%p)", Code::Kind2String(code->kind()), target_address());
475 } else if (IsPosition(rmode_)) {
476 PrintF(" (%d)", data());
477 }
478
479 PrintF("\n");
480 }
481 #endif // ENABLE_DISASSEMBLER
482
483
484 #ifdef DEBUG
Verify()485 void RelocInfo::Verify() {
486 switch (rmode_) {
487 case EMBEDDED_OBJECT:
488 Object::VerifyPointer(target_object());
489 break;
490 case CONSTRUCT_CALL:
491 case CODE_TARGET_CONTEXT:
492 case CODE_TARGET: {
493 // convert inline target address to code object
494 Address addr = target_address();
495 ASSERT(addr != NULL);
496 // Check that we can find the right code object.
497 HeapObject* code = HeapObject::FromAddress(addr - Code::kHeaderSize);
498 Object* found = Heap::FindCodeObject(addr);
499 ASSERT(found->IsCode());
500 ASSERT(code->address() == HeapObject::cast(found)->address());
501 break;
502 }
503 case RelocInfo::EMBEDDED_STRING:
504 case RUNTIME_ENTRY:
505 case JS_RETURN:
506 case COMMENT:
507 case POSITION:
508 case STATEMENT_POSITION:
509 case EXTERNAL_REFERENCE:
510 case INTERNAL_REFERENCE:
511 case NONE:
512 break;
513 case NUMBER_OF_MODES:
514 UNREACHABLE();
515 break;
516 }
517 }
518 #endif // DEBUG
519
520
521 // -----------------------------------------------------------------------------
522 // Implementation of ExternalReference
523
ExternalReference(Builtins::CFunctionId id)524 ExternalReference::ExternalReference(Builtins::CFunctionId id)
525 : address_(Redirect(Builtins::c_function_address(id))) {}
526
527
ExternalReference(Builtins::Name name)528 ExternalReference::ExternalReference(Builtins::Name name)
529 : address_(Builtins::builtin_address(name)) {}
530
531
ExternalReference(Runtime::FunctionId id)532 ExternalReference::ExternalReference(Runtime::FunctionId id)
533 : address_(Redirect(Runtime::FunctionForId(id)->entry)) {}
534
535
ExternalReference(Runtime::Function * f)536 ExternalReference::ExternalReference(Runtime::Function* f)
537 : address_(Redirect(f->entry)) {}
538
539
ExternalReference(const IC_Utility & ic_utility)540 ExternalReference::ExternalReference(const IC_Utility& ic_utility)
541 : address_(Redirect(ic_utility.address())) {}
542
543 #ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference(const Debug_Address & debug_address)544 ExternalReference::ExternalReference(const Debug_Address& debug_address)
545 : address_(debug_address.address()) {}
546 #endif
547
ExternalReference(StatsCounter * counter)548 ExternalReference::ExternalReference(StatsCounter* counter)
549 : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
550
551
ExternalReference(Top::AddressId id)552 ExternalReference::ExternalReference(Top::AddressId id)
553 : address_(Top::get_address_from_id(id)) {}
554
555
ExternalReference(const SCTableReference & table_ref)556 ExternalReference::ExternalReference(const SCTableReference& table_ref)
557 : address_(table_ref.address()) {}
558
559
perform_gc_function()560 ExternalReference ExternalReference::perform_gc_function() {
561 return ExternalReference(Redirect(FUNCTION_ADDR(Runtime::PerformGC)));
562 }
563
564
builtin_passed_function()565 ExternalReference ExternalReference::builtin_passed_function() {
566 return ExternalReference(&Builtins::builtin_passed_function);
567 }
568
569
random_positive_smi_function()570 ExternalReference ExternalReference::random_positive_smi_function() {
571 return ExternalReference(Redirect(FUNCTION_ADDR(V8::RandomPositiveSmi)));
572 }
573
574
the_hole_value_location()575 ExternalReference ExternalReference::the_hole_value_location() {
576 return ExternalReference(Factory::the_hole_value().location());
577 }
578
579
roots_address()580 ExternalReference ExternalReference::roots_address() {
581 return ExternalReference(Heap::roots_address());
582 }
583
584
address_of_stack_guard_limit()585 ExternalReference ExternalReference::address_of_stack_guard_limit() {
586 return ExternalReference(StackGuard::address_of_jslimit());
587 }
588
589
address_of_regexp_stack_limit()590 ExternalReference ExternalReference::address_of_regexp_stack_limit() {
591 return ExternalReference(RegExpStack::limit_address());
592 }
593
594
new_space_start()595 ExternalReference ExternalReference::new_space_start() {
596 return ExternalReference(Heap::NewSpaceStart());
597 }
598
599
new_space_allocation_top_address()600 ExternalReference ExternalReference::new_space_allocation_top_address() {
601 return ExternalReference(Heap::NewSpaceAllocationTopAddress());
602 }
603
604
heap_always_allocate_scope_depth()605 ExternalReference ExternalReference::heap_always_allocate_scope_depth() {
606 return ExternalReference(Heap::always_allocate_scope_depth_address());
607 }
608
609
new_space_allocation_limit_address()610 ExternalReference ExternalReference::new_space_allocation_limit_address() {
611 return ExternalReference(Heap::NewSpaceAllocationLimitAddress());
612 }
613
614 #ifdef V8_NATIVE_REGEXP
615
re_check_stack_guard_state()616 ExternalReference ExternalReference::re_check_stack_guard_state() {
617 Address function;
618 #ifdef V8_TARGET_ARCH_X64
619 function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
620 #elif V8_TARGET_ARCH_IA32
621 function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
622 #elif V8_TARGET_ARCH_ARM
623 function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
624 #else
625 UNREACHABLE("Unexpected architecture");
626 #endif
627 return ExternalReference(Redirect(function));
628 }
629
re_grow_stack()630 ExternalReference ExternalReference::re_grow_stack() {
631 return ExternalReference(
632 Redirect(FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
633 }
634
re_case_insensitive_compare_uc16()635 ExternalReference ExternalReference::re_case_insensitive_compare_uc16() {
636 return ExternalReference(Redirect(
637 FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
638 }
639
640 #endif
641
642
add_two_doubles(double x,double y)643 static double add_two_doubles(double x, double y) {
644 return x + y;
645 }
646
647
sub_two_doubles(double x,double y)648 static double sub_two_doubles(double x, double y) {
649 return x - y;
650 }
651
652
mul_two_doubles(double x,double y)653 static double mul_two_doubles(double x, double y) {
654 return x * y;
655 }
656
657
div_two_doubles(double x,double y)658 static double div_two_doubles(double x, double y) {
659 return x / y;
660 }
661
662
mod_two_doubles(double x,double y)663 static double mod_two_doubles(double x, double y) {
664 return fmod(x, y);
665 }
666
667
native_compare_doubles(double x,double y)668 static int native_compare_doubles(double x, double y) {
669 if (x == y) return 0;
670 return x < y ? 1 : -1;
671 }
672
673
double_fp_operation(Token::Value operation)674 ExternalReference ExternalReference::double_fp_operation(
675 Token::Value operation) {
676 typedef double BinaryFPOperation(double x, double y);
677 BinaryFPOperation* function = NULL;
678 switch (operation) {
679 case Token::ADD:
680 function = &add_two_doubles;
681 break;
682 case Token::SUB:
683 function = &sub_two_doubles;
684 break;
685 case Token::MUL:
686 function = &mul_two_doubles;
687 break;
688 case Token::DIV:
689 function = &div_two_doubles;
690 break;
691 case Token::MOD:
692 function = &mod_two_doubles;
693 break;
694 default:
695 UNREACHABLE();
696 }
697 // Passing true as 2nd parameter indicates that they return an fp value.
698 return ExternalReference(Redirect(FUNCTION_ADDR(function), true));
699 }
700
701
compare_doubles()702 ExternalReference ExternalReference::compare_doubles() {
703 return ExternalReference(Redirect(FUNCTION_ADDR(native_compare_doubles),
704 false));
705 }
706
707
708 ExternalReferenceRedirector* ExternalReference::redirector_ = NULL;
709
710
711 #ifdef ENABLE_DEBUGGER_SUPPORT
debug_break()712 ExternalReference ExternalReference::debug_break() {
713 return ExternalReference(Redirect(FUNCTION_ADDR(Debug::Break)));
714 }
715
716
debug_step_in_fp_address()717 ExternalReference ExternalReference::debug_step_in_fp_address() {
718 return ExternalReference(Debug::step_in_fp_addr());
719 }
720 #endif
721
722 } } // namespace v8::internal
723