• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "prettyprinter.h"
31 #include "scopeinfo.h"
32 #include "scopes.h"
33 
34 namespace v8 {
35 namespace internal {
36 
37 // ----------------------------------------------------------------------------
38 // A Zone allocator for use with LocalsMap.
39 
40 class ZoneAllocator: public Allocator {
41  public:
42   /* nothing to do */
~ZoneAllocator()43   virtual ~ZoneAllocator()  {}
44 
New(size_t size)45   virtual void* New(size_t size)  { return Zone::New(size); }
46 
47   /* ignored - Zone is freed in one fell swoop */
Delete(void * p)48   virtual void Delete(void* p)  {}
49 };
50 
51 
52 static ZoneAllocator LocalsMapAllocator;
53 
54 
55 // ----------------------------------------------------------------------------
56 // Implementation of LocalsMap
57 //
58 // Note: We are storing the handle locations as key values in the hash map.
59 //       When inserting a new variable via Declare(), we rely on the fact that
60 //       the handle location remains alive for the duration of that variable
61 //       use. Because a Variable holding a handle with the same location exists
62 //       this is ensured.
63 
Match(void * key1,void * key2)64 static bool Match(void* key1, void* key2) {
65   String* name1 = *reinterpret_cast<String**>(key1);
66   String* name2 = *reinterpret_cast<String**>(key2);
67   ASSERT(name1->IsSymbol());
68   ASSERT(name2->IsSymbol());
69   return name1 == name2;
70 }
71 
72 
73 // Dummy constructor
VariableMap(bool gotta_love_static_overloading)74 VariableMap::VariableMap(bool gotta_love_static_overloading) : HashMap() {}
75 
VariableMap()76 VariableMap::VariableMap() : HashMap(Match, &LocalsMapAllocator, 8) {}
~VariableMap()77 VariableMap::~VariableMap() {}
78 
79 
Declare(Scope * scope,Handle<String> name,Variable::Mode mode,bool is_valid_lhs,Variable::Kind kind)80 Variable* VariableMap::Declare(Scope* scope,
81                                Handle<String> name,
82                                Variable::Mode mode,
83                                bool is_valid_lhs,
84                                Variable::Kind kind) {
85   HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), true);
86   if (p->value == NULL) {
87     // The variable has not been declared yet -> insert it.
88     ASSERT(p->key == name.location());
89     p->value = new Variable(scope, name, mode, is_valid_lhs, kind);
90   }
91   return reinterpret_cast<Variable*>(p->value);
92 }
93 
94 
Lookup(Handle<String> name)95 Variable* VariableMap::Lookup(Handle<String> name) {
96   HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), false);
97   if (p != NULL) {
98     ASSERT(*reinterpret_cast<String**>(p->key) == *name);
99     ASSERT(p->value != NULL);
100     return reinterpret_cast<Variable*>(p->value);
101   }
102   return NULL;
103 }
104 
105 
106 // ----------------------------------------------------------------------------
107 // Implementation of Scope
108 
109 
110 // Dummy constructor
Scope(Type type)111 Scope::Scope(Type type)
112   : outer_scope_(NULL),
113     inner_scopes_(0),
114     type_(type),
115     scope_name_(Factory::empty_symbol()),
116     variables_(false),
117     temps_(0),
118     params_(0),
119     dynamics_(NULL),
120     unresolved_(0),
121     decls_(0),
122     receiver_(NULL),
123     function_(NULL),
124     arguments_(NULL),
125     arguments_shadow_(NULL),
126     illegal_redecl_(NULL),
127     scope_inside_with_(false),
128     scope_contains_with_(false),
129     scope_calls_eval_(false),
130     outer_scope_calls_eval_(false),
131     inner_scope_calls_eval_(false),
132     outer_scope_is_eval_scope_(false),
133     force_eager_compilation_(false),
134     num_stack_slots_(0),
135     num_heap_slots_(0) {
136 }
137 
138 
Scope(Scope * outer_scope,Type type)139 Scope::Scope(Scope* outer_scope, Type type)
140   : outer_scope_(outer_scope),
141     inner_scopes_(4),
142     type_(type),
143     scope_name_(Factory::empty_symbol()),
144     temps_(4),
145     params_(4),
146     dynamics_(NULL),
147     unresolved_(16),
148     decls_(4),
149     receiver_(NULL),
150     function_(NULL),
151     arguments_(NULL),
152     arguments_shadow_(NULL),
153     illegal_redecl_(NULL),
154     scope_inside_with_(false),
155     scope_contains_with_(false),
156     scope_calls_eval_(false),
157     outer_scope_calls_eval_(false),
158     inner_scope_calls_eval_(false),
159     outer_scope_is_eval_scope_(false),
160     force_eager_compilation_(false),
161     num_stack_slots_(0),
162     num_heap_slots_(0) {
163   // At some point we might want to provide outer scopes to
164   // eval scopes (by walking the stack and reading the scope info).
165   // In that case, the ASSERT below needs to be adjusted.
166   ASSERT((type == GLOBAL_SCOPE || type == EVAL_SCOPE) == (outer_scope == NULL));
167   ASSERT(!HasIllegalRedeclaration());
168 }
169 
170 
Initialize(bool inside_with)171 void Scope::Initialize(bool inside_with) {
172   // Add this scope as a new inner scope of the outer scope.
173   if (outer_scope_ != NULL) {
174     outer_scope_->inner_scopes_.Add(this);
175     scope_inside_with_ = outer_scope_->scope_inside_with_ || inside_with;
176   } else {
177     scope_inside_with_ = inside_with;
178   }
179 
180   // Declare convenience variables.
181   // Declare and allocate receiver (even for the global scope, and even
182   // if naccesses_ == 0).
183   // NOTE: When loading parameters in the global scope, we must take
184   // care not to access them as properties of the global object, but
185   // instead load them directly from the stack. Currently, the only
186   // such parameter is 'this' which is passed on the stack when
187   // invoking scripts
188   Variable* var =
189       variables_.Declare(this, Factory::this_symbol(), Variable::VAR,
190                          false, Variable::THIS);
191   var->rewrite_ = new Slot(var, Slot::PARAMETER, -1);
192   receiver_ = new VariableProxy(Factory::this_symbol(), true, false);
193   receiver_->BindTo(var);
194 
195   if (is_function_scope()) {
196     // Declare 'arguments' variable which exists in all functions.
197     // Note that it might never be accessed, in which case it won't be
198     // allocated during variable allocation.
199     variables_.Declare(this, Factory::arguments_symbol(), Variable::VAR,
200                        true, Variable::ARGUMENTS);
201   }
202 }
203 
204 
205 
LocalLookup(Handle<String> name)206 Variable* Scope::LocalLookup(Handle<String> name) {
207   return variables_.Lookup(name);
208 }
209 
210 
Lookup(Handle<String> name)211 Variable* Scope::Lookup(Handle<String> name) {
212   for (Scope* scope = this;
213        scope != NULL;
214        scope = scope->outer_scope()) {
215     Variable* var = scope->LocalLookup(name);
216     if (var != NULL) return var;
217   }
218   return NULL;
219 }
220 
221 
DeclareFunctionVar(Handle<String> name)222 Variable* Scope::DeclareFunctionVar(Handle<String> name) {
223   ASSERT(is_function_scope() && function_ == NULL);
224   function_ = new Variable(this, name, Variable::CONST, true, Variable::NORMAL);
225   return function_;
226 }
227 
228 
DeclareLocal(Handle<String> name,Variable::Mode mode)229 Variable* Scope::DeclareLocal(Handle<String> name, Variable::Mode mode) {
230   // DYNAMIC variables are introduces during variable allocation,
231   // INTERNAL variables are allocated explicitly, and TEMPORARY
232   // variables are allocated via NewTemporary().
233   ASSERT(mode == Variable::VAR || mode == Variable::CONST);
234   return variables_.Declare(this, name, mode, true, Variable::NORMAL);
235 }
236 
237 
DeclareGlobal(Handle<String> name)238 Variable* Scope::DeclareGlobal(Handle<String> name) {
239   ASSERT(is_global_scope());
240   return variables_.Declare(this, name, Variable::DYNAMIC, true,
241                             Variable::NORMAL);
242 }
243 
244 
AddParameter(Variable * var)245 void Scope::AddParameter(Variable* var) {
246   ASSERT(is_function_scope());
247   ASSERT(LocalLookup(var->name()) == var);
248   params_.Add(var);
249 }
250 
251 
NewUnresolved(Handle<String> name,bool inside_with)252 VariableProxy* Scope::NewUnresolved(Handle<String> name, bool inside_with) {
253   // Note that we must not share the unresolved variables with
254   // the same name because they may be removed selectively via
255   // RemoveUnresolved().
256   VariableProxy* proxy = new VariableProxy(name, false, inside_with);
257   unresolved_.Add(proxy);
258   return proxy;
259 }
260 
261 
RemoveUnresolved(VariableProxy * var)262 void Scope::RemoveUnresolved(VariableProxy* var) {
263   // Most likely (always?) any variable we want to remove
264   // was just added before, so we search backwards.
265   for (int i = unresolved_.length(); i-- > 0;) {
266     if (unresolved_[i] == var) {
267       unresolved_.Remove(i);
268       return;
269     }
270   }
271 }
272 
273 
NewTemporary(Handle<String> name)274 VariableProxy* Scope::NewTemporary(Handle<String> name) {
275   Variable* var = new Variable(this, name, Variable::TEMPORARY, true,
276                                Variable::NORMAL);
277   VariableProxy* tmp = new VariableProxy(name, false, false);
278   tmp->BindTo(var);
279   temps_.Add(var);
280   return tmp;
281 }
282 
283 
AddDeclaration(Declaration * declaration)284 void Scope::AddDeclaration(Declaration* declaration) {
285   decls_.Add(declaration);
286 }
287 
288 
SetIllegalRedeclaration(Expression * expression)289 void Scope::SetIllegalRedeclaration(Expression* expression) {
290   // Only set the illegal redeclaration expression the
291   // first time the function is called.
292   if (!HasIllegalRedeclaration()) {
293     illegal_redecl_ = expression;
294   }
295   ASSERT(HasIllegalRedeclaration());
296 }
297 
298 
VisitIllegalRedeclaration(AstVisitor * visitor)299 void Scope::VisitIllegalRedeclaration(AstVisitor* visitor) {
300   ASSERT(HasIllegalRedeclaration());
301   illegal_redecl_->Accept(visitor);
302 }
303 
304 
305 template<class Allocator>
CollectUsedVariables(List<Variable *,Allocator> * locals)306 void Scope::CollectUsedVariables(List<Variable*, Allocator>* locals) {
307   // Collect variables in this scope.
308   // Note that the function_ variable - if present - is not
309   // collected here but handled separately in ScopeInfo
310   // which is the current user of this function).
311   for (int i = 0; i < temps_.length(); i++) {
312     Variable* var = temps_[i];
313     if (var->var_uses()->is_used()) {
314       locals->Add(var);
315     }
316   }
317   for (VariableMap::Entry* p = variables_.Start();
318        p != NULL;
319        p = variables_.Next(p)) {
320     Variable* var = reinterpret_cast<Variable*>(p->value);
321     if (var->var_uses()->is_used()) {
322       locals->Add(var);
323     }
324   }
325 }
326 
327 
328 // Make sure the method gets instantiated by the template system.
329 template void Scope::CollectUsedVariables(
330     List<Variable*, FreeStoreAllocationPolicy>* locals);
331 template void Scope::CollectUsedVariables(
332     List<Variable*, PreallocatedStorage>* locals);
333 template void Scope::CollectUsedVariables(
334     List<Variable*, ZoneListAllocationPolicy>* locals);
335 
336 
AllocateVariables(Handle<Context> context)337 void Scope::AllocateVariables(Handle<Context> context) {
338   ASSERT(outer_scope_ == NULL);  // eval or global scopes only
339 
340   // 1) Propagate scope information.
341   // If we are in an eval scope, we may have other outer scopes about
342   // which we don't know anything at this point. Thus we must be conservative
343   // and assume they may invoke eval themselves. Eventually we could capture
344   // this information in the ScopeInfo and then use it here (by traversing
345   // the call chain stack, at compile time).
346   bool eval_scope = is_eval_scope();
347   PropagateScopeInfo(eval_scope, eval_scope);
348 
349   // 2) Resolve variables.
350   Scope* global_scope = NULL;
351   if (is_global_scope()) global_scope = this;
352   ResolveVariablesRecursively(global_scope, context);
353 
354   // 3) Allocate variables.
355   AllocateVariablesRecursively();
356 }
357 
358 
AllowsLazyCompilation() const359 bool Scope::AllowsLazyCompilation() const {
360   return !force_eager_compilation_ && HasTrivialOuterContext();
361 }
362 
363 
HasTrivialContext() const364 bool Scope::HasTrivialContext() const {
365   // A function scope has a trivial context if it always is the global
366   // context. We iteratively scan out the context chain to see if
367   // there is anything that makes this scope non-trivial; otherwise we
368   // return true.
369   for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
370     if (scope->is_eval_scope()) return false;
371     if (scope->scope_inside_with_) return false;
372     if (scope->num_heap_slots_ > 0) return false;
373   }
374   return true;
375 }
376 
377 
HasTrivialOuterContext() const378 bool Scope::HasTrivialOuterContext() const {
379   Scope* outer = outer_scope_;
380   if (outer == NULL) return true;
381   // Note that the outer context may be trivial in general, but the current
382   // scope may be inside a 'with' statement in which case the outer context
383   // for this scope is not trivial.
384   return !scope_inside_with_ && outer->HasTrivialContext();
385 }
386 
387 
ContextChainLength(Scope * scope)388 int Scope::ContextChainLength(Scope* scope) {
389   int n = 0;
390   for (Scope* s = this; s != scope; s = s->outer_scope_) {
391     ASSERT(s != NULL);  // scope must be in the scope chain
392     if (s->num_heap_slots() > 0) n++;
393   }
394   return n;
395 }
396 
397 
398 #ifdef DEBUG
Header(Scope::Type type)399 static const char* Header(Scope::Type type) {
400   switch (type) {
401     case Scope::EVAL_SCOPE: return "eval";
402     case Scope::FUNCTION_SCOPE: return "function";
403     case Scope::GLOBAL_SCOPE: return "global";
404   }
405   UNREACHABLE();
406   return NULL;
407 }
408 
409 
Indent(int n,const char * str)410 static void Indent(int n, const char* str) {
411   PrintF("%*s%s", n, "", str);
412 }
413 
414 
PrintName(Handle<String> name)415 static void PrintName(Handle<String> name) {
416   SmartPointer<char> s = name->ToCString(DISALLOW_NULLS);
417   PrintF("%s", *s);
418 }
419 
420 
PrintVar(PrettyPrinter * printer,int indent,Variable * var)421 static void PrintVar(PrettyPrinter* printer, int indent, Variable* var) {
422   if (var->var_uses()->is_used() || var->rewrite() != NULL) {
423     Indent(indent, Variable::Mode2String(var->mode()));
424     PrintF(" ");
425     PrintName(var->name());
426     PrintF(";  // ");
427     if (var->rewrite() != NULL) PrintF("%s, ", printer->Print(var->rewrite()));
428     if (var->is_accessed_from_inner_scope()) PrintF("inner scope access, ");
429     PrintF("var ");
430     var->var_uses()->Print();
431     PrintF(", obj ");
432     var->obj_uses()->Print();
433     PrintF("\n");
434   }
435 }
436 
437 
PrintMap(PrettyPrinter * printer,int indent,VariableMap * map)438 static void PrintMap(PrettyPrinter* printer, int indent, VariableMap* map) {
439   for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
440     Variable* var = reinterpret_cast<Variable*>(p->value);
441     PrintVar(printer, indent, var);
442   }
443 }
444 
445 
Print(int n)446 void Scope::Print(int n) {
447   int n0 = (n > 0 ? n : 0);
448   int n1 = n0 + 2;  // indentation
449 
450   // Print header.
451   Indent(n0, Header(type_));
452   if (scope_name_->length() > 0) {
453     PrintF(" ");
454     PrintName(scope_name_);
455   }
456 
457   // Print parameters, if any.
458   if (is_function_scope()) {
459     PrintF(" (");
460     for (int i = 0; i < params_.length(); i++) {
461       if (i > 0) PrintF(", ");
462       PrintName(params_[i]->name());
463     }
464     PrintF(")");
465   }
466 
467   PrintF(" {\n");
468 
469   // Function name, if any (named function literals, only).
470   if (function_ != NULL) {
471     Indent(n1, "// (local) function name: ");
472     PrintName(function_->name());
473     PrintF("\n");
474   }
475 
476   // Scope info.
477   if (HasTrivialOuterContext()) {
478     Indent(n1, "// scope has trivial outer context\n");
479   }
480   if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
481   if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n");
482   if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
483   if (outer_scope_calls_eval_) Indent(n1, "// outer scope calls 'eval'\n");
484   if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
485   if (outer_scope_is_eval_scope_) {
486     Indent(n1, "// outer scope is 'eval' scope\n");
487   }
488   if (num_stack_slots_ > 0) { Indent(n1, "// ");
489   PrintF("%d stack slots\n", num_stack_slots_); }
490   if (num_heap_slots_ > 0) { Indent(n1, "// ");
491   PrintF("%d heap slots\n", num_heap_slots_); }
492 
493   // Print locals.
494   PrettyPrinter printer;
495   Indent(n1, "// function var\n");
496   if (function_ != NULL) {
497     PrintVar(&printer, n1, function_);
498   }
499 
500   Indent(n1, "// temporary vars\n");
501   for (int i = 0; i < temps_.length(); i++) {
502     PrintVar(&printer, n1, temps_[i]);
503   }
504 
505   Indent(n1, "// local vars\n");
506   PrintMap(&printer, n1, &variables_);
507 
508   Indent(n1, "// dynamic vars\n");
509   if (dynamics_ != NULL) {
510     PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC));
511     PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC_LOCAL));
512     PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC_GLOBAL));
513   }
514 
515   // Print inner scopes (disable by providing negative n).
516   if (n >= 0) {
517     for (int i = 0; i < inner_scopes_.length(); i++) {
518       PrintF("\n");
519       inner_scopes_[i]->Print(n1);
520     }
521   }
522 
523   Indent(n0, "}\n");
524 }
525 #endif  // DEBUG
526 
527 
NonLocal(Handle<String> name,Variable::Mode mode)528 Variable* Scope::NonLocal(Handle<String> name, Variable::Mode mode) {
529   if (dynamics_ == NULL) dynamics_ = new DynamicScopePart();
530   VariableMap* map = dynamics_->GetMap(mode);
531   Variable* var = map->Lookup(name);
532   if (var == NULL) {
533     // Declare a new non-local.
534     var = map->Declare(NULL, name, mode, true, Variable::NORMAL);
535     // Allocate it by giving it a dynamic lookup.
536     var->rewrite_ = new Slot(var, Slot::LOOKUP, -1);
537   }
538   return var;
539 }
540 
541 
542 // Lookup a variable starting with this scope. The result is either
543 // the statically resolved (local!) variable belonging to an outer scope,
544 // or NULL. It may be NULL because a) we couldn't find a variable, or b)
545 // because the variable is just a guess (and may be shadowed by another
546 // variable that is introduced dynamically via an 'eval' call or a 'with'
547 // statement).
LookupRecursive(Handle<String> name,bool inner_lookup,Variable ** invalidated_local)548 Variable* Scope::LookupRecursive(Handle<String> name,
549                                  bool inner_lookup,
550                                  Variable** invalidated_local) {
551   // If we find a variable, but the current scope calls 'eval', the found
552   // variable may not be the correct one (the 'eval' may introduce a
553   // property with the same name). In that case, remember that the variable
554   // found is just a guess.
555   bool guess = scope_calls_eval_;
556 
557   // Try to find the variable in this scope.
558   Variable* var = LocalLookup(name);
559 
560   if (var != NULL) {
561     // We found a variable. If this is not an inner lookup, we are done.
562     // (Even if there is an 'eval' in this scope which introduces the
563     // same variable again, the resulting variable remains the same.
564     // Note that enclosing 'with' statements are handled at the call site.)
565     if (!inner_lookup)
566       return var;
567 
568   } else {
569     // We did not find a variable locally. Check against the function variable,
570     // if any. We can do this for all scopes, since the function variable is
571     // only present - if at all - for function scopes.
572     //
573     // This lookup corresponds to a lookup in the "intermediate" scope sitting
574     // between this scope and the outer scope. (ECMA-262, 3rd., requires that
575     // the name of named function literal is kept in an intermediate scope
576     // in between this scope and the next outer scope.)
577     if (function_ != NULL && function_->name().is_identical_to(name)) {
578       var = function_;
579 
580     } else if (outer_scope_ != NULL) {
581       var = outer_scope_->LookupRecursive(name, true, invalidated_local);
582       // We may have found a variable in an outer scope. However, if
583       // the current scope is inside a 'with', the actual variable may
584       // be a property introduced via the 'with' statement. Then, the
585       // variable we may have found is just a guess.
586       if (scope_inside_with_)
587         guess = true;
588     }
589 
590     // If we did not find a variable, we are done.
591     if (var == NULL)
592       return NULL;
593   }
594 
595   ASSERT(var != NULL);
596 
597   // If this is a lookup from an inner scope, mark the variable.
598   if (inner_lookup)
599     var->is_accessed_from_inner_scope_ = true;
600 
601   // If the variable we have found is just a guess, invalidate the result.
602   if (guess) {
603     *invalidated_local = var;
604     var = NULL;
605   }
606 
607   return var;
608 }
609 
610 
ResolveVariable(Scope * global_scope,Handle<Context> context,VariableProxy * proxy)611 void Scope::ResolveVariable(Scope* global_scope,
612                             Handle<Context> context,
613                             VariableProxy* proxy) {
614   ASSERT(global_scope == NULL || global_scope->is_global_scope());
615 
616   // If the proxy is already resolved there's nothing to do
617   // (functions and consts may be resolved by the parser).
618   if (proxy->var() != NULL) return;
619 
620   // Otherwise, try to resolve the variable.
621   Variable* invalidated_local = NULL;
622   Variable* var = LookupRecursive(proxy->name(), false, &invalidated_local);
623 
624   if (proxy->inside_with()) {
625     // If we are inside a local 'with' statement, all bets are off
626     // and we cannot resolve the proxy to a local variable even if
627     // we found an outer matching variable.
628     // Note that we must do a lookup anyway, because if we find one,
629     // we must mark that variable as potentially accessed from this
630     // inner scope (the property may not be in the 'with' object).
631     var = NonLocal(proxy->name(), Variable::DYNAMIC);
632 
633   } else {
634     // We are not inside a local 'with' statement.
635 
636     if (var == NULL) {
637       // We did not find the variable. We have a global variable
638       // if we are in the global scope (we know already that we
639       // are outside a 'with' statement) or if there is no way
640       // that the variable might be introduced dynamically (through
641       // a local or outer eval() call, or an outer 'with' statement),
642       // or we don't know about the outer scope (because we are
643       // in an eval scope).
644       if (is_global_scope() ||
645           !(scope_inside_with_ || outer_scope_is_eval_scope_ ||
646             scope_calls_eval_ || outer_scope_calls_eval_)) {
647         // We must have a global variable.
648         ASSERT(global_scope != NULL);
649         var = global_scope->DeclareGlobal(proxy->name());
650 
651       } else if (scope_inside_with_) {
652         // If we are inside a with statement we give up and look up
653         // the variable at runtime.
654         var = NonLocal(proxy->name(), Variable::DYNAMIC);
655 
656       } else if (invalidated_local != NULL) {
657         // No with statements are involved and we found a local
658         // variable that might be shadowed by eval introduced
659         // variables.
660         var = NonLocal(proxy->name(), Variable::DYNAMIC_LOCAL);
661         var->set_local_if_not_shadowed(invalidated_local);
662 
663       } else if (outer_scope_is_eval_scope_) {
664         // No with statements and we did not find a local and the code
665         // is executed with a call to eval.  The context contains
666         // scope information that we can use to determine if the
667         // variable is global if it is not shadowed by eval-introduced
668         // variables.
669         if (context->GlobalIfNotShadowedByEval(proxy->name())) {
670           var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL);
671 
672         } else {
673           var = NonLocal(proxy->name(), Variable::DYNAMIC);
674         }
675 
676       } else {
677         // No with statements and we did not find a local and the code
678         // is not executed with a call to eval.  We know that this
679         // variable is global unless it is shadowed by eval-introduced
680         // variables.
681         var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL);
682       }
683     }
684   }
685 
686   proxy->BindTo(var);
687 }
688 
689 
ResolveVariablesRecursively(Scope * global_scope,Handle<Context> context)690 void Scope::ResolveVariablesRecursively(Scope* global_scope,
691                                         Handle<Context> context) {
692   ASSERT(global_scope == NULL || global_scope->is_global_scope());
693 
694   // Resolve unresolved variables for this scope.
695   for (int i = 0; i < unresolved_.length(); i++) {
696     ResolveVariable(global_scope, context, unresolved_[i]);
697   }
698 
699   // Resolve unresolved variables for inner scopes.
700   for (int i = 0; i < inner_scopes_.length(); i++) {
701     inner_scopes_[i]->ResolveVariablesRecursively(global_scope, context);
702   }
703 }
704 
705 
PropagateScopeInfo(bool outer_scope_calls_eval,bool outer_scope_is_eval_scope)706 bool Scope::PropagateScopeInfo(bool outer_scope_calls_eval,
707                                bool outer_scope_is_eval_scope) {
708   if (outer_scope_calls_eval) {
709     outer_scope_calls_eval_ = true;
710   }
711 
712   if (outer_scope_is_eval_scope) {
713     outer_scope_is_eval_scope_ = true;
714   }
715 
716   bool calls_eval = scope_calls_eval_ || outer_scope_calls_eval_;
717   bool is_eval = is_eval_scope() || outer_scope_is_eval_scope_;
718   for (int i = 0; i < inner_scopes_.length(); i++) {
719     Scope* inner_scope = inner_scopes_[i];
720     if (inner_scope->PropagateScopeInfo(calls_eval, is_eval)) {
721       inner_scope_calls_eval_ = true;
722     }
723     if (inner_scope->force_eager_compilation_) {
724       force_eager_compilation_ = true;
725     }
726   }
727 
728   return scope_calls_eval_ || inner_scope_calls_eval_;
729 }
730 
731 
MustAllocate(Variable * var)732 bool Scope::MustAllocate(Variable* var) {
733   // Give var a read/write use if there is a chance it might be accessed
734   // via an eval() call.  This is only possible if the variable has a
735   // visible name.
736   if ((var->is_this() || var->name()->length() > 0) &&
737       (var->is_accessed_from_inner_scope_ ||
738        scope_calls_eval_ || inner_scope_calls_eval_ ||
739        scope_contains_with_)) {
740     var->var_uses()->RecordAccess(1);
741   }
742   // Global variables do not need to be allocated.
743   return !var->is_global() && var->var_uses()->is_used();
744 }
745 
746 
MustAllocateInContext(Variable * var)747 bool Scope::MustAllocateInContext(Variable* var) {
748   // If var is accessed from an inner scope, or if there is a
749   // possibility that it might be accessed from the current or an inner
750   // scope (through an eval() call), it must be allocated in the
751   // context.  Exception: temporary variables are not allocated in the
752   // context.
753   return
754     var->mode() != Variable::TEMPORARY &&
755     (var->is_accessed_from_inner_scope_ ||
756      scope_calls_eval_ || inner_scope_calls_eval_ ||
757      scope_contains_with_ || var->is_global());
758 }
759 
760 
HasArgumentsParameter()761 bool Scope::HasArgumentsParameter() {
762   for (int i = 0; i < params_.length(); i++) {
763     if (params_[i]->name().is_identical_to(Factory::arguments_symbol()))
764       return true;
765   }
766   return false;
767 }
768 
769 
AllocateStackSlot(Variable * var)770 void Scope::AllocateStackSlot(Variable* var) {
771   var->rewrite_ = new Slot(var, Slot::LOCAL, num_stack_slots_++);
772 }
773 
774 
AllocateHeapSlot(Variable * var)775 void Scope::AllocateHeapSlot(Variable* var) {
776   var->rewrite_ = new Slot(var, Slot::CONTEXT, num_heap_slots_++);
777 }
778 
779 
AllocateParameterLocals()780 void Scope::AllocateParameterLocals() {
781   ASSERT(is_function_scope());
782   Variable* arguments = LocalLookup(Factory::arguments_symbol());
783   ASSERT(arguments != NULL);  // functions have 'arguments' declared implicitly
784   if (MustAllocate(arguments) && !HasArgumentsParameter()) {
785     // 'arguments' is used. Unless there is also a parameter called
786     // 'arguments', we must be conservative and access all parameters via
787     // the arguments object: The i'th parameter is rewritten into
788     // '.arguments[i]' (*). If we have a parameter named 'arguments', a
789     // (new) value is always assigned to it via the function
790     // invocation. Then 'arguments' denotes that specific parameter value
791     // and cannot be used to access the parameters, which is why we don't
792     // need to rewrite in that case.
793     //
794     // (*) Instead of having a parameter called 'arguments', we may have an
795     // assignment to 'arguments' in the function body, at some arbitrary
796     // point in time (possibly through an 'eval()' call!). After that
797     // assignment any re-write of parameters would be invalid (was bug
798     // 881452). Thus, we introduce a shadow '.arguments'
799     // variable which also points to the arguments object. For rewrites we
800     // use '.arguments' which remains valid even if we assign to
801     // 'arguments'. To summarize: If we need to rewrite, we allocate an
802     // 'arguments' object dynamically upon function invocation. The compiler
803     // introduces 2 local variables 'arguments' and '.arguments', both of
804     // which originally point to the arguments object that was
805     // allocated. All parameters are rewritten into property accesses via
806     // the '.arguments' variable. Thus, any changes to properties of
807     // 'arguments' are reflected in the variables and vice versa. If the
808     // 'arguments' variable is changed, '.arguments' still points to the
809     // correct arguments object and the rewrites still work.
810 
811     // We are using 'arguments'. Tell the code generator that is needs to
812     // allocate the arguments object by setting 'arguments_'.
813     arguments_ = new VariableProxy(Factory::arguments_symbol(), false, false);
814     arguments_->BindTo(arguments);
815 
816     // We also need the '.arguments' shadow variable. Declare it and create
817     // and bind the corresponding proxy. It's ok to declare it only now
818     // because it's a local variable that is allocated after the parameters
819     // have been allocated.
820     //
821     // Note: This is "almost" at temporary variable but we cannot use
822     // NewTemporary() because the mode needs to be INTERNAL since this
823     // variable may be allocated in the heap-allocated context (temporaries
824     // are never allocated in the context).
825     Variable* arguments_shadow =
826         new Variable(this, Factory::arguments_shadow_symbol(),
827                      Variable::INTERNAL, true, Variable::ARGUMENTS);
828     arguments_shadow_ =
829         new VariableProxy(Factory::arguments_shadow_symbol(), false, false);
830     arguments_shadow_->BindTo(arguments_shadow);
831     temps_.Add(arguments_shadow);
832 
833     // Allocate the parameters by rewriting them into '.arguments[i]' accesses.
834     for (int i = 0; i < params_.length(); i++) {
835       Variable* var = params_[i];
836       ASSERT(var->scope() == this);
837       if (MustAllocate(var)) {
838         if (MustAllocateInContext(var)) {
839           // It is ok to set this only now, because arguments is a local
840           // variable that is allocated after the parameters have been
841           // allocated.
842           arguments_shadow->is_accessed_from_inner_scope_ = true;
843         }
844         var->rewrite_ =
845           new Property(arguments_shadow_,
846                        new Literal(Handle<Object>(Smi::FromInt(i))),
847                        RelocInfo::kNoPosition,
848                        Property::SYNTHETIC);
849         arguments_shadow->var_uses()->RecordUses(var->var_uses());
850       }
851     }
852 
853   } else {
854     // The arguments object is not used, so we can access parameters directly.
855     // The same parameter may occur multiple times in the parameters_ list.
856     // If it does, and if it is not copied into the context object, it must
857     // receive the highest parameter index for that parameter; thus iteration
858     // order is relevant!
859     for (int i = 0; i < params_.length(); i++) {
860       Variable* var = params_[i];
861       ASSERT(var->scope() == this);
862       if (MustAllocate(var)) {
863         if (MustAllocateInContext(var)) {
864           ASSERT(var->rewrite_ == NULL ||
865                  (var->slot() != NULL && var->slot()->type() == Slot::CONTEXT));
866           if (var->rewrite_ == NULL) {
867             // Only set the heap allocation if the parameter has not
868             // been allocated yet.
869             AllocateHeapSlot(var);
870           }
871         } else {
872           ASSERT(var->rewrite_ == NULL ||
873                  (var->slot() != NULL &&
874                   var->slot()->type() == Slot::PARAMETER));
875           // Set the parameter index always, even if the parameter
876           // was seen before! (We need to access the actual parameter
877           // supplied for the last occurrence of a multiply declared
878           // parameter.)
879           var->rewrite_ = new Slot(var, Slot::PARAMETER, i);
880         }
881       }
882     }
883   }
884 }
885 
886 
AllocateNonParameterLocal(Variable * var)887 void Scope::AllocateNonParameterLocal(Variable* var) {
888   ASSERT(var->scope() == this);
889   ASSERT(var->rewrite_ == NULL ||
890          (!var->IsVariable(Factory::result_symbol())) ||
891          (var->slot() == NULL || var->slot()->type() != Slot::LOCAL));
892   if (var->rewrite_ == NULL && MustAllocate(var)) {
893     if (MustAllocateInContext(var)) {
894       AllocateHeapSlot(var);
895     } else {
896       AllocateStackSlot(var);
897     }
898   }
899 }
900 
901 
AllocateNonParameterLocals()902 void Scope::AllocateNonParameterLocals() {
903   // All variables that have no rewrite yet are non-parameter locals.
904   for (int i = 0; i < temps_.length(); i++) {
905     AllocateNonParameterLocal(temps_[i]);
906   }
907 
908   for (VariableMap::Entry* p = variables_.Start();
909        p != NULL;
910        p = variables_.Next(p)) {
911     Variable* var = reinterpret_cast<Variable*>(p->value);
912     AllocateNonParameterLocal(var);
913   }
914 
915   // For now, function_ must be allocated at the very end.  If it gets
916   // allocated in the context, it must be the last slot in the context,
917   // because of the current ScopeInfo implementation (see
918   // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
919   if (function_ != NULL) {
920     AllocateNonParameterLocal(function_);
921   }
922 }
923 
924 
AllocateVariablesRecursively()925 void Scope::AllocateVariablesRecursively() {
926   // The number of slots required for variables.
927   num_stack_slots_ = 0;
928   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
929 
930   // Allocate variables for inner scopes.
931   for (int i = 0; i < inner_scopes_.length(); i++) {
932     inner_scopes_[i]->AllocateVariablesRecursively();
933   }
934 
935   // Allocate variables for this scope.
936   // Parameters must be allocated first, if any.
937   if (is_function_scope()) AllocateParameterLocals();
938   AllocateNonParameterLocals();
939 
940   // Allocate context if necessary.
941   bool must_have_local_context = false;
942   if (scope_calls_eval_ || scope_contains_with_) {
943     // The context for the eval() call or 'with' statement in this scope.
944     // Unless we are in the global or an eval scope, we need a local
945     // context even if we didn't statically allocate any locals in it,
946     // and the compiler will access the context variable. If we are
947     // not in an inner scope, the scope is provided from the outside.
948     must_have_local_context = is_function_scope();
949   }
950 
951   // If we didn't allocate any locals in the local context, then we only
952   // need the minimal number of slots if we must have a local context.
953   if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS &&
954       !must_have_local_context) {
955     num_heap_slots_ = 0;
956   }
957 
958   // Allocation done.
959   ASSERT(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
960 }
961 
962 } }  // namespace v8::internal
963