1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_JSREGEXP_H_
29 #define V8_JSREGEXP_H_
30
31 namespace v8 {
32 namespace internal {
33
34
35 class RegExpMacroAssembler;
36
37
38 class RegExpImpl {
39 public:
40 // Whether V8 is compiled with native regexp support or not.
UsesNativeRegExp()41 static bool UsesNativeRegExp() {
42 #ifdef V8_NATIVE_REGEXP
43 return true;
44 #else
45 return false;
46 #endif
47 }
48
49 // Creates a regular expression literal in the old space.
50 // This function calls the garbage collector if necessary.
51 static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
52 Handle<String> pattern,
53 Handle<String> flags,
54 bool* has_pending_exception);
55
56 // Returns a string representation of a regular expression.
57 // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
58 // This function calls the garbage collector if necessary.
59 static Handle<String> ToString(Handle<Object> value);
60
61 // Parses the RegExp pattern and prepares the JSRegExp object with
62 // generic data and choice of implementation - as well as what
63 // the implementation wants to store in the data field.
64 // Returns false if compilation fails.
65 static Handle<Object> Compile(Handle<JSRegExp> re,
66 Handle<String> pattern,
67 Handle<String> flags);
68
69 // See ECMA-262 section 15.10.6.2.
70 // This function calls the garbage collector if necessary.
71 static Handle<Object> Exec(Handle<JSRegExp> regexp,
72 Handle<String> subject,
73 int index,
74 Handle<JSArray> lastMatchInfo);
75
76 // Call RegExp.prototyp.exec(string) in a loop.
77 // Used by String.prototype.match and String.prototype.replace.
78 // This function calls the garbage collector if necessary.
79 static Handle<Object> ExecGlobal(Handle<JSRegExp> regexp,
80 Handle<String> subject,
81 Handle<JSArray> lastMatchInfo);
82
83 // Prepares a JSRegExp object with Irregexp-specific data.
84 static void IrregexpPrepare(Handle<JSRegExp> re,
85 Handle<String> pattern,
86 JSRegExp::Flags flags,
87 int capture_register_count);
88
89
90 static void AtomCompile(Handle<JSRegExp> re,
91 Handle<String> pattern,
92 JSRegExp::Flags flags,
93 Handle<String> match_pattern);
94
95 static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
96 Handle<String> subject,
97 int index,
98 Handle<JSArray> lastMatchInfo);
99
100 // Execute an Irregexp bytecode pattern.
101 // On a successful match, the result is a JSArray containing
102 // captured positions. On a failure, the result is the null value.
103 // Returns an empty handle in case of an exception.
104 static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
105 Handle<String> subject,
106 int index,
107 Handle<JSArray> lastMatchInfo);
108
109 // Offsets in the lastMatchInfo array.
110 static const int kLastCaptureCount = 0;
111 static const int kLastSubject = 1;
112 static const int kLastInput = 2;
113 static const int kFirstCapture = 3;
114 static const int kLastMatchOverhead = 3;
115
116 // Used to access the lastMatchInfo array.
GetCapture(FixedArray * array,int index)117 static int GetCapture(FixedArray* array, int index) {
118 return Smi::cast(array->get(index + kFirstCapture))->value();
119 }
120
SetLastCaptureCount(FixedArray * array,int to)121 static void SetLastCaptureCount(FixedArray* array, int to) {
122 array->set(kLastCaptureCount, Smi::FromInt(to));
123 }
124
SetLastSubject(FixedArray * array,String * to)125 static void SetLastSubject(FixedArray* array, String* to) {
126 array->set(kLastSubject, to);
127 }
128
SetLastInput(FixedArray * array,String * to)129 static void SetLastInput(FixedArray* array, String* to) {
130 array->set(kLastInput, to);
131 }
132
SetCapture(FixedArray * array,int index,int to)133 static void SetCapture(FixedArray* array, int index, int to) {
134 array->set(index + kFirstCapture, Smi::FromInt(to));
135 }
136
GetLastCaptureCount(FixedArray * array)137 static int GetLastCaptureCount(FixedArray* array) {
138 return Smi::cast(array->get(kLastCaptureCount))->value();
139 }
140
141 // For acting on the JSRegExp data FixedArray.
142 static int IrregexpMaxRegisterCount(FixedArray* re);
143 static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
144 static int IrregexpNumberOfCaptures(FixedArray* re);
145 static int IrregexpNumberOfRegisters(FixedArray* re);
146 static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
147 static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
148
149 private:
150 static String* last_ascii_string_;
151 static String* two_byte_cached_string_;
152
153 static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii);
154 static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii);
155
156
157 // Set the subject cache. The previous string buffer is not deleted, so the
158 // caller should ensure that it doesn't leak.
159 static void SetSubjectCache(String* subject,
160 char* utf8_subject,
161 int uft8_length,
162 int character_position,
163 int utf8_position);
164
165 // A one element cache of the last utf8_subject string and its length. The
166 // subject JS String object is cached in the heap. We also cache a
167 // translation between position and utf8 position.
168 static char* utf8_subject_cache_;
169 static int utf8_length_cache_;
170 static int utf8_position_;
171 static int character_position_;
172 };
173
174
175 class CharacterRange {
176 public:
CharacterRange()177 CharacterRange() : from_(0), to_(0) { }
178 // For compatibility with the CHECK_OK macro
CharacterRange(void * null)179 CharacterRange(void* null) { ASSERT_EQ(NULL, null); } //NOLINT
CharacterRange(uc16 from,uc16 to)180 CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
181 static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges);
182 static Vector<const uc16> GetWordBounds();
Singleton(uc16 value)183 static inline CharacterRange Singleton(uc16 value) {
184 return CharacterRange(value, value);
185 }
Range(uc16 from,uc16 to)186 static inline CharacterRange Range(uc16 from, uc16 to) {
187 ASSERT(from <= to);
188 return CharacterRange(from, to);
189 }
Everything()190 static inline CharacterRange Everything() {
191 return CharacterRange(0, 0xFFFF);
192 }
Contains(uc16 i)193 bool Contains(uc16 i) { return from_ <= i && i <= to_; }
from()194 uc16 from() const { return from_; }
set_from(uc16 value)195 void set_from(uc16 value) { from_ = value; }
to()196 uc16 to() const { return to_; }
set_to(uc16 value)197 void set_to(uc16 value) { to_ = value; }
is_valid()198 bool is_valid() { return from_ <= to_; }
IsEverything(uc16 max)199 bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
IsSingleton()200 bool IsSingleton() { return (from_ == to_); }
201 void AddCaseEquivalents(ZoneList<CharacterRange>* ranges);
202 static void Split(ZoneList<CharacterRange>* base,
203 Vector<const uc16> overlay,
204 ZoneList<CharacterRange>** included,
205 ZoneList<CharacterRange>** excluded);
206
207 static const int kRangeCanonicalizeMax = 0x346;
208 static const int kStartMarker = (1 << 24);
209 static const int kPayloadMask = (1 << 24) - 1;
210
211 private:
212 uc16 from_;
213 uc16 to_;
214 };
215
216
217 // A set of unsigned integers that behaves especially well on small
218 // integers (< 32). May do zone-allocation.
219 class OutSet: public ZoneObject {
220 public:
OutSet()221 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
222 OutSet* Extend(unsigned value);
223 bool Get(unsigned value);
224 static const unsigned kFirstLimit = 32;
225
226 private:
227 // Destructively set a value in this set. In most cases you want
228 // to use Extend instead to ensure that only one instance exists
229 // that contains the same values.
230 void Set(unsigned value);
231
232 // The successors are a list of sets that contain the same values
233 // as this set and the one more value that is not present in this
234 // set.
successors()235 ZoneList<OutSet*>* successors() { return successors_; }
236
OutSet(uint32_t first,ZoneList<unsigned> * remaining)237 OutSet(uint32_t first, ZoneList<unsigned>* remaining)
238 : first_(first), remaining_(remaining), successors_(NULL) { }
239 uint32_t first_;
240 ZoneList<unsigned>* remaining_;
241 ZoneList<OutSet*>* successors_;
242 friend class Trace;
243 };
244
245
246 // A mapping from integers, specified as ranges, to a set of integers.
247 // Used for mapping character ranges to choices.
248 class DispatchTable : public ZoneObject {
249 public:
250 class Entry {
251 public:
Entry()252 Entry() : from_(0), to_(0), out_set_(NULL) { }
Entry(uc16 from,uc16 to,OutSet * out_set)253 Entry(uc16 from, uc16 to, OutSet* out_set)
254 : from_(from), to_(to), out_set_(out_set) { }
from()255 uc16 from() { return from_; }
to()256 uc16 to() { return to_; }
set_to(uc16 value)257 void set_to(uc16 value) { to_ = value; }
AddValue(int value)258 void AddValue(int value) { out_set_ = out_set_->Extend(value); }
out_set()259 OutSet* out_set() { return out_set_; }
260 private:
261 uc16 from_;
262 uc16 to_;
263 OutSet* out_set_;
264 };
265
266 class Config {
267 public:
268 typedef uc16 Key;
269 typedef Entry Value;
270 static const uc16 kNoKey;
271 static const Entry kNoValue;
Compare(uc16 a,uc16 b)272 static inline int Compare(uc16 a, uc16 b) {
273 if (a == b)
274 return 0;
275 else if (a < b)
276 return -1;
277 else
278 return 1;
279 }
280 };
281
282 void AddRange(CharacterRange range, int value);
283 OutSet* Get(uc16 value);
284 void Dump();
285
286 template <typename Callback>
ForEach(Callback * callback)287 void ForEach(Callback* callback) { return tree()->ForEach(callback); }
288 private:
289 // There can't be a static empty set since it allocates its
290 // successors in a zone and caches them.
empty()291 OutSet* empty() { return &empty_; }
292 OutSet empty_;
tree()293 ZoneSplayTree<Config>* tree() { return &tree_; }
294 ZoneSplayTree<Config> tree_;
295 };
296
297
298 #define FOR_EACH_NODE_TYPE(VISIT) \
299 VISIT(End) \
300 VISIT(Action) \
301 VISIT(Choice) \
302 VISIT(BackReference) \
303 VISIT(Assertion) \
304 VISIT(Text)
305
306
307 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
308 VISIT(Disjunction) \
309 VISIT(Alternative) \
310 VISIT(Assertion) \
311 VISIT(CharacterClass) \
312 VISIT(Atom) \
313 VISIT(Quantifier) \
314 VISIT(Capture) \
315 VISIT(Lookahead) \
316 VISIT(BackReference) \
317 VISIT(Empty) \
318 VISIT(Text)
319
320
321 #define FORWARD_DECLARE(Name) class RegExp##Name;
FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)322 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
323 #undef FORWARD_DECLARE
324
325
326 class TextElement {
327 public:
328 enum Type {UNINITIALIZED, ATOM, CHAR_CLASS};
329 TextElement() : type(UNINITIALIZED) { }
330 explicit TextElement(Type t) : type(t), cp_offset(-1) { }
331 static TextElement Atom(RegExpAtom* atom);
332 static TextElement CharClass(RegExpCharacterClass* char_class);
333 int length();
334 Type type;
335 union {
336 RegExpAtom* u_atom;
337 RegExpCharacterClass* u_char_class;
338 } data;
339 int cp_offset;
340 };
341
342
343 class Trace;
344
345
346 struct NodeInfo {
NodeInfoNodeInfo347 NodeInfo()
348 : being_analyzed(false),
349 been_analyzed(false),
350 follows_word_interest(false),
351 follows_newline_interest(false),
352 follows_start_interest(false),
353 at_end(false),
354 visited(false) { }
355
356 // Returns true if the interests and assumptions of this node
357 // matches the given one.
MatchesNodeInfo358 bool Matches(NodeInfo* that) {
359 return (at_end == that->at_end) &&
360 (follows_word_interest == that->follows_word_interest) &&
361 (follows_newline_interest == that->follows_newline_interest) &&
362 (follows_start_interest == that->follows_start_interest);
363 }
364
365 // Updates the interests of this node given the interests of the
366 // node preceding it.
AddFromPrecedingNodeInfo367 void AddFromPreceding(NodeInfo* that) {
368 at_end |= that->at_end;
369 follows_word_interest |= that->follows_word_interest;
370 follows_newline_interest |= that->follows_newline_interest;
371 follows_start_interest |= that->follows_start_interest;
372 }
373
HasLookbehindNodeInfo374 bool HasLookbehind() {
375 return follows_word_interest ||
376 follows_newline_interest ||
377 follows_start_interest;
378 }
379
380 // Sets the interests of this node to include the interests of the
381 // following node.
AddFromFollowingNodeInfo382 void AddFromFollowing(NodeInfo* that) {
383 follows_word_interest |= that->follows_word_interest;
384 follows_newline_interest |= that->follows_newline_interest;
385 follows_start_interest |= that->follows_start_interest;
386 }
387
ResetCompilationStateNodeInfo388 void ResetCompilationState() {
389 being_analyzed = false;
390 been_analyzed = false;
391 }
392
393 bool being_analyzed: 1;
394 bool been_analyzed: 1;
395
396 // These bits are set of this node has to know what the preceding
397 // character was.
398 bool follows_word_interest: 1;
399 bool follows_newline_interest: 1;
400 bool follows_start_interest: 1;
401
402 bool at_end: 1;
403 bool visited: 1;
404 };
405
406
407 class SiblingList {
408 public:
SiblingList()409 SiblingList() : list_(NULL) { }
length()410 int length() {
411 return list_ == NULL ? 0 : list_->length();
412 }
Ensure(RegExpNode * parent)413 void Ensure(RegExpNode* parent) {
414 if (list_ == NULL) {
415 list_ = new ZoneList<RegExpNode*>(2);
416 list_->Add(parent);
417 }
418 }
Add(RegExpNode * node)419 void Add(RegExpNode* node) { list_->Add(node); }
Get(int index)420 RegExpNode* Get(int index) { return list_->at(index); }
421 private:
422 ZoneList<RegExpNode*>* list_;
423 };
424
425
426 // Details of a quick mask-compare check that can look ahead in the
427 // input stream.
428 class QuickCheckDetails {
429 public:
QuickCheckDetails()430 QuickCheckDetails()
431 : characters_(0),
432 mask_(0),
433 value_(0),
434 cannot_match_(false) { }
QuickCheckDetails(int characters)435 explicit QuickCheckDetails(int characters)
436 : characters_(characters),
437 mask_(0),
438 value_(0),
439 cannot_match_(false) { }
440 bool Rationalize(bool ascii);
441 // Merge in the information from another branch of an alternation.
442 void Merge(QuickCheckDetails* other, int from_index);
443 // Advance the current position by some amount.
444 void Advance(int by, bool ascii);
445 void Clear();
cannot_match()446 bool cannot_match() { return cannot_match_; }
set_cannot_match()447 void set_cannot_match() { cannot_match_ = true; }
448 struct Position {
PositionPosition449 Position() : mask(0), value(0), determines_perfectly(false) { }
450 uc16 mask;
451 uc16 value;
452 bool determines_perfectly;
453 };
characters()454 int characters() { return characters_; }
set_characters(int characters)455 void set_characters(int characters) { characters_ = characters; }
positions(int index)456 Position* positions(int index) {
457 ASSERT(index >= 0);
458 ASSERT(index < characters_);
459 return positions_ + index;
460 }
mask()461 uint32_t mask() { return mask_; }
value()462 uint32_t value() { return value_; }
463
464 private:
465 // How many characters do we have quick check information from. This is
466 // the same for all branches of a choice node.
467 int characters_;
468 Position positions_[4];
469 // These values are the condensate of the above array after Rationalize().
470 uint32_t mask_;
471 uint32_t value_;
472 // If set to true, there is no way this quick check can match at all.
473 // E.g., if it requires to be at the start of the input, and isn't.
474 bool cannot_match_;
475 };
476
477
478 class RegExpNode: public ZoneObject {
479 public:
RegExpNode()480 RegExpNode() : trace_count_(0) { }
481 virtual ~RegExpNode();
482 virtual void Accept(NodeVisitor* visitor) = 0;
483 // Generates a goto to this node or actually generates the code at this point.
484 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
485 // How many characters must this node consume at a minimum in order to
486 // succeed. If we have found at least 'still_to_find' characters that
487 // must be consumed there is no need to ask any following nodes whether
488 // they are sure to eat any more characters.
489 virtual int EatsAtLeast(int still_to_find, int recursion_depth) = 0;
490 // Emits some quick code that checks whether the preloaded characters match.
491 // Falls through on certain failure, jumps to the label on possible success.
492 // If the node cannot make a quick check it does nothing and returns false.
493 bool EmitQuickCheck(RegExpCompiler* compiler,
494 Trace* trace,
495 bool preload_has_checked_bounds,
496 Label* on_possible_success,
497 QuickCheckDetails* details_return,
498 bool fall_through_on_failure);
499 // For a given number of characters this returns a mask and a value. The
500 // next n characters are anded with the mask and compared with the value.
501 // A comparison failure indicates the node cannot match the next n characters.
502 // A comparison success indicates the node may match.
503 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
504 RegExpCompiler* compiler,
505 int characters_filled_in,
506 bool not_at_start) = 0;
507 static const int kNodeIsTooComplexForGreedyLoops = -1;
GreedyLoopTextLength()508 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
label()509 Label* label() { return &label_; }
510 // If non-generic code is generated for a node (ie the node is not at the
511 // start of the trace) then it cannot be reused. This variable sets a limit
512 // on how often we allow that to happen before we insist on starting a new
513 // trace and generating generic code for a node that can be reused by flushing
514 // the deferred actions in the current trace and generating a goto.
515 static const int kMaxCopiesCodeGenerated = 10;
516
info()517 NodeInfo* info() { return &info_; }
518
AddSibling(RegExpNode * node)519 void AddSibling(RegExpNode* node) { siblings_.Add(node); }
520
521 // Static version of EnsureSibling that expresses the fact that the
522 // result has the same type as the input.
523 template <class C>
EnsureSibling(C * node,NodeInfo * info,bool * cloned)524 static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) {
525 return static_cast<C*>(node->EnsureSibling(info, cloned));
526 }
527
siblings()528 SiblingList* siblings() { return &siblings_; }
set_siblings(SiblingList * other)529 void set_siblings(SiblingList* other) { siblings_ = *other; }
530
531 protected:
532 enum LimitResult { DONE, CONTINUE };
533 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
534
535 // Returns a sibling of this node whose interests and assumptions
536 // match the ones in the given node info. If no sibling exists NULL
537 // is returned.
538 RegExpNode* TryGetSibling(NodeInfo* info);
539
540 // Returns a sibling of this node whose interests match the ones in
541 // the given node info. The info must not contain any assertions.
542 // If no node exists a new one will be created by cloning the current
543 // node. The result will always be an instance of the same concrete
544 // class as this node.
545 RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned);
546
547 // Returns a clone of this node initialized using the copy constructor
548 // of its concrete class. Note that the node may have to be pre-
549 // processed before it is on a usable state.
550 virtual RegExpNode* Clone() = 0;
551
552 private:
553 Label label_;
554 NodeInfo info_;
555 SiblingList siblings_;
556 // This variable keeps track of how many times code has been generated for
557 // this node (in different traces). We don't keep track of where the
558 // generated code is located unless the code is generated at the start of
559 // a trace, in which case it is generic and can be reused by flushing the
560 // deferred operations in the current trace and generating a goto.
561 int trace_count_;
562 };
563
564
565 // A simple closed interval.
566 class Interval {
567 public:
Interval()568 Interval() : from_(kNone), to_(kNone) { }
Interval(int from,int to)569 Interval(int from, int to) : from_(from), to_(to) { }
Union(Interval that)570 Interval Union(Interval that) {
571 if (that.from_ == kNone)
572 return *this;
573 else if (from_ == kNone)
574 return that;
575 else
576 return Interval(Min(from_, that.from_), Max(to_, that.to_));
577 }
Contains(int value)578 bool Contains(int value) {
579 return (from_ <= value) && (value <= to_);
580 }
is_empty()581 bool is_empty() { return from_ == kNone; }
from()582 int from() { return from_; }
to()583 int to() { return to_; }
Empty()584 static Interval Empty() { return Interval(); }
585 static const int kNone = -1;
586 private:
587 int from_;
588 int to_;
589 };
590
591
592 class SeqRegExpNode: public RegExpNode {
593 public:
SeqRegExpNode(RegExpNode * on_success)594 explicit SeqRegExpNode(RegExpNode* on_success)
595 : on_success_(on_success) { }
on_success()596 RegExpNode* on_success() { return on_success_; }
set_on_success(RegExpNode * node)597 void set_on_success(RegExpNode* node) { on_success_ = node; }
598 private:
599 RegExpNode* on_success_;
600 };
601
602
603 class ActionNode: public SeqRegExpNode {
604 public:
605 enum Type {
606 SET_REGISTER,
607 INCREMENT_REGISTER,
608 STORE_POSITION,
609 BEGIN_SUBMATCH,
610 POSITIVE_SUBMATCH_SUCCESS,
611 EMPTY_MATCH_CHECK,
612 CLEAR_CAPTURES
613 };
614 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
615 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
616 static ActionNode* StorePosition(int reg,
617 bool is_capture,
618 RegExpNode* on_success);
619 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
620 static ActionNode* BeginSubmatch(int stack_pointer_reg,
621 int position_reg,
622 RegExpNode* on_success);
623 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
624 int restore_reg,
625 int clear_capture_count,
626 int clear_capture_from,
627 RegExpNode* on_success);
628 static ActionNode* EmptyMatchCheck(int start_register,
629 int repetition_register,
630 int repetition_limit,
631 RegExpNode* on_success);
632 virtual void Accept(NodeVisitor* visitor);
633 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
634 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int filled_in,bool not_at_start)635 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
636 RegExpCompiler* compiler,
637 int filled_in,
638 bool not_at_start) {
639 return on_success()->GetQuickCheckDetails(
640 details, compiler, filled_in, not_at_start);
641 }
type()642 Type type() { return type_; }
643 // TODO(erikcorry): We should allow some action nodes in greedy loops.
GreedyLoopTextLength()644 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
Clone()645 virtual ActionNode* Clone() { return new ActionNode(*this); }
646
647 private:
648 union {
649 struct {
650 int reg;
651 int value;
652 } u_store_register;
653 struct {
654 int reg;
655 } u_increment_register;
656 struct {
657 int reg;
658 bool is_capture;
659 } u_position_register;
660 struct {
661 int stack_pointer_register;
662 int current_position_register;
663 int clear_register_count;
664 int clear_register_from;
665 } u_submatch;
666 struct {
667 int start_register;
668 int repetition_register;
669 int repetition_limit;
670 } u_empty_match_check;
671 struct {
672 int range_from;
673 int range_to;
674 } u_clear_captures;
675 } data_;
ActionNode(Type type,RegExpNode * on_success)676 ActionNode(Type type, RegExpNode* on_success)
677 : SeqRegExpNode(on_success),
678 type_(type) { }
679 Type type_;
680 friend class DotPrinter;
681 };
682
683
684 class TextNode: public SeqRegExpNode {
685 public:
TextNode(ZoneList<TextElement> * elms,RegExpNode * on_success)686 TextNode(ZoneList<TextElement>* elms,
687 RegExpNode* on_success)
688 : SeqRegExpNode(on_success),
689 elms_(elms) { }
TextNode(RegExpCharacterClass * that,RegExpNode * on_success)690 TextNode(RegExpCharacterClass* that,
691 RegExpNode* on_success)
692 : SeqRegExpNode(on_success),
693 elms_(new ZoneList<TextElement>(1)) {
694 elms_->Add(TextElement::CharClass(that));
695 }
696 virtual void Accept(NodeVisitor* visitor);
697 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
698 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
699 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
700 RegExpCompiler* compiler,
701 int characters_filled_in,
702 bool not_at_start);
elements()703 ZoneList<TextElement>* elements() { return elms_; }
704 void MakeCaseIndependent();
705 virtual int GreedyLoopTextLength();
Clone()706 virtual TextNode* Clone() {
707 TextNode* result = new TextNode(*this);
708 result->CalculateOffsets();
709 return result;
710 }
711 void CalculateOffsets();
712
713 private:
714 enum TextEmitPassType {
715 NON_ASCII_MATCH, // Check for characters that can't match.
716 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
717 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
718 CASE_CHARACTER_MATCH, // Case-independent single character check.
719 CHARACTER_CLASS_MATCH // Character class.
720 };
721 static bool SkipPass(int pass, bool ignore_case);
722 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
723 static const int kLastPass = CHARACTER_CLASS_MATCH;
724 void TextEmitPass(RegExpCompiler* compiler,
725 TextEmitPassType pass,
726 bool preloaded,
727 Trace* trace,
728 bool first_element_checked,
729 int* checked_up_to);
730 int Length();
731 ZoneList<TextElement>* elms_;
732 };
733
734
735 class AssertionNode: public SeqRegExpNode {
736 public:
737 enum AssertionNodeType {
738 AT_END,
739 AT_START,
740 AT_BOUNDARY,
741 AT_NON_BOUNDARY,
742 AFTER_NEWLINE
743 };
AtEnd(RegExpNode * on_success)744 static AssertionNode* AtEnd(RegExpNode* on_success) {
745 return new AssertionNode(AT_END, on_success);
746 }
AtStart(RegExpNode * on_success)747 static AssertionNode* AtStart(RegExpNode* on_success) {
748 return new AssertionNode(AT_START, on_success);
749 }
AtBoundary(RegExpNode * on_success)750 static AssertionNode* AtBoundary(RegExpNode* on_success) {
751 return new AssertionNode(AT_BOUNDARY, on_success);
752 }
AtNonBoundary(RegExpNode * on_success)753 static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
754 return new AssertionNode(AT_NON_BOUNDARY, on_success);
755 }
AfterNewline(RegExpNode * on_success)756 static AssertionNode* AfterNewline(RegExpNode* on_success) {
757 return new AssertionNode(AFTER_NEWLINE, on_success);
758 }
759 virtual void Accept(NodeVisitor* visitor);
760 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
761 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
762 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
763 RegExpCompiler* compiler,
764 int filled_in,
765 bool not_at_start);
Clone()766 virtual AssertionNode* Clone() { return new AssertionNode(*this); }
type()767 AssertionNodeType type() { return type_; }
768 private:
AssertionNode(AssertionNodeType t,RegExpNode * on_success)769 AssertionNode(AssertionNodeType t, RegExpNode* on_success)
770 : SeqRegExpNode(on_success), type_(t) { }
771 AssertionNodeType type_;
772 };
773
774
775 class BackReferenceNode: public SeqRegExpNode {
776 public:
BackReferenceNode(int start_reg,int end_reg,RegExpNode * on_success)777 BackReferenceNode(int start_reg,
778 int end_reg,
779 RegExpNode* on_success)
780 : SeqRegExpNode(on_success),
781 start_reg_(start_reg),
782 end_reg_(end_reg) { }
783 virtual void Accept(NodeVisitor* visitor);
start_register()784 int start_register() { return start_reg_; }
end_register()785 int end_register() { return end_reg_; }
786 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
787 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)788 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
789 RegExpCompiler* compiler,
790 int characters_filled_in,
791 bool not_at_start) {
792 return;
793 }
Clone()794 virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); }
795
796 private:
797 int start_reg_;
798 int end_reg_;
799 };
800
801
802 class EndNode: public RegExpNode {
803 public:
804 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
EndNode(Action action)805 explicit EndNode(Action action) : action_(action) { }
806 virtual void Accept(NodeVisitor* visitor);
807 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
EatsAtLeast(int still_to_find,int recursion_depth)808 virtual int EatsAtLeast(int still_to_find, int recursion_depth) { return 0; }
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)809 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
810 RegExpCompiler* compiler,
811 int characters_filled_in,
812 bool not_at_start) {
813 // Returning 0 from EatsAtLeast should ensure we never get here.
814 UNREACHABLE();
815 }
Clone()816 virtual EndNode* Clone() { return new EndNode(*this); }
817
818 private:
819 Action action_;
820 };
821
822
823 class NegativeSubmatchSuccess: public EndNode {
824 public:
NegativeSubmatchSuccess(int stack_pointer_reg,int position_reg,int clear_capture_count,int clear_capture_start)825 NegativeSubmatchSuccess(int stack_pointer_reg,
826 int position_reg,
827 int clear_capture_count,
828 int clear_capture_start)
829 : EndNode(NEGATIVE_SUBMATCH_SUCCESS),
830 stack_pointer_register_(stack_pointer_reg),
831 current_position_register_(position_reg),
832 clear_capture_count_(clear_capture_count),
833 clear_capture_start_(clear_capture_start) { }
834 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
835
836 private:
837 int stack_pointer_register_;
838 int current_position_register_;
839 int clear_capture_count_;
840 int clear_capture_start_;
841 };
842
843
844 class Guard: public ZoneObject {
845 public:
846 enum Relation { LT, GEQ };
Guard(int reg,Relation op,int value)847 Guard(int reg, Relation op, int value)
848 : reg_(reg),
849 op_(op),
850 value_(value) { }
reg()851 int reg() { return reg_; }
op()852 Relation op() { return op_; }
value()853 int value() { return value_; }
854
855 private:
856 int reg_;
857 Relation op_;
858 int value_;
859 };
860
861
862 class GuardedAlternative {
863 public:
GuardedAlternative(RegExpNode * node)864 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
865 void AddGuard(Guard* guard);
node()866 RegExpNode* node() { return node_; }
set_node(RegExpNode * node)867 void set_node(RegExpNode* node) { node_ = node; }
guards()868 ZoneList<Guard*>* guards() { return guards_; }
869
870 private:
871 RegExpNode* node_;
872 ZoneList<Guard*>* guards_;
873 };
874
875
876 class AlternativeGeneration;
877
878
879 class ChoiceNode: public RegExpNode {
880 public:
ChoiceNode(int expected_size)881 explicit ChoiceNode(int expected_size)
882 : alternatives_(new ZoneList<GuardedAlternative>(expected_size)),
883 table_(NULL),
884 not_at_start_(false),
885 being_calculated_(false) { }
886 virtual void Accept(NodeVisitor* visitor);
AddAlternative(GuardedAlternative node)887 void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
alternatives()888 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
889 DispatchTable* GetTable(bool ignore_case);
890 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
891 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
892 int EatsAtLeastHelper(int still_to_find,
893 int recursion_depth,
894 RegExpNode* ignore_this_node);
895 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
896 RegExpCompiler* compiler,
897 int characters_filled_in,
898 bool not_at_start);
Clone()899 virtual ChoiceNode* Clone() { return new ChoiceNode(*this); }
900
being_calculated()901 bool being_calculated() { return being_calculated_; }
not_at_start()902 bool not_at_start() { return not_at_start_; }
set_not_at_start()903 void set_not_at_start() { not_at_start_ = true; }
set_being_calculated(bool b)904 void set_being_calculated(bool b) { being_calculated_ = b; }
try_to_emit_quick_check_for_alternative(int i)905 virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
906
907 protected:
908 int GreedyLoopTextLength(GuardedAlternative* alternative);
909 ZoneList<GuardedAlternative>* alternatives_;
910
911 private:
912 friend class DispatchTableConstructor;
913 friend class Analysis;
914 void GenerateGuard(RegExpMacroAssembler* macro_assembler,
915 Guard* guard,
916 Trace* trace);
917 int CalculatePreloadCharacters(RegExpCompiler* compiler);
918 void EmitOutOfLineContinuation(RegExpCompiler* compiler,
919 Trace* trace,
920 GuardedAlternative alternative,
921 AlternativeGeneration* alt_gen,
922 int preload_characters,
923 bool next_expects_preload);
924 DispatchTable* table_;
925 // If true, this node is never checked at the start of the input.
926 // Allows a new trace to start with at_start() set to false.
927 bool not_at_start_;
928 bool being_calculated_;
929 };
930
931
932 class NegativeLookaheadChoiceNode: public ChoiceNode {
933 public:
NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,GuardedAlternative then_do_this)934 explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
935 GuardedAlternative then_do_this)
936 : ChoiceNode(2) {
937 AddAlternative(this_must_fail);
938 AddAlternative(then_do_this);
939 }
940 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
941 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
942 RegExpCompiler* compiler,
943 int characters_filled_in,
944 bool not_at_start);
945 // For a negative lookahead we don't emit the quick check for the
946 // alternative that is expected to fail. This is because quick check code
947 // starts by loading enough characters for the alternative that takes fewest
948 // characters, but on a negative lookahead the negative branch did not take
949 // part in that calculation (EatsAtLeast) so the assumptions don't hold.
try_to_emit_quick_check_for_alternative(int i)950 virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
951 };
952
953
954 class LoopChoiceNode: public ChoiceNode {
955 public:
LoopChoiceNode(bool body_can_be_zero_length)956 explicit LoopChoiceNode(bool body_can_be_zero_length)
957 : ChoiceNode(2),
958 loop_node_(NULL),
959 continue_node_(NULL),
960 body_can_be_zero_length_(body_can_be_zero_length) { }
961 void AddLoopAlternative(GuardedAlternative alt);
962 void AddContinueAlternative(GuardedAlternative alt);
963 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
964 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
965 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
966 RegExpCompiler* compiler,
967 int characters_filled_in,
968 bool not_at_start);
Clone()969 virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); }
loop_node()970 RegExpNode* loop_node() { return loop_node_; }
continue_node()971 RegExpNode* continue_node() { return continue_node_; }
body_can_be_zero_length()972 bool body_can_be_zero_length() { return body_can_be_zero_length_; }
973 virtual void Accept(NodeVisitor* visitor);
974
975 private:
976 // AddAlternative is made private for loop nodes because alternatives
977 // should not be added freely, we need to keep track of which node
978 // goes back to the node itself.
AddAlternative(GuardedAlternative node)979 void AddAlternative(GuardedAlternative node) {
980 ChoiceNode::AddAlternative(node);
981 }
982
983 RegExpNode* loop_node_;
984 RegExpNode* continue_node_;
985 bool body_can_be_zero_length_;
986 };
987
988
989 // There are many ways to generate code for a node. This class encapsulates
990 // the current way we should be generating. In other words it encapsulates
991 // the current state of the code generator. The effect of this is that we
992 // generate code for paths that the matcher can take through the regular
993 // expression. A given node in the regexp can be code-generated several times
994 // as it can be part of several traces. For example for the regexp:
995 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
996 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
997 // to match foo is generated only once (the traces have a common prefix). The
998 // code to store the capture is deferred and generated (twice) after the places
999 // where baz has been matched.
1000 class Trace {
1001 public:
1002 // A value for a property that is either known to be true, know to be false,
1003 // or not known.
1004 enum TriBool {
1005 UNKNOWN = -1, FALSE = 0, TRUE = 1
1006 };
1007
1008 class DeferredAction {
1009 public:
DeferredAction(ActionNode::Type type,int reg)1010 DeferredAction(ActionNode::Type type, int reg)
1011 : type_(type), reg_(reg), next_(NULL) { }
next()1012 DeferredAction* next() { return next_; }
1013 bool Mentions(int reg);
reg()1014 int reg() { return reg_; }
type()1015 ActionNode::Type type() { return type_; }
1016 private:
1017 ActionNode::Type type_;
1018 int reg_;
1019 DeferredAction* next_;
1020 friend class Trace;
1021 };
1022
1023 class DeferredCapture : public DeferredAction {
1024 public:
DeferredCapture(int reg,bool is_capture,Trace * trace)1025 DeferredCapture(int reg, bool is_capture, Trace* trace)
1026 : DeferredAction(ActionNode::STORE_POSITION, reg),
1027 cp_offset_(trace->cp_offset()),
1028 is_capture_(is_capture) { }
cp_offset()1029 int cp_offset() { return cp_offset_; }
is_capture()1030 bool is_capture() { return is_capture_; }
1031 private:
1032 int cp_offset_;
1033 bool is_capture_;
set_cp_offset(int cp_offset)1034 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1035 };
1036
1037 class DeferredSetRegister : public DeferredAction {
1038 public:
DeferredSetRegister(int reg,int value)1039 DeferredSetRegister(int reg, int value)
1040 : DeferredAction(ActionNode::SET_REGISTER, reg),
1041 value_(value) { }
value()1042 int value() { return value_; }
1043 private:
1044 int value_;
1045 };
1046
1047 class DeferredClearCaptures : public DeferredAction {
1048 public:
DeferredClearCaptures(Interval range)1049 explicit DeferredClearCaptures(Interval range)
1050 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1051 range_(range) { }
range()1052 Interval range() { return range_; }
1053 private:
1054 Interval range_;
1055 };
1056
1057 class DeferredIncrementRegister : public DeferredAction {
1058 public:
DeferredIncrementRegister(int reg)1059 explicit DeferredIncrementRegister(int reg)
1060 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1061 };
1062
Trace()1063 Trace()
1064 : cp_offset_(0),
1065 actions_(NULL),
1066 backtrack_(NULL),
1067 stop_node_(NULL),
1068 loop_label_(NULL),
1069 characters_preloaded_(0),
1070 bound_checked_up_to_(0),
1071 flush_budget_(100),
1072 at_start_(UNKNOWN) { }
1073
1074 // End the trace. This involves flushing the deferred actions in the trace
1075 // and pushing a backtrack location onto the backtrack stack. Once this is
1076 // done we can start a new trace or go to one that has already been
1077 // generated.
1078 void Flush(RegExpCompiler* compiler, RegExpNode* successor);
cp_offset()1079 int cp_offset() { return cp_offset_; }
actions()1080 DeferredAction* actions() { return actions_; }
1081 // A trivial trace is one that has no deferred actions or other state that
1082 // affects the assumptions used when generating code. There is no recorded
1083 // backtrack location in a trivial trace, so with a trivial trace we will
1084 // generate code that, on a failure to match, gets the backtrack location
1085 // from the backtrack stack rather than using a direct jump instruction. We
1086 // always start code generation with a trivial trace and non-trivial traces
1087 // are created as we emit code for nodes or add to the list of deferred
1088 // actions in the trace. The location of the code generated for a node using
1089 // a trivial trace is recorded in a label in the node so that gotos can be
1090 // generated to that code.
is_trivial()1091 bool is_trivial() {
1092 return backtrack_ == NULL &&
1093 actions_ == NULL &&
1094 cp_offset_ == 0 &&
1095 characters_preloaded_ == 0 &&
1096 bound_checked_up_to_ == 0 &&
1097 quick_check_performed_.characters() == 0 &&
1098 at_start_ == UNKNOWN;
1099 }
at_start()1100 TriBool at_start() { return at_start_; }
set_at_start(bool at_start)1101 void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; }
backtrack()1102 Label* backtrack() { return backtrack_; }
loop_label()1103 Label* loop_label() { return loop_label_; }
stop_node()1104 RegExpNode* stop_node() { return stop_node_; }
characters_preloaded()1105 int characters_preloaded() { return characters_preloaded_; }
bound_checked_up_to()1106 int bound_checked_up_to() { return bound_checked_up_to_; }
flush_budget()1107 int flush_budget() { return flush_budget_; }
quick_check_performed()1108 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1109 bool mentions_reg(int reg);
1110 // Returns true if a deferred position store exists to the specified
1111 // register and stores the offset in the out-parameter. Otherwise
1112 // returns false.
1113 bool GetStoredPosition(int reg, int* cp_offset);
1114 // These set methods and AdvanceCurrentPositionInTrace should be used only on
1115 // new traces - the intention is that traces are immutable after creation.
add_action(DeferredAction * new_action)1116 void add_action(DeferredAction* new_action) {
1117 ASSERT(new_action->next_ == NULL);
1118 new_action->next_ = actions_;
1119 actions_ = new_action;
1120 }
set_backtrack(Label * backtrack)1121 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
set_stop_node(RegExpNode * node)1122 void set_stop_node(RegExpNode* node) { stop_node_ = node; }
set_loop_label(Label * label)1123 void set_loop_label(Label* label) { loop_label_ = label; }
set_characters_preloaded(int cpre)1124 void set_characters_preloaded(int cpre) { characters_preloaded_ = cpre; }
set_bound_checked_up_to(int to)1125 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
set_flush_budget(int to)1126 void set_flush_budget(int to) { flush_budget_ = to; }
set_quick_check_performed(QuickCheckDetails * d)1127 void set_quick_check_performed(QuickCheckDetails* d) {
1128 quick_check_performed_ = *d;
1129 }
1130 void InvalidateCurrentCharacter();
1131 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1132 private:
1133 int FindAffectedRegisters(OutSet* affected_registers);
1134 void PerformDeferredActions(RegExpMacroAssembler* macro,
1135 int max_register,
1136 OutSet& affected_registers,
1137 OutSet* registers_to_pop,
1138 OutSet* registers_to_clear);
1139 void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1140 int max_register,
1141 OutSet& registers_to_pop,
1142 OutSet& registers_to_clear);
1143 int cp_offset_;
1144 DeferredAction* actions_;
1145 Label* backtrack_;
1146 RegExpNode* stop_node_;
1147 Label* loop_label_;
1148 int characters_preloaded_;
1149 int bound_checked_up_to_;
1150 QuickCheckDetails quick_check_performed_;
1151 int flush_budget_;
1152 TriBool at_start_;
1153 };
1154
1155
1156 class NodeVisitor {
1157 public:
~NodeVisitor()1158 virtual ~NodeVisitor() { }
1159 #define DECLARE_VISIT(Type) \
1160 virtual void Visit##Type(Type##Node* that) = 0;
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1161 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1162 #undef DECLARE_VISIT
1163 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1164 };
1165
1166
1167 // Node visitor used to add the start set of the alternatives to the
1168 // dispatch table of a choice node.
1169 class DispatchTableConstructor: public NodeVisitor {
1170 public:
DispatchTableConstructor(DispatchTable * table,bool ignore_case)1171 DispatchTableConstructor(DispatchTable* table, bool ignore_case)
1172 : table_(table),
1173 choice_index_(-1),
1174 ignore_case_(ignore_case) { }
1175
1176 void BuildTable(ChoiceNode* node);
1177
AddRange(CharacterRange range)1178 void AddRange(CharacterRange range) {
1179 table()->AddRange(range, choice_index_);
1180 }
1181
1182 void AddInverse(ZoneList<CharacterRange>* ranges);
1183
1184 #define DECLARE_VISIT(Type) \
1185 virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1186 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1187 #undef DECLARE_VISIT
1188
1189 DispatchTable* table() { return table_; }
set_choice_index(int value)1190 void set_choice_index(int value) { choice_index_ = value; }
1191
1192 protected:
1193 DispatchTable* table_;
1194 int choice_index_;
1195 bool ignore_case_;
1196 };
1197
1198
1199 // Assertion propagation moves information about assertions such as
1200 // \b to the affected nodes. For instance, in /.\b./ information must
1201 // be propagated to the first '.' that whatever follows needs to know
1202 // if it matched a word or a non-word, and to the second '.' that it
1203 // has to check if it succeeds a word or non-word. In this case the
1204 // result will be something like:
1205 //
1206 // +-------+ +------------+
1207 // | . | | . |
1208 // +-------+ ---> +------------+
1209 // | word? | | check word |
1210 // +-------+ +------------+
1211 class Analysis: public NodeVisitor {
1212 public:
Analysis(bool ignore_case)1213 explicit Analysis(bool ignore_case)
1214 : ignore_case_(ignore_case), error_message_(NULL) { }
1215 void EnsureAnalyzed(RegExpNode* node);
1216
1217 #define DECLARE_VISIT(Type) \
1218 virtual void Visit##Type(Type##Node* that);
1219 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1220 #undef DECLARE_VISIT
1221 virtual void VisitLoopChoice(LoopChoiceNode* that);
1222
has_failed()1223 bool has_failed() { return error_message_ != NULL; }
error_message()1224 const char* error_message() {
1225 ASSERT(error_message_ != NULL);
1226 return error_message_;
1227 }
fail(const char * error_message)1228 void fail(const char* error_message) {
1229 error_message_ = error_message;
1230 }
1231 private:
1232 bool ignore_case_;
1233 const char* error_message_;
1234
1235 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1236 };
1237
1238
1239 struct RegExpCompileData {
RegExpCompileDataRegExpCompileData1240 RegExpCompileData()
1241 : tree(NULL),
1242 node(NULL),
1243 simple(true),
1244 contains_anchor(false),
1245 capture_count(0) { }
1246 RegExpTree* tree;
1247 RegExpNode* node;
1248 bool simple;
1249 bool contains_anchor;
1250 Handle<String> error;
1251 int capture_count;
1252 };
1253
1254
1255 class RegExpEngine: public AllStatic {
1256 public:
1257 struct CompilationResult {
CompilationResultCompilationResult1258 explicit CompilationResult(const char* error_message)
1259 : error_message(error_message),
1260 code(Heap::the_hole_value()),
1261 num_registers(0) {}
CompilationResultCompilationResult1262 CompilationResult(Object* code, int registers)
1263 : error_message(NULL),
1264 code(code),
1265 num_registers(registers) {}
1266 const char* error_message;
1267 Object* code;
1268 int num_registers;
1269 };
1270
1271 static CompilationResult Compile(RegExpCompileData* input,
1272 bool ignore_case,
1273 bool multiline,
1274 Handle<String> pattern,
1275 bool is_ascii);
1276
1277 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1278 };
1279
1280
1281 } } // namespace v8::internal
1282
1283 #endif // V8_JSREGEXP_H_
1284