• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4  *
5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7  * to the OpenSSL project.
8  *
9  * The ECC Code is licensed pursuant to the OpenSSL open source
10  * license provided below.
11  *
12  * In addition, Sun covenants to all licensees who provide a reciprocal
13  * covenant with respect to their own patents if any, not to sue under
14  * current and future patent claims necessarily infringed by the making,
15  * using, practicing, selling, offering for sale and/or otherwise
16  * disposing of the ECC Code as delivered hereunder (or portions thereof),
17  * provided that such covenant shall not apply:
18  *  1) for code that a licensee deletes from the ECC Code;
19  *  2) separates from the ECC Code; or
20  *  3) for infringements caused by:
21  *       i) the modification of the ECC Code or
22  *      ii) the combination of the ECC Code with other software or
23  *          devices where such combination causes the infringement.
24  *
25  * The software is originally written by Sheueling Chang Shantz and
26  * Douglas Stebila of Sun Microsystems Laboratories.
27  *
28  */
29 
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31  * and may be modified; but after modifications, the above covenant
32  * may no longer apply!  In such cases, the corresponding paragraph
33  * ["In addition, Sun covenants ... causes the infringement."] and
34  * this note can be edited out; but please keep the Sun copyright
35  * notice and attribution. */
36 
37 /* ====================================================================
38  * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in
49  *    the documentation and/or other materials provided with the
50  *    distribution.
51  *
52  * 3. All advertising materials mentioning features or use of this
53  *    software must display the following acknowledgment:
54  *    "This product includes software developed by the OpenSSL Project
55  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56  *
57  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58  *    endorse or promote products derived from this software without
59  *    prior written permission. For written permission, please contact
60  *    openssl-core@openssl.org.
61  *
62  * 5. Products derived from this software may not be called "OpenSSL"
63  *    nor may "OpenSSL" appear in their names without prior written
64  *    permission of the OpenSSL Project.
65  *
66  * 6. Redistributions of any form whatsoever must retain the following
67  *    acknowledgment:
68  *    "This product includes software developed by the OpenSSL Project
69  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
75  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82  * OF THE POSSIBILITY OF SUCH DAMAGE.
83  * ====================================================================
84  *
85  * This product includes cryptographic software written by Eric Young
86  * (eay@cryptsoft.com).  This product includes software written by Tim
87  * Hudson (tjh@cryptsoft.com).
88  *
89  */
90 
91 #include <assert.h>
92 #include <limits.h>
93 #include <stdio.h>
94 #include "cryptlib.h"
95 #include "bn_lcl.h"
96 
97 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
98 #define MAX_ITERATIONS 50
99 
100 static const BN_ULONG SQR_tb[16] =
101   {     0,     1,     4,     5,    16,    17,    20,    21,
102        64,    65,    68,    69,    80,    81,    84,    85 };
103 /* Platform-specific macros to accelerate squaring. */
104 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
105 #define SQR1(w) \
106     SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
107     SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
108     SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
109     SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
110 #define SQR0(w) \
111     SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
112     SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
113     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
114     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
115 #endif
116 #ifdef THIRTY_TWO_BIT
117 #define SQR1(w) \
118     SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
119     SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
120 #define SQR0(w) \
121     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
122     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
123 #endif
124 #ifdef SIXTEEN_BIT
125 #define SQR1(w) \
126     SQR_tb[(w) >> 12 & 0xF] <<  8 | SQR_tb[(w) >>  8 & 0xF]
127 #define SQR0(w) \
128     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
129 #endif
130 #ifdef EIGHT_BIT
131 #define SQR1(w) \
132     SQR_tb[(w) >>  4 & 0xF]
133 #define SQR0(w) \
134     SQR_tb[(w)       & 15]
135 #endif
136 
137 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
138  * result is a polynomial r with degree < 2 * BN_BITS - 1
139  * The caller MUST ensure that the variables have the right amount
140  * of space allocated.
141  */
142 #ifdef EIGHT_BIT
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)143 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
144 	{
145 	register BN_ULONG h, l, s;
146 	BN_ULONG tab[4], top1b = a >> 7;
147 	register BN_ULONG a1, a2;
148 
149 	a1 = a & (0x7F); a2 = a1 << 1;
150 
151 	tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
152 
153 	s = tab[b      & 0x3]; l  = s;
154 	s = tab[b >> 2 & 0x3]; l ^= s << 2; h  = s >> 6;
155 	s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
156 	s = tab[b >> 6      ]; l ^= s << 6; h ^= s >> 2;
157 
158 	/* compensate for the top bit of a */
159 
160 	if (top1b & 01) { l ^= b << 7; h ^= b >> 1; }
161 
162 	*r1 = h; *r0 = l;
163 	}
164 #endif
165 #ifdef SIXTEEN_BIT
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)166 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
167 	{
168 	register BN_ULONG h, l, s;
169 	BN_ULONG tab[4], top1b = a >> 15;
170 	register BN_ULONG a1, a2;
171 
172 	a1 = a & (0x7FFF); a2 = a1 << 1;
173 
174 	tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
175 
176 	s = tab[b      & 0x3]; l  = s;
177 	s = tab[b >> 2 & 0x3]; l ^= s <<  2; h  = s >> 14;
178 	s = tab[b >> 4 & 0x3]; l ^= s <<  4; h ^= s >> 12;
179 	s = tab[b >> 6 & 0x3]; l ^= s <<  6; h ^= s >> 10;
180 	s = tab[b >> 8 & 0x3]; l ^= s <<  8; h ^= s >>  8;
181 	s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >>  6;
182 	s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >>  4;
183 	s = tab[b >>14      ]; l ^= s << 14; h ^= s >>  2;
184 
185 	/* compensate for the top bit of a */
186 
187 	if (top1b & 01) { l ^= b << 15; h ^= b >> 1; }
188 
189 	*r1 = h; *r0 = l;
190 	}
191 #endif
192 #ifdef THIRTY_TWO_BIT
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)193 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
194 	{
195 	register BN_ULONG h, l, s;
196 	BN_ULONG tab[8], top2b = a >> 30;
197 	register BN_ULONG a1, a2, a4;
198 
199 	a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
200 
201 	tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
202 	tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
203 
204 	s = tab[b       & 0x7]; l  = s;
205 	s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
206 	s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
207 	s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
208 	s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
209 	s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
210 	s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
211 	s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
212 	s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
213 	s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
214 	s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;
215 
216 	/* compensate for the top two bits of a */
217 
218 	if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
219 	if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
220 
221 	*r1 = h; *r0 = l;
222 	}
223 #endif
224 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)225 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
226 	{
227 	register BN_ULONG h, l, s;
228 	BN_ULONG tab[16], top3b = a >> 61;
229 	register BN_ULONG a1, a2, a4, a8;
230 
231 	a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
232 
233 	tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
234 	tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
235 	tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
236 	tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
237 
238 	s = tab[b       & 0xF]; l  = s;
239 	s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
240 	s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
241 	s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
242 	s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
243 	s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
244 	s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
245 	s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
246 	s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
247 	s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
248 	s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
249 	s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
250 	s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
251 	s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
252 	s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
253 	s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;
254 
255 	/* compensate for the top three bits of a */
256 
257 	if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
258 	if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
259 	if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
260 
261 	*r1 = h; *r0 = l;
262 	}
263 #endif
264 
265 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
266  * result is a polynomial r with degree < 4 * BN_BITS2 - 1
267  * The caller MUST ensure that the variables have the right amount
268  * of space allocated.
269  */
bn_GF2m_mul_2x2(BN_ULONG * r,const BN_ULONG a1,const BN_ULONG a0,const BN_ULONG b1,const BN_ULONG b0)270 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
271 	{
272 	BN_ULONG m1, m0;
273 	/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
274 	bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
275 	bn_GF2m_mul_1x1(r+1, r, a0, b0);
276 	bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
277 	/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
278 	r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
279 	r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
280 	}
281 
282 
283 /* Add polynomials a and b and store result in r; r could be a or b, a and b
284  * could be equal; r is the bitwise XOR of a and b.
285  */
BN_GF2m_add(BIGNUM * r,const BIGNUM * a,const BIGNUM * b)286 int	BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
287 	{
288 	int i;
289 	const BIGNUM *at, *bt;
290 
291 	bn_check_top(a);
292 	bn_check_top(b);
293 
294 	if (a->top < b->top) { at = b; bt = a; }
295 	else { at = a; bt = b; }
296 
297 	bn_wexpand(r, at->top);
298 
299 	for (i = 0; i < bt->top; i++)
300 		{
301 		r->d[i] = at->d[i] ^ bt->d[i];
302 		}
303 	for (; i < at->top; i++)
304 		{
305 		r->d[i] = at->d[i];
306 		}
307 
308 	r->top = at->top;
309 	bn_correct_top(r);
310 
311 	return 1;
312 	}
313 
314 
315 /* Some functions allow for representation of the irreducible polynomials
316  * as an int[], say p.  The irreducible f(t) is then of the form:
317  *     t^p[0] + t^p[1] + ... + t^p[k]
318  * where m = p[0] > p[1] > ... > p[k] = 0.
319  */
320 
321 
322 /* Performs modular reduction of a and store result in r.  r could be a. */
BN_GF2m_mod_arr(BIGNUM * r,const BIGNUM * a,const unsigned int p[])323 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
324 	{
325 	int j, k;
326 	int n, dN, d0, d1;
327 	BN_ULONG zz, *z;
328 
329 	bn_check_top(a);
330 
331 	if (!p[0])
332 		{
333 		/* reduction mod 1 => return 0 */
334 		BN_zero(r);
335 		return 1;
336 		}
337 
338 	/* Since the algorithm does reduction in the r value, if a != r, copy
339 	 * the contents of a into r so we can do reduction in r.
340 	 */
341 	if (a != r)
342 		{
343 		if (!bn_wexpand(r, a->top)) return 0;
344 		for (j = 0; j < a->top; j++)
345 			{
346 			r->d[j] = a->d[j];
347 			}
348 		r->top = a->top;
349 		}
350 	z = r->d;
351 
352 	/* start reduction */
353 	dN = p[0] / BN_BITS2;
354 	for (j = r->top - 1; j > dN;)
355 		{
356 		zz = z[j];
357 		if (z[j] == 0) { j--; continue; }
358 		z[j] = 0;
359 
360 		for (k = 1; p[k] != 0; k++)
361 			{
362 			/* reducing component t^p[k] */
363 			n = p[0] - p[k];
364 			d0 = n % BN_BITS2;  d1 = BN_BITS2 - d0;
365 			n /= BN_BITS2;
366 			z[j-n] ^= (zz>>d0);
367 			if (d0) z[j-n-1] ^= (zz<<d1);
368 			}
369 
370 		/* reducing component t^0 */
371 		n = dN;
372 		d0 = p[0] % BN_BITS2;
373 		d1 = BN_BITS2 - d0;
374 		z[j-n] ^= (zz >> d0);
375 		if (d0) z[j-n-1] ^= (zz << d1);
376 		}
377 
378 	/* final round of reduction */
379 	while (j == dN)
380 		{
381 
382 		d0 = p[0] % BN_BITS2;
383 		zz = z[dN] >> d0;
384 		if (zz == 0) break;
385 		d1 = BN_BITS2 - d0;
386 
387 		if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */
388 		z[0] ^= zz; /* reduction t^0 component */
389 
390 		for (k = 1; p[k] != 0; k++)
391 			{
392 			BN_ULONG tmp_ulong;
393 
394 			/* reducing component t^p[k]*/
395 			n = p[k] / BN_BITS2;
396 			d0 = p[k] % BN_BITS2;
397 			d1 = BN_BITS2 - d0;
398 			z[n] ^= (zz << d0);
399 			tmp_ulong = zz >> d1;
400                         if (d0 && tmp_ulong)
401                                 z[n+1] ^= tmp_ulong;
402 			}
403 
404 
405 		}
406 
407 	bn_correct_top(r);
408 	return 1;
409 	}
410 
411 /* Performs modular reduction of a by p and store result in r.  r could be a.
412  *
413  * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
414  * function is only provided for convenience; for best performance, use the
415  * BN_GF2m_mod_arr function.
416  */
BN_GF2m_mod(BIGNUM * r,const BIGNUM * a,const BIGNUM * p)417 int	BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
418 	{
419 	int ret = 0;
420 	const int max = BN_num_bits(p);
421 	unsigned int *arr=NULL;
422 	bn_check_top(a);
423 	bn_check_top(p);
424 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
425 	ret = BN_GF2m_poly2arr(p, arr, max);
426 	if (!ret || ret > max)
427 		{
428 		BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
429 		goto err;
430 		}
431 	ret = BN_GF2m_mod_arr(r, a, arr);
432 	bn_check_top(r);
433 err:
434 	if (arr) OPENSSL_free(arr);
435 	return ret;
436 	}
437 
438 
439 /* Compute the product of two polynomials a and b, reduce modulo p, and store
440  * the result in r.  r could be a or b; a could be b.
441  */
BN_GF2m_mod_mul_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const unsigned int p[],BN_CTX * ctx)442 int	BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
443 	{
444 	int zlen, i, j, k, ret = 0;
445 	BIGNUM *s;
446 	BN_ULONG x1, x0, y1, y0, zz[4];
447 
448 	bn_check_top(a);
449 	bn_check_top(b);
450 
451 	if (a == b)
452 		{
453 		return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
454 		}
455 
456 	BN_CTX_start(ctx);
457 	if ((s = BN_CTX_get(ctx)) == NULL) goto err;
458 
459 	zlen = a->top + b->top + 4;
460 	if (!bn_wexpand(s, zlen)) goto err;
461 	s->top = zlen;
462 
463 	for (i = 0; i < zlen; i++) s->d[i] = 0;
464 
465 	for (j = 0; j < b->top; j += 2)
466 		{
467 		y0 = b->d[j];
468 		y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
469 		for (i = 0; i < a->top; i += 2)
470 			{
471 			x0 = a->d[i];
472 			x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
473 			bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
474 			for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
475 			}
476 		}
477 
478 	bn_correct_top(s);
479 	if (BN_GF2m_mod_arr(r, s, p))
480 		ret = 1;
481 	bn_check_top(r);
482 
483 err:
484 	BN_CTX_end(ctx);
485 	return ret;
486 	}
487 
488 /* Compute the product of two polynomials a and b, reduce modulo p, and store
489  * the result in r.  r could be a or b; a could equal b.
490  *
491  * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
492  * function is only provided for convenience; for best performance, use the
493  * BN_GF2m_mod_mul_arr function.
494  */
BN_GF2m_mod_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)495 int	BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
496 	{
497 	int ret = 0;
498 	const int max = BN_num_bits(p);
499 	unsigned int *arr=NULL;
500 	bn_check_top(a);
501 	bn_check_top(b);
502 	bn_check_top(p);
503 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
504 	ret = BN_GF2m_poly2arr(p, arr, max);
505 	if (!ret || ret > max)
506 		{
507 		BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
508 		goto err;
509 		}
510 	ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
511 	bn_check_top(r);
512 err:
513 	if (arr) OPENSSL_free(arr);
514 	return ret;
515 	}
516 
517 
518 /* Square a, reduce the result mod p, and store it in a.  r could be a. */
BN_GF2m_mod_sqr_arr(BIGNUM * r,const BIGNUM * a,const unsigned int p[],BN_CTX * ctx)519 int	BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
520 	{
521 	int i, ret = 0;
522 	BIGNUM *s;
523 
524 	bn_check_top(a);
525 	BN_CTX_start(ctx);
526 	if ((s = BN_CTX_get(ctx)) == NULL) return 0;
527 	if (!bn_wexpand(s, 2 * a->top)) goto err;
528 
529 	for (i = a->top - 1; i >= 0; i--)
530 		{
531 		s->d[2*i+1] = SQR1(a->d[i]);
532 		s->d[2*i  ] = SQR0(a->d[i]);
533 		}
534 
535 	s->top = 2 * a->top;
536 	bn_correct_top(s);
537 	if (!BN_GF2m_mod_arr(r, s, p)) goto err;
538 	bn_check_top(r);
539 	ret = 1;
540 err:
541 	BN_CTX_end(ctx);
542 	return ret;
543 	}
544 
545 /* Square a, reduce the result mod p, and store it in a.  r could be a.
546  *
547  * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
548  * function is only provided for convenience; for best performance, use the
549  * BN_GF2m_mod_sqr_arr function.
550  */
BN_GF2m_mod_sqr(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)551 int	BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
552 	{
553 	int ret = 0;
554 	const int max = BN_num_bits(p);
555 	unsigned int *arr=NULL;
556 
557 	bn_check_top(a);
558 	bn_check_top(p);
559 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
560 	ret = BN_GF2m_poly2arr(p, arr, max);
561 	if (!ret || ret > max)
562 		{
563 		BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
564 		goto err;
565 		}
566 	ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
567 	bn_check_top(r);
568 err:
569 	if (arr) OPENSSL_free(arr);
570 	return ret;
571 	}
572 
573 
574 /* Invert a, reduce modulo p, and store the result in r. r could be a.
575  * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
576  *     Hankerson, D., Hernandez, J.L., and Menezes, A.  "Software Implementation
577  *     of Elliptic Curve Cryptography Over Binary Fields".
578  */
BN_GF2m_mod_inv(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)579 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
580 	{
581 	BIGNUM *b, *c, *u, *v, *tmp;
582 	int ret = 0;
583 
584 	bn_check_top(a);
585 	bn_check_top(p);
586 
587 	BN_CTX_start(ctx);
588 
589 	b = BN_CTX_get(ctx);
590 	c = BN_CTX_get(ctx);
591 	u = BN_CTX_get(ctx);
592 	v = BN_CTX_get(ctx);
593 	if (v == NULL) goto err;
594 
595 	if (!BN_one(b)) goto err;
596 	if (!BN_GF2m_mod(u, a, p)) goto err;
597 	if (!BN_copy(v, p)) goto err;
598 
599 	if (BN_is_zero(u)) goto err;
600 
601 	while (1)
602 		{
603 		while (!BN_is_odd(u))
604 			{
605 			if (!BN_rshift1(u, u)) goto err;
606 			if (BN_is_odd(b))
607 				{
608 				if (!BN_GF2m_add(b, b, p)) goto err;
609 				}
610 			if (!BN_rshift1(b, b)) goto err;
611 			}
612 
613 		if (BN_abs_is_word(u, 1)) break;
614 
615 		if (BN_num_bits(u) < BN_num_bits(v))
616 			{
617 			tmp = u; u = v; v = tmp;
618 			tmp = b; b = c; c = tmp;
619 			}
620 
621 		if (!BN_GF2m_add(u, u, v)) goto err;
622 		if (!BN_GF2m_add(b, b, c)) goto err;
623 		}
624 
625 
626 	if (!BN_copy(r, b)) goto err;
627 	bn_check_top(r);
628 	ret = 1;
629 
630 err:
631   	BN_CTX_end(ctx);
632 	return ret;
633 	}
634 
635 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
636  *
637  * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
638  * function is only provided for convenience; for best performance, use the
639  * BN_GF2m_mod_inv function.
640  */
BN_GF2m_mod_inv_arr(BIGNUM * r,const BIGNUM * xx,const unsigned int p[],BN_CTX * ctx)641 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
642 	{
643 	BIGNUM *field;
644 	int ret = 0;
645 
646 	bn_check_top(xx);
647 	BN_CTX_start(ctx);
648 	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
649 	if (!BN_GF2m_arr2poly(p, field)) goto err;
650 
651 	ret = BN_GF2m_mod_inv(r, xx, field, ctx);
652 	bn_check_top(r);
653 
654 err:
655 	BN_CTX_end(ctx);
656 	return ret;
657 	}
658 
659 
660 #ifndef OPENSSL_SUN_GF2M_DIV
661 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
662  * or y, x could equal y.
663  */
BN_GF2m_mod_div(BIGNUM * r,const BIGNUM * y,const BIGNUM * x,const BIGNUM * p,BN_CTX * ctx)664 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
665 	{
666 	BIGNUM *xinv = NULL;
667 	int ret = 0;
668 
669 	bn_check_top(y);
670 	bn_check_top(x);
671 	bn_check_top(p);
672 
673 	BN_CTX_start(ctx);
674 	xinv = BN_CTX_get(ctx);
675 	if (xinv == NULL) goto err;
676 
677 	if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
678 	if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
679 	bn_check_top(r);
680 	ret = 1;
681 
682 err:
683 	BN_CTX_end(ctx);
684 	return ret;
685 	}
686 #else
687 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
688  * or y, x could equal y.
689  * Uses algorithm Modular_Division_GF(2^m) from
690  *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
691  *     the Great Divide".
692  */
BN_GF2m_mod_div(BIGNUM * r,const BIGNUM * y,const BIGNUM * x,const BIGNUM * p,BN_CTX * ctx)693 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
694 	{
695 	BIGNUM *a, *b, *u, *v;
696 	int ret = 0;
697 
698 	bn_check_top(y);
699 	bn_check_top(x);
700 	bn_check_top(p);
701 
702 	BN_CTX_start(ctx);
703 
704 	a = BN_CTX_get(ctx);
705 	b = BN_CTX_get(ctx);
706 	u = BN_CTX_get(ctx);
707 	v = BN_CTX_get(ctx);
708 	if (v == NULL) goto err;
709 
710 	/* reduce x and y mod p */
711 	if (!BN_GF2m_mod(u, y, p)) goto err;
712 	if (!BN_GF2m_mod(a, x, p)) goto err;
713 	if (!BN_copy(b, p)) goto err;
714 
715 	while (!BN_is_odd(a))
716 		{
717 		if (!BN_rshift1(a, a)) goto err;
718 		if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
719 		if (!BN_rshift1(u, u)) goto err;
720 		}
721 
722 	do
723 		{
724 		if (BN_GF2m_cmp(b, a) > 0)
725 			{
726 			if (!BN_GF2m_add(b, b, a)) goto err;
727 			if (!BN_GF2m_add(v, v, u)) goto err;
728 			do
729 				{
730 				if (!BN_rshift1(b, b)) goto err;
731 				if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
732 				if (!BN_rshift1(v, v)) goto err;
733 				} while (!BN_is_odd(b));
734 			}
735 		else if (BN_abs_is_word(a, 1))
736 			break;
737 		else
738 			{
739 			if (!BN_GF2m_add(a, a, b)) goto err;
740 			if (!BN_GF2m_add(u, u, v)) goto err;
741 			do
742 				{
743 				if (!BN_rshift1(a, a)) goto err;
744 				if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
745 				if (!BN_rshift1(u, u)) goto err;
746 				} while (!BN_is_odd(a));
747 			}
748 		} while (1);
749 
750 	if (!BN_copy(r, u)) goto err;
751 	bn_check_top(r);
752 	ret = 1;
753 
754 err:
755   	BN_CTX_end(ctx);
756 	return ret;
757 	}
758 #endif
759 
760 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
761  * or yy, xx could equal yy.
762  *
763  * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
764  * function is only provided for convenience; for best performance, use the
765  * BN_GF2m_mod_div function.
766  */
BN_GF2m_mod_div_arr(BIGNUM * r,const BIGNUM * yy,const BIGNUM * xx,const unsigned int p[],BN_CTX * ctx)767 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
768 	{
769 	BIGNUM *field;
770 	int ret = 0;
771 
772 	bn_check_top(yy);
773 	bn_check_top(xx);
774 
775 	BN_CTX_start(ctx);
776 	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
777 	if (!BN_GF2m_arr2poly(p, field)) goto err;
778 
779 	ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
780 	bn_check_top(r);
781 
782 err:
783 	BN_CTX_end(ctx);
784 	return ret;
785 	}
786 
787 
788 /* Compute the bth power of a, reduce modulo p, and store
789  * the result in r.  r could be a.
790  * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
791  */
BN_GF2m_mod_exp_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const unsigned int p[],BN_CTX * ctx)792 int	BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
793 	{
794 	int ret = 0, i, n;
795 	BIGNUM *u;
796 
797 	bn_check_top(a);
798 	bn_check_top(b);
799 
800 	if (BN_is_zero(b))
801 		return(BN_one(r));
802 
803 	if (BN_abs_is_word(b, 1))
804 		return (BN_copy(r, a) != NULL);
805 
806 	BN_CTX_start(ctx);
807 	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
808 
809 	if (!BN_GF2m_mod_arr(u, a, p)) goto err;
810 
811 	n = BN_num_bits(b) - 1;
812 	for (i = n - 1; i >= 0; i--)
813 		{
814 		if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
815 		if (BN_is_bit_set(b, i))
816 			{
817 			if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
818 			}
819 		}
820 	if (!BN_copy(r, u)) goto err;
821 	bn_check_top(r);
822 	ret = 1;
823 err:
824 	BN_CTX_end(ctx);
825 	return ret;
826 	}
827 
828 /* Compute the bth power of a, reduce modulo p, and store
829  * the result in r.  r could be a.
830  *
831  * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
832  * function is only provided for convenience; for best performance, use the
833  * BN_GF2m_mod_exp_arr function.
834  */
BN_GF2m_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)835 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
836 	{
837 	int ret = 0;
838 	const int max = BN_num_bits(p);
839 	unsigned int *arr=NULL;
840 	bn_check_top(a);
841 	bn_check_top(b);
842 	bn_check_top(p);
843 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
844 	ret = BN_GF2m_poly2arr(p, arr, max);
845 	if (!ret || ret > max)
846 		{
847 		BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
848 		goto err;
849 		}
850 	ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
851 	bn_check_top(r);
852 err:
853 	if (arr) OPENSSL_free(arr);
854 	return ret;
855 	}
856 
857 /* Compute the square root of a, reduce modulo p, and store
858  * the result in r.  r could be a.
859  * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
860  */
BN_GF2m_mod_sqrt_arr(BIGNUM * r,const BIGNUM * a,const unsigned int p[],BN_CTX * ctx)861 int	BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
862 	{
863 	int ret = 0;
864 	BIGNUM *u;
865 
866 	bn_check_top(a);
867 
868 	if (!p[0])
869 		{
870 		/* reduction mod 1 => return 0 */
871 		BN_zero(r);
872 		return 1;
873 		}
874 
875 	BN_CTX_start(ctx);
876 	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
877 
878 	if (!BN_set_bit(u, p[0] - 1)) goto err;
879 	ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
880 	bn_check_top(r);
881 
882 err:
883 	BN_CTX_end(ctx);
884 	return ret;
885 	}
886 
887 /* Compute the square root of a, reduce modulo p, and store
888  * the result in r.  r could be a.
889  *
890  * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
891  * function is only provided for convenience; for best performance, use the
892  * BN_GF2m_mod_sqrt_arr function.
893  */
BN_GF2m_mod_sqrt(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)894 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
895 	{
896 	int ret = 0;
897 	const int max = BN_num_bits(p);
898 	unsigned int *arr=NULL;
899 	bn_check_top(a);
900 	bn_check_top(p);
901 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
902 	ret = BN_GF2m_poly2arr(p, arr, max);
903 	if (!ret || ret > max)
904 		{
905 		BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
906 		goto err;
907 		}
908 	ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
909 	bn_check_top(r);
910 err:
911 	if (arr) OPENSSL_free(arr);
912 	return ret;
913 	}
914 
915 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
916  * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
917  */
BN_GF2m_mod_solve_quad_arr(BIGNUM * r,const BIGNUM * a_,const unsigned int p[],BN_CTX * ctx)918 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
919 	{
920 	int ret = 0, count = 0;
921 	unsigned int j;
922 	BIGNUM *a, *z, *rho, *w, *w2, *tmp;
923 
924 	bn_check_top(a_);
925 
926 	if (!p[0])
927 		{
928 		/* reduction mod 1 => return 0 */
929 		BN_zero(r);
930 		return 1;
931 		}
932 
933 	BN_CTX_start(ctx);
934 	a = BN_CTX_get(ctx);
935 	z = BN_CTX_get(ctx);
936 	w = BN_CTX_get(ctx);
937 	if (w == NULL) goto err;
938 
939 	if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
940 
941 	if (BN_is_zero(a))
942 		{
943 		BN_zero(r);
944 		ret = 1;
945 		goto err;
946 		}
947 
948 	if (p[0] & 0x1) /* m is odd */
949 		{
950 		/* compute half-trace of a */
951 		if (!BN_copy(z, a)) goto err;
952 		for (j = 1; j <= (p[0] - 1) / 2; j++)
953 			{
954 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
955 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
956 			if (!BN_GF2m_add(z, z, a)) goto err;
957 			}
958 
959 		}
960 	else /* m is even */
961 		{
962 		rho = BN_CTX_get(ctx);
963 		w2 = BN_CTX_get(ctx);
964 		tmp = BN_CTX_get(ctx);
965 		if (tmp == NULL) goto err;
966 		do
967 			{
968 			if (!BN_rand(rho, p[0], 0, 0)) goto err;
969 			if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
970 			BN_zero(z);
971 			if (!BN_copy(w, rho)) goto err;
972 			for (j = 1; j <= p[0] - 1; j++)
973 				{
974 				if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
975 				if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
976 				if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
977 				if (!BN_GF2m_add(z, z, tmp)) goto err;
978 				if (!BN_GF2m_add(w, w2, rho)) goto err;
979 				}
980 			count++;
981 			} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
982 		if (BN_is_zero(w))
983 			{
984 			BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
985 			goto err;
986 			}
987 		}
988 
989 	if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
990 	if (!BN_GF2m_add(w, z, w)) goto err;
991 	if (BN_GF2m_cmp(w, a))
992 		{
993 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
994 		goto err;
995 		}
996 
997 	if (!BN_copy(r, z)) goto err;
998 	bn_check_top(r);
999 
1000 	ret = 1;
1001 
1002 err:
1003 	BN_CTX_end(ctx);
1004 	return ret;
1005 	}
1006 
1007 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
1008  *
1009  * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1010  * function is only provided for convenience; for best performance, use the
1011  * BN_GF2m_mod_solve_quad_arr function.
1012  */
BN_GF2m_mod_solve_quad(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)1013 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1014 	{
1015 	int ret = 0;
1016 	const int max = BN_num_bits(p);
1017 	unsigned int *arr=NULL;
1018 	bn_check_top(a);
1019 	bn_check_top(p);
1020 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) *
1021 						max)) == NULL) goto err;
1022 	ret = BN_GF2m_poly2arr(p, arr, max);
1023 	if (!ret || ret > max)
1024 		{
1025 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
1026 		goto err;
1027 		}
1028 	ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1029 	bn_check_top(r);
1030 err:
1031 	if (arr) OPENSSL_free(arr);
1032 	return ret;
1033 	}
1034 
1035 /* Convert the bit-string representation of a polynomial
1036  * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array
1037  * of integers corresponding to the bits with non-zero coefficient.
1038  * Up to max elements of the array will be filled.  Return value is total
1039  * number of coefficients that would be extracted if array was large enough.
1040  */
BN_GF2m_poly2arr(const BIGNUM * a,unsigned int p[],int max)1041 int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
1042 	{
1043 	int i, j, k = 0;
1044 	BN_ULONG mask;
1045 
1046 	if (BN_is_zero(a) || !BN_is_bit_set(a, 0))
1047 		/* a_0 == 0 => return error (the unsigned int array
1048 		 * must be terminated by 0)
1049 		 */
1050 		return 0;
1051 
1052 	for (i = a->top - 1; i >= 0; i--)
1053 		{
1054 		if (!a->d[i])
1055 			/* skip word if a->d[i] == 0 */
1056 			continue;
1057 		mask = BN_TBIT;
1058 		for (j = BN_BITS2 - 1; j >= 0; j--)
1059 			{
1060 			if (a->d[i] & mask)
1061 				{
1062 				if (k < max) p[k] = BN_BITS2 * i + j;
1063 				k++;
1064 				}
1065 			mask >>= 1;
1066 			}
1067 		}
1068 
1069 	return k;
1070 	}
1071 
1072 /* Convert the coefficient array representation of a polynomial to a
1073  * bit-string.  The array must be terminated by 0.
1074  */
BN_GF2m_arr2poly(const unsigned int p[],BIGNUM * a)1075 int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
1076 	{
1077 	int i;
1078 
1079 	bn_check_top(a);
1080 	BN_zero(a);
1081 	for (i = 0; p[i] != 0; i++)
1082 		{
1083 		if (BN_set_bit(a, p[i]) == 0)
1084 			return 0;
1085 		}
1086 	BN_set_bit(a, 0);
1087 	bn_check_top(a);
1088 
1089 	return 1;
1090 	}
1091 
1092