1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2006-2008 the V8 project authors. All rights reserved.
36
37 #ifndef V8_ARM_ASSEMBLER_ARM_INL_H_
38 #define V8_ARM_ASSEMBLER_ARM_INL_H_
39
40 #include "arm/assembler-arm.h"
41 #include "cpu.h"
42
43
44 namespace v8 {
45 namespace internal {
46
NegateCondition(Condition cc)47 Condition NegateCondition(Condition cc) {
48 ASSERT(cc != al);
49 return static_cast<Condition>(cc ^ ne);
50 }
51
52
apply(intptr_t delta)53 void RelocInfo::apply(intptr_t delta) {
54 if (RelocInfo::IsInternalReference(rmode_)) {
55 // absolute code pointer inside code object moves with the code object.
56 int32_t* p = reinterpret_cast<int32_t*>(pc_);
57 *p += delta; // relocate entry
58 }
59 // We do not use pc relative addressing on ARM, so there is
60 // nothing else to do.
61 }
62
63
target_address()64 Address RelocInfo::target_address() {
65 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
66 return Assembler::target_address_at(pc_);
67 }
68
69
target_address_address()70 Address RelocInfo::target_address_address() {
71 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
72 return reinterpret_cast<Address>(Assembler::target_address_address_at(pc_));
73 }
74
75
set_target_address(Address target)76 void RelocInfo::set_target_address(Address target) {
77 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
78 Assembler::set_target_address_at(pc_, target);
79 }
80
81
target_object()82 Object* RelocInfo::target_object() {
83 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
84 return reinterpret_cast<Object*>(Assembler::target_address_at(pc_));
85 }
86
87
target_object_address()88 Object** RelocInfo::target_object_address() {
89 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
90 return reinterpret_cast<Object**>(Assembler::target_address_address_at(pc_));
91 }
92
93
set_target_object(Object * target)94 void RelocInfo::set_target_object(Object* target) {
95 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
96 Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
97 }
98
99
target_reference_address()100 Address* RelocInfo::target_reference_address() {
101 ASSERT(rmode_ == EXTERNAL_REFERENCE);
102 return reinterpret_cast<Address*>(Assembler::target_address_address_at(pc_));
103 }
104
105
call_address()106 Address RelocInfo::call_address() {
107 ASSERT(IsCallInstruction());
108 UNIMPLEMENTED();
109 return NULL;
110 }
111
112
set_call_address(Address target)113 void RelocInfo::set_call_address(Address target) {
114 ASSERT(IsCallInstruction());
115 UNIMPLEMENTED();
116 }
117
118
call_object()119 Object* RelocInfo::call_object() {
120 ASSERT(IsCallInstruction());
121 UNIMPLEMENTED();
122 return NULL;
123 }
124
125
call_object_address()126 Object** RelocInfo::call_object_address() {
127 ASSERT(IsCallInstruction());
128 UNIMPLEMENTED();
129 return NULL;
130 }
131
132
set_call_object(Object * target)133 void RelocInfo::set_call_object(Object* target) {
134 ASSERT(IsCallInstruction());
135 UNIMPLEMENTED();
136 }
137
138
IsCallInstruction()139 bool RelocInfo::IsCallInstruction() {
140 UNIMPLEMENTED();
141 return false;
142 }
143
144
Operand(int32_t immediate,RelocInfo::Mode rmode)145 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode) {
146 rm_ = no_reg;
147 imm32_ = immediate;
148 rmode_ = rmode;
149 }
150
151
Operand(const char * s)152 Operand::Operand(const char* s) {
153 rm_ = no_reg;
154 imm32_ = reinterpret_cast<int32_t>(s);
155 rmode_ = RelocInfo::EMBEDDED_STRING;
156 }
157
158
Operand(const ExternalReference & f)159 Operand::Operand(const ExternalReference& f) {
160 rm_ = no_reg;
161 imm32_ = reinterpret_cast<int32_t>(f.address());
162 rmode_ = RelocInfo::EXTERNAL_REFERENCE;
163 }
164
165
Operand(Object ** opp)166 Operand::Operand(Object** opp) {
167 rm_ = no_reg;
168 imm32_ = reinterpret_cast<int32_t>(opp);
169 rmode_ = RelocInfo::NONE;
170 }
171
172
Operand(Context ** cpp)173 Operand::Operand(Context** cpp) {
174 rm_ = no_reg;
175 imm32_ = reinterpret_cast<int32_t>(cpp);
176 rmode_ = RelocInfo::NONE;
177 }
178
179
Operand(Smi * value)180 Operand::Operand(Smi* value) {
181 rm_ = no_reg;
182 imm32_ = reinterpret_cast<intptr_t>(value);
183 rmode_ = RelocInfo::NONE;
184 }
185
186
Operand(Register rm)187 Operand::Operand(Register rm) {
188 rm_ = rm;
189 rs_ = no_reg;
190 shift_op_ = LSL;
191 shift_imm_ = 0;
192 }
193
194
is_reg()195 bool Operand::is_reg() const {
196 return rm_.is_valid() &&
197 rs_.is(no_reg) &&
198 shift_op_ == LSL &&
199 shift_imm_ == 0;
200 }
201
202
CheckBuffer()203 void Assembler::CheckBuffer() {
204 if (buffer_space() <= kGap) {
205 GrowBuffer();
206 }
207 if (pc_offset() >= next_buffer_check_) {
208 CheckConstPool(false, true);
209 }
210 }
211
212
emit(Instr x)213 void Assembler::emit(Instr x) {
214 CheckBuffer();
215 *reinterpret_cast<Instr*>(pc_) = x;
216 pc_ += kInstrSize;
217 }
218
219
target_address_address_at(Address pc)220 Address Assembler::target_address_address_at(Address pc) {
221 Instr instr = Memory::int32_at(pc);
222 // Verify that the instruction at pc is a ldr<cond> <Rd>, [pc +/- offset_12].
223 ASSERT((instr & 0x0f7f0000) == 0x051f0000);
224 int offset = instr & 0xfff; // offset_12 is unsigned
225 if ((instr & (1 << 23)) == 0) offset = -offset; // U bit defines offset sign
226 // Verify that the constant pool comes after the instruction referencing it.
227 ASSERT(offset >= -4);
228 return pc + offset + 8;
229 }
230
231
target_address_at(Address pc)232 Address Assembler::target_address_at(Address pc) {
233 return Memory::Address_at(target_address_address_at(pc));
234 }
235
236
set_target_address_at(Address pc,Address target)237 void Assembler::set_target_address_at(Address pc, Address target) {
238 Memory::Address_at(target_address_address_at(pc)) = target;
239 // Intuitively, we would think it is necessary to flush the instruction cache
240 // after patching a target address in the code as follows:
241 // CPU::FlushICache(pc, sizeof(target));
242 // However, on ARM, no instruction was actually patched by the assignment
243 // above; the target address is not part of an instruction, it is patched in
244 // the constant pool and is read via a data access; the instruction accessing
245 // this address in the constant pool remains unchanged.
246 }
247
248 } } // namespace v8::internal
249
250 #endif // V8_ARM_ASSEMBLER_ARM_INL_H_
251