• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2009 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "ast.h"
31 #include "compiler.h"
32 #include "execution.h"
33 #include "factory.h"
34 #include "jsregexp.h"
35 #include "platform.h"
36 #include "runtime.h"
37 #include "top.h"
38 #include "compilation-cache.h"
39 #include "string-stream.h"
40 #include "parser.h"
41 #include "regexp-macro-assembler.h"
42 #include "regexp-macro-assembler-tracer.h"
43 #include "regexp-macro-assembler-irregexp.h"
44 #include "regexp-stack.h"
45 
46 #ifdef V8_NATIVE_REGEXP
47 #if V8_TARGET_ARCH_IA32
48 #include "ia32/macro-assembler-ia32.h"
49 #include "ia32/regexp-macro-assembler-ia32.h"
50 #elif V8_TARGET_ARCH_X64
51 #include "x64/macro-assembler-x64.h"
52 #include "x64/regexp-macro-assembler-x64.h"
53 #elif V8_TARGET_ARCH_ARM
54 #include "arm/macro-assembler-arm.h"
55 #include "arm/regexp-macro-assembler-arm.h"
56 #else
57 #error Unsupported target architecture.
58 #endif
59 #endif
60 
61 #include "interpreter-irregexp.h"
62 
63 
64 namespace v8 {
65 namespace internal {
66 
67 
CreateRegExpLiteral(Handle<JSFunction> constructor,Handle<String> pattern,Handle<String> flags,bool * has_pending_exception)68 Handle<Object> RegExpImpl::CreateRegExpLiteral(Handle<JSFunction> constructor,
69                                                Handle<String> pattern,
70                                                Handle<String> flags,
71                                                bool* has_pending_exception) {
72   // Ensure that the constructor function has been loaded.
73   if (!constructor->IsLoaded()) {
74     LoadLazy(constructor, has_pending_exception);
75     if (*has_pending_exception) return Handle<Object>();
76   }
77   // Call the construct code with 2 arguments.
78   Object** argv[2] = { Handle<Object>::cast(pattern).location(),
79                        Handle<Object>::cast(flags).location() };
80   return Execution::New(constructor, 2, argv, has_pending_exception);
81 }
82 
83 
RegExpFlagsFromString(Handle<String> str)84 static JSRegExp::Flags RegExpFlagsFromString(Handle<String> str) {
85   int flags = JSRegExp::NONE;
86   for (int i = 0; i < str->length(); i++) {
87     switch (str->Get(i)) {
88       case 'i':
89         flags |= JSRegExp::IGNORE_CASE;
90         break;
91       case 'g':
92         flags |= JSRegExp::GLOBAL;
93         break;
94       case 'm':
95         flags |= JSRegExp::MULTILINE;
96         break;
97     }
98   }
99   return JSRegExp::Flags(flags);
100 }
101 
102 
ThrowRegExpException(Handle<JSRegExp> re,Handle<String> pattern,Handle<String> error_text,const char * message)103 static inline void ThrowRegExpException(Handle<JSRegExp> re,
104                                         Handle<String> pattern,
105                                         Handle<String> error_text,
106                                         const char* message) {
107   Handle<JSArray> array = Factory::NewJSArray(2);
108   SetElement(array, 0, pattern);
109   SetElement(array, 1, error_text);
110   Handle<Object> regexp_err = Factory::NewSyntaxError(message, array);
111   Top::Throw(*regexp_err);
112 }
113 
114 
115 // Generic RegExp methods. Dispatches to implementation specific methods.
116 
117 
118 class OffsetsVector {
119  public:
OffsetsVector(int num_registers)120   inline OffsetsVector(int num_registers)
121       : offsets_vector_length_(num_registers) {
122     if (offsets_vector_length_ > kStaticOffsetsVectorSize) {
123       vector_ = NewArray<int>(offsets_vector_length_);
124     } else {
125       vector_ = static_offsets_vector_;
126     }
127   }
~OffsetsVector()128   inline ~OffsetsVector() {
129     if (offsets_vector_length_ > kStaticOffsetsVectorSize) {
130       DeleteArray(vector_);
131       vector_ = NULL;
132     }
133   }
vector()134   inline int* vector() { return vector_; }
length()135   inline int length() { return offsets_vector_length_; }
136 
137  private:
138   int* vector_;
139   int offsets_vector_length_;
140   static const int kStaticOffsetsVectorSize = 50;
141   static int static_offsets_vector_[kStaticOffsetsVectorSize];
142 };
143 
144 
145 int OffsetsVector::static_offsets_vector_[
146     OffsetsVector::kStaticOffsetsVectorSize];
147 
148 
Compile(Handle<JSRegExp> re,Handle<String> pattern,Handle<String> flag_str)149 Handle<Object> RegExpImpl::Compile(Handle<JSRegExp> re,
150                                    Handle<String> pattern,
151                                    Handle<String> flag_str) {
152   JSRegExp::Flags flags = RegExpFlagsFromString(flag_str);
153   Handle<FixedArray> cached = CompilationCache::LookupRegExp(pattern, flags);
154   bool in_cache = !cached.is_null();
155   LOG(RegExpCompileEvent(re, in_cache));
156 
157   Handle<Object> result;
158   if (in_cache) {
159     re->set_data(*cached);
160     return re;
161   }
162   FlattenString(pattern);
163   CompilationZoneScope zone_scope(DELETE_ON_EXIT);
164   RegExpCompileData parse_result;
165   FlatStringReader reader(pattern);
166   if (!ParseRegExp(&reader, flags.is_multiline(), &parse_result)) {
167     // Throw an exception if we fail to parse the pattern.
168     ThrowRegExpException(re,
169                          pattern,
170                          parse_result.error,
171                          "malformed_regexp");
172     return Handle<Object>::null();
173   }
174 
175   if (parse_result.simple && !flags.is_ignore_case()) {
176     // Parse-tree is a single atom that is equal to the pattern.
177     AtomCompile(re, pattern, flags, pattern);
178   } else if (parse_result.tree->IsAtom() &&
179       !flags.is_ignore_case() &&
180       parse_result.capture_count == 0) {
181     RegExpAtom* atom = parse_result.tree->AsAtom();
182     Vector<const uc16> atom_pattern = atom->data();
183     Handle<String> atom_string = Factory::NewStringFromTwoByte(atom_pattern);
184     AtomCompile(re, pattern, flags, atom_string);
185   } else {
186     IrregexpPrepare(re, pattern, flags, parse_result.capture_count);
187   }
188   ASSERT(re->data()->IsFixedArray());
189   // Compilation succeeded so the data is set on the regexp
190   // and we can store it in the cache.
191   Handle<FixedArray> data(FixedArray::cast(re->data()));
192   CompilationCache::PutRegExp(pattern, flags, data);
193 
194   return re;
195 }
196 
197 
Exec(Handle<JSRegExp> regexp,Handle<String> subject,int index,Handle<JSArray> last_match_info)198 Handle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp,
199                                 Handle<String> subject,
200                                 int index,
201                                 Handle<JSArray> last_match_info) {
202   switch (regexp->TypeTag()) {
203     case JSRegExp::ATOM:
204       return AtomExec(regexp, subject, index, last_match_info);
205     case JSRegExp::IRREGEXP: {
206       Handle<Object> result =
207           IrregexpExec(regexp, subject, index, last_match_info);
208       ASSERT(!result.is_null() || Top::has_pending_exception());
209       return result;
210     }
211     default:
212       UNREACHABLE();
213       return Handle<Object>::null();
214   }
215 }
216 
217 
218 // RegExp Atom implementation: Simple string search using indexOf.
219 
220 
AtomCompile(Handle<JSRegExp> re,Handle<String> pattern,JSRegExp::Flags flags,Handle<String> match_pattern)221 void RegExpImpl::AtomCompile(Handle<JSRegExp> re,
222                              Handle<String> pattern,
223                              JSRegExp::Flags flags,
224                              Handle<String> match_pattern) {
225   Factory::SetRegExpAtomData(re,
226                              JSRegExp::ATOM,
227                              pattern,
228                              flags,
229                              match_pattern);
230 }
231 
232 
SetAtomLastCapture(FixedArray * array,String * subject,int from,int to)233 static void SetAtomLastCapture(FixedArray* array,
234                                String* subject,
235                                int from,
236                                int to) {
237   NoHandleAllocation no_handles;
238   RegExpImpl::SetLastCaptureCount(array, 2);
239   RegExpImpl::SetLastSubject(array, subject);
240   RegExpImpl::SetLastInput(array, subject);
241   RegExpImpl::SetCapture(array, 0, from);
242   RegExpImpl::SetCapture(array, 1, to);
243 }
244 
245 
AtomExec(Handle<JSRegExp> re,Handle<String> subject,int index,Handle<JSArray> last_match_info)246 Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re,
247                                     Handle<String> subject,
248                                     int index,
249                                     Handle<JSArray> last_match_info) {
250   Handle<String> needle(String::cast(re->DataAt(JSRegExp::kAtomPatternIndex)));
251 
252   uint32_t start_index = index;
253 
254   int value = Runtime::StringMatch(subject, needle, start_index);
255   if (value == -1) return Factory::null_value();
256   ASSERT(last_match_info->HasFastElements());
257 
258   {
259     NoHandleAllocation no_handles;
260     FixedArray* array = FixedArray::cast(last_match_info->elements());
261     SetAtomLastCapture(array, *subject, value, value + needle->length());
262   }
263   return last_match_info;
264 }
265 
266 
267 // Irregexp implementation.
268 
269 // Ensures that the regexp object contains a compiled version of the
270 // source for either ASCII or non-ASCII strings.
271 // If the compiled version doesn't already exist, it is compiled
272 // from the source pattern.
273 // If compilation fails, an exception is thrown and this function
274 // returns false.
EnsureCompiledIrregexp(Handle<JSRegExp> re,bool is_ascii)275 bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii) {
276   Object* compiled_code = re->DataAt(JSRegExp::code_index(is_ascii));
277 #ifdef V8_NATIVE_REGEXP
278   if (compiled_code->IsCode()) return true;
279 #else  // ! V8_NATIVE_REGEXP (RegExp interpreter code)
280   if (compiled_code->IsByteArray()) return true;
281 #endif
282   return CompileIrregexp(re, is_ascii);
283 }
284 
285 
CompileIrregexp(Handle<JSRegExp> re,bool is_ascii)286 bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re, bool is_ascii) {
287   // Compile the RegExp.
288   CompilationZoneScope zone_scope(DELETE_ON_EXIT);
289   Object* entry = re->DataAt(JSRegExp::code_index(is_ascii));
290   if (entry->IsJSObject()) {
291     // If it's a JSObject, a previous compilation failed and threw this object.
292     // Re-throw the object without trying again.
293     Top::Throw(entry);
294     return false;
295   }
296   ASSERT(entry->IsTheHole());
297 
298   JSRegExp::Flags flags = re->GetFlags();
299 
300   Handle<String> pattern(re->Pattern());
301   if (!pattern->IsFlat()) {
302     FlattenString(pattern);
303   }
304 
305   RegExpCompileData compile_data;
306   FlatStringReader reader(pattern);
307   if (!ParseRegExp(&reader, flags.is_multiline(), &compile_data)) {
308     // Throw an exception if we fail to parse the pattern.
309     // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once.
310     ThrowRegExpException(re,
311                          pattern,
312                          compile_data.error,
313                          "malformed_regexp");
314     return false;
315   }
316   RegExpEngine::CompilationResult result =
317       RegExpEngine::Compile(&compile_data,
318                             flags.is_ignore_case(),
319                             flags.is_multiline(),
320                             pattern,
321                             is_ascii);
322   if (result.error_message != NULL) {
323     // Unable to compile regexp.
324     Handle<JSArray> array = Factory::NewJSArray(2);
325     SetElement(array, 0, pattern);
326     SetElement(array,
327                1,
328                Factory::NewStringFromUtf8(CStrVector(result.error_message)));
329     Handle<Object> regexp_err =
330         Factory::NewSyntaxError("malformed_regexp", array);
331     Top::Throw(*regexp_err);
332     re->SetDataAt(JSRegExp::code_index(is_ascii), *regexp_err);
333     return false;
334   }
335 
336   Handle<FixedArray> data = Handle<FixedArray>(FixedArray::cast(re->data()));
337   data->set(JSRegExp::code_index(is_ascii), result.code);
338   int register_max = IrregexpMaxRegisterCount(*data);
339   if (result.num_registers > register_max) {
340     SetIrregexpMaxRegisterCount(*data, result.num_registers);
341   }
342 
343   return true;
344 }
345 
346 
IrregexpMaxRegisterCount(FixedArray * re)347 int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) {
348   return Smi::cast(
349       re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
350 }
351 
352 
SetIrregexpMaxRegisterCount(FixedArray * re,int value)353 void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) {
354   re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value));
355 }
356 
357 
IrregexpNumberOfCaptures(FixedArray * re)358 int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) {
359   return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value();
360 }
361 
362 
IrregexpNumberOfRegisters(FixedArray * re)363 int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) {
364   return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
365 }
366 
367 
IrregexpByteCode(FixedArray * re,bool is_ascii)368 ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_ascii) {
369   return ByteArray::cast(re->get(JSRegExp::code_index(is_ascii)));
370 }
371 
372 
IrregexpNativeCode(FixedArray * re,bool is_ascii)373 Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_ascii) {
374   return Code::cast(re->get(JSRegExp::code_index(is_ascii)));
375 }
376 
377 
IrregexpPrepare(Handle<JSRegExp> re,Handle<String> pattern,JSRegExp::Flags flags,int capture_count)378 void RegExpImpl::IrregexpPrepare(Handle<JSRegExp> re,
379                                  Handle<String> pattern,
380                                  JSRegExp::Flags flags,
381                                  int capture_count) {
382   // Initialize compiled code entries to null.
383   Factory::SetRegExpIrregexpData(re,
384                                  JSRegExp::IRREGEXP,
385                                  pattern,
386                                  flags,
387                                  capture_count);
388 }
389 
390 
IrregexpExec(Handle<JSRegExp> jsregexp,Handle<String> subject,int previous_index,Handle<JSArray> last_match_info)391 Handle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> jsregexp,
392                                         Handle<String> subject,
393                                         int previous_index,
394                                         Handle<JSArray> last_match_info) {
395   ASSERT_EQ(jsregexp->TypeTag(), JSRegExp::IRREGEXP);
396 
397   // Prepare space for the return values.
398   int number_of_capture_registers =
399       (IrregexpNumberOfCaptures(FixedArray::cast(jsregexp->data())) + 1) * 2;
400 
401 #ifndef V8_NATIVE_REGEXP
402 #ifdef DEBUG
403   if (FLAG_trace_regexp_bytecodes) {
404     String* pattern = jsregexp->Pattern();
405     PrintF("\n\nRegexp match:   /%s/\n\n", *(pattern->ToCString()));
406     PrintF("\n\nSubject string: '%s'\n\n", *(subject->ToCString()));
407   }
408 #endif
409 #endif
410 
411   if (!subject->IsFlat()) {
412     FlattenString(subject);
413   }
414 
415   last_match_info->EnsureSize(number_of_capture_registers + kLastMatchOverhead);
416 
417   Handle<FixedArray> array;
418 
419   // Dispatch to the correct RegExp implementation.
420   Handle<FixedArray> regexp(FixedArray::cast(jsregexp->data()));
421 
422 #ifdef V8_NATIVE_REGEXP
423 
424   OffsetsVector captures(number_of_capture_registers);
425   int* captures_vector = captures.vector();
426   NativeRegExpMacroAssembler::Result res;
427   do {
428     bool is_ascii = subject->IsAsciiRepresentation();
429     if (!EnsureCompiledIrregexp(jsregexp, is_ascii)) {
430       return Handle<Object>::null();
431     }
432     Handle<Code> code(RegExpImpl::IrregexpNativeCode(*regexp, is_ascii));
433     res = NativeRegExpMacroAssembler::Match(code,
434                                             subject,
435                                             captures_vector,
436                                             captures.length(),
437                                             previous_index);
438     // If result is RETRY, the string have changed representation, and we
439     // must restart from scratch.
440   } while (res == NativeRegExpMacroAssembler::RETRY);
441   if (res == NativeRegExpMacroAssembler::EXCEPTION) {
442     ASSERT(Top::has_pending_exception());
443     return Handle<Object>::null();
444   }
445   ASSERT(res == NativeRegExpMacroAssembler::SUCCESS
446       || res == NativeRegExpMacroAssembler::FAILURE);
447 
448   if (res != NativeRegExpMacroAssembler::SUCCESS) return Factory::null_value();
449 
450   array = Handle<FixedArray>(FixedArray::cast(last_match_info->elements()));
451   ASSERT(array->length() >= number_of_capture_registers + kLastMatchOverhead);
452   // The captures come in (start, end+1) pairs.
453   for (int i = 0; i < number_of_capture_registers; i += 2) {
454     SetCapture(*array, i, captures_vector[i]);
455     SetCapture(*array, i + 1, captures_vector[i + 1]);
456   }
457 
458 #else  // ! V8_NATIVE_REGEXP
459 
460   bool is_ascii = subject->IsAsciiRepresentation();
461   if (!EnsureCompiledIrregexp(jsregexp, is_ascii)) {
462     return Handle<Object>::null();
463   }
464   // Now that we have done EnsureCompiledIrregexp we can get the number of
465   // registers.
466   int number_of_registers =
467       IrregexpNumberOfRegisters(FixedArray::cast(jsregexp->data()));
468   OffsetsVector registers(number_of_registers);
469   int* register_vector = registers.vector();
470   for (int i = number_of_capture_registers - 1; i >= 0; i--) {
471     register_vector[i] = -1;
472   }
473   Handle<ByteArray> byte_codes(IrregexpByteCode(*regexp, is_ascii));
474 
475   if (!IrregexpInterpreter::Match(byte_codes,
476                                   subject,
477                                   register_vector,
478                                   previous_index)) {
479     return Factory::null_value();
480   }
481 
482   array = Handle<FixedArray>(FixedArray::cast(last_match_info->elements()));
483   ASSERT(array->length() >= number_of_capture_registers + kLastMatchOverhead);
484   // The captures come in (start, end+1) pairs.
485   for (int i = 0; i < number_of_capture_registers; i += 2) {
486     SetCapture(*array, i, register_vector[i]);
487     SetCapture(*array, i + 1, register_vector[i + 1]);
488   }
489 
490 #endif  // V8_NATIVE_REGEXP
491 
492   SetLastCaptureCount(*array, number_of_capture_registers);
493   SetLastSubject(*array, *subject);
494   SetLastInput(*array, *subject);
495 
496   return last_match_info;
497 }
498 
499 
500 // -------------------------------------------------------------------
501 // Implementation of the Irregexp regular expression engine.
502 //
503 // The Irregexp regular expression engine is intended to be a complete
504 // implementation of ECMAScript regular expressions.  It generates either
505 // bytecodes or native code.
506 
507 //   The Irregexp regexp engine is structured in three steps.
508 //   1) The parser generates an abstract syntax tree.  See ast.cc.
509 //   2) From the AST a node network is created.  The nodes are all
510 //      subclasses of RegExpNode.  The nodes represent states when
511 //      executing a regular expression.  Several optimizations are
512 //      performed on the node network.
513 //   3) From the nodes we generate either byte codes or native code
514 //      that can actually execute the regular expression (perform
515 //      the search).  The code generation step is described in more
516 //      detail below.
517 
518 // Code generation.
519 //
520 //   The nodes are divided into four main categories.
521 //   * Choice nodes
522 //        These represent places where the regular expression can
523 //        match in more than one way.  For example on entry to an
524 //        alternation (foo|bar) or a repetition (*, +, ? or {}).
525 //   * Action nodes
526 //        These represent places where some action should be
527 //        performed.  Examples include recording the current position
528 //        in the input string to a register (in order to implement
529 //        captures) or other actions on register for example in order
530 //        to implement the counters needed for {} repetitions.
531 //   * Matching nodes
532 //        These attempt to match some element part of the input string.
533 //        Examples of elements include character classes, plain strings
534 //        or back references.
535 //   * End nodes
536 //        These are used to implement the actions required on finding
537 //        a successful match or failing to find a match.
538 //
539 //   The code generated (whether as byte codes or native code) maintains
540 //   some state as it runs.  This consists of the following elements:
541 //
542 //   * The capture registers.  Used for string captures.
543 //   * Other registers.  Used for counters etc.
544 //   * The current position.
545 //   * The stack of backtracking information.  Used when a matching node
546 //     fails to find a match and needs to try an alternative.
547 //
548 // Conceptual regular expression execution model:
549 //
550 //   There is a simple conceptual model of regular expression execution
551 //   which will be presented first.  The actual code generated is a more
552 //   efficient simulation of the simple conceptual model:
553 //
554 //   * Choice nodes are implemented as follows:
555 //     For each choice except the last {
556 //       push current position
557 //       push backtrack code location
558 //       <generate code to test for choice>
559 //       backtrack code location:
560 //       pop current position
561 //     }
562 //     <generate code to test for last choice>
563 //
564 //   * Actions nodes are generated as follows
565 //     <push affected registers on backtrack stack>
566 //     <generate code to perform action>
567 //     push backtrack code location
568 //     <generate code to test for following nodes>
569 //     backtrack code location:
570 //     <pop affected registers to restore their state>
571 //     <pop backtrack location from stack and go to it>
572 //
573 //   * Matching nodes are generated as follows:
574 //     if input string matches at current position
575 //       update current position
576 //       <generate code to test for following nodes>
577 //     else
578 //       <pop backtrack location from stack and go to it>
579 //
580 //   Thus it can be seen that the current position is saved and restored
581 //   by the choice nodes, whereas the registers are saved and restored by
582 //   by the action nodes that manipulate them.
583 //
584 //   The other interesting aspect of this model is that nodes are generated
585 //   at the point where they are needed by a recursive call to Emit().  If
586 //   the node has already been code generated then the Emit() call will
587 //   generate a jump to the previously generated code instead.  In order to
588 //   limit recursion it is possible for the Emit() function to put the node
589 //   on a work list for later generation and instead generate a jump.  The
590 //   destination of the jump is resolved later when the code is generated.
591 //
592 // Actual regular expression code generation.
593 //
594 //   Code generation is actually more complicated than the above.  In order
595 //   to improve the efficiency of the generated code some optimizations are
596 //   performed
597 //
598 //   * Choice nodes have 1-character lookahead.
599 //     A choice node looks at the following character and eliminates some of
600 //     the choices immediately based on that character.  This is not yet
601 //     implemented.
602 //   * Simple greedy loops store reduced backtracking information.
603 //     A quantifier like /.*foo/m will greedily match the whole input.  It will
604 //     then need to backtrack to a point where it can match "foo".  The naive
605 //     implementation of this would push each character position onto the
606 //     backtracking stack, then pop them off one by one.  This would use space
607 //     proportional to the length of the input string.  However since the "."
608 //     can only match in one way and always has a constant length (in this case
609 //     of 1) it suffices to store the current position on the top of the stack
610 //     once.  Matching now becomes merely incrementing the current position and
611 //     backtracking becomes decrementing the current position and checking the
612 //     result against the stored current position.  This is faster and saves
613 //     space.
614 //   * The current state is virtualized.
615 //     This is used to defer expensive operations until it is clear that they
616 //     are needed and to generate code for a node more than once, allowing
617 //     specialized an efficient versions of the code to be created. This is
618 //     explained in the section below.
619 //
620 // Execution state virtualization.
621 //
622 //   Instead of emitting code, nodes that manipulate the state can record their
623 //   manipulation in an object called the Trace.  The Trace object can record a
624 //   current position offset, an optional backtrack code location on the top of
625 //   the virtualized backtrack stack and some register changes.  When a node is
626 //   to be emitted it can flush the Trace or update it.  Flushing the Trace
627 //   will emit code to bring the actual state into line with the virtual state.
628 //   Avoiding flushing the state can postpone some work (eg updates of capture
629 //   registers).  Postponing work can save time when executing the regular
630 //   expression since it may be found that the work never has to be done as a
631 //   failure to match can occur.  In addition it is much faster to jump to a
632 //   known backtrack code location than it is to pop an unknown backtrack
633 //   location from the stack and jump there.
634 //
635 //   The virtual state found in the Trace affects code generation.  For example
636 //   the virtual state contains the difference between the actual current
637 //   position and the virtual current position, and matching code needs to use
638 //   this offset to attempt a match in the correct location of the input
639 //   string.  Therefore code generated for a non-trivial trace is specialized
640 //   to that trace.  The code generator therefore has the ability to generate
641 //   code for each node several times.  In order to limit the size of the
642 //   generated code there is an arbitrary limit on how many specialized sets of
643 //   code may be generated for a given node.  If the limit is reached, the
644 //   trace is flushed and a generic version of the code for a node is emitted.
645 //   This is subsequently used for that node.  The code emitted for non-generic
646 //   trace is not recorded in the node and so it cannot currently be reused in
647 //   the event that code generation is requested for an identical trace.
648 
649 
AppendToText(RegExpText * text)650 void RegExpTree::AppendToText(RegExpText* text) {
651   UNREACHABLE();
652 }
653 
654 
AppendToText(RegExpText * text)655 void RegExpAtom::AppendToText(RegExpText* text) {
656   text->AddElement(TextElement::Atom(this));
657 }
658 
659 
AppendToText(RegExpText * text)660 void RegExpCharacterClass::AppendToText(RegExpText* text) {
661   text->AddElement(TextElement::CharClass(this));
662 }
663 
664 
AppendToText(RegExpText * text)665 void RegExpText::AppendToText(RegExpText* text) {
666   for (int i = 0; i < elements()->length(); i++)
667     text->AddElement(elements()->at(i));
668 }
669 
670 
Atom(RegExpAtom * atom)671 TextElement TextElement::Atom(RegExpAtom* atom) {
672   TextElement result = TextElement(ATOM);
673   result.data.u_atom = atom;
674   return result;
675 }
676 
677 
CharClass(RegExpCharacterClass * char_class)678 TextElement TextElement::CharClass(
679       RegExpCharacterClass* char_class) {
680   TextElement result = TextElement(CHAR_CLASS);
681   result.data.u_char_class = char_class;
682   return result;
683 }
684 
685 
length()686 int TextElement::length() {
687   if (type == ATOM) {
688     return data.u_atom->length();
689   } else {
690     ASSERT(type == CHAR_CLASS);
691     return 1;
692   }
693 }
694 
695 
GetTable(bool ignore_case)696 DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
697   if (table_ == NULL) {
698     table_ = new DispatchTable();
699     DispatchTableConstructor cons(table_, ignore_case);
700     cons.BuildTable(this);
701   }
702   return table_;
703 }
704 
705 
706 class RegExpCompiler {
707  public:
708   RegExpCompiler(int capture_count, bool ignore_case, bool is_ascii);
709 
AllocateRegister()710   int AllocateRegister() {
711     if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
712       reg_exp_too_big_ = true;
713       return next_register_;
714     }
715     return next_register_++;
716   }
717 
718   RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
719                                            RegExpNode* start,
720                                            int capture_count,
721                                            Handle<String> pattern);
722 
AddWork(RegExpNode * node)723   inline void AddWork(RegExpNode* node) { work_list_->Add(node); }
724 
725   static const int kImplementationOffset = 0;
726   static const int kNumberOfRegistersOffset = 0;
727   static const int kCodeOffset = 1;
728 
macro_assembler()729   RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
accept()730   EndNode* accept() { return accept_; }
731 
732   static const int kMaxRecursion = 100;
recursion_depth()733   inline int recursion_depth() { return recursion_depth_; }
IncrementRecursionDepth()734   inline void IncrementRecursionDepth() { recursion_depth_++; }
DecrementRecursionDepth()735   inline void DecrementRecursionDepth() { recursion_depth_--; }
736 
SetRegExpTooBig()737   void SetRegExpTooBig() { reg_exp_too_big_ = true; }
738 
ignore_case()739   inline bool ignore_case() { return ignore_case_; }
ascii()740   inline bool ascii() { return ascii_; }
741 
742   static const int kNoRegister = -1;
743  private:
744   EndNode* accept_;
745   int next_register_;
746   List<RegExpNode*>* work_list_;
747   int recursion_depth_;
748   RegExpMacroAssembler* macro_assembler_;
749   bool ignore_case_;
750   bool ascii_;
751   bool reg_exp_too_big_;
752 };
753 
754 
755 class RecursionCheck {
756  public:
RecursionCheck(RegExpCompiler * compiler)757   explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
758     compiler->IncrementRecursionDepth();
759   }
~RecursionCheck()760   ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
761  private:
762   RegExpCompiler* compiler_;
763 };
764 
765 
IrregexpRegExpTooBig()766 static RegExpEngine::CompilationResult IrregexpRegExpTooBig() {
767   return RegExpEngine::CompilationResult("RegExp too big");
768 }
769 
770 
771 // Attempts to compile the regexp using an Irregexp code generator.  Returns
772 // a fixed array or a null handle depending on whether it succeeded.
RegExpCompiler(int capture_count,bool ignore_case,bool ascii)773 RegExpCompiler::RegExpCompiler(int capture_count, bool ignore_case, bool ascii)
774     : next_register_(2 * (capture_count + 1)),
775       work_list_(NULL),
776       recursion_depth_(0),
777       ignore_case_(ignore_case),
778       ascii_(ascii),
779       reg_exp_too_big_(false) {
780   accept_ = new EndNode(EndNode::ACCEPT);
781   ASSERT(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
782 }
783 
784 
Assemble(RegExpMacroAssembler * macro_assembler,RegExpNode * start,int capture_count,Handle<String> pattern)785 RegExpEngine::CompilationResult RegExpCompiler::Assemble(
786     RegExpMacroAssembler* macro_assembler,
787     RegExpNode* start,
788     int capture_count,
789     Handle<String> pattern) {
790 #ifdef DEBUG
791   if (FLAG_trace_regexp_assembler)
792     macro_assembler_ = new RegExpMacroAssemblerTracer(macro_assembler);
793   else
794 #endif
795     macro_assembler_ = macro_assembler;
796   List <RegExpNode*> work_list(0);
797   work_list_ = &work_list;
798   Label fail;
799   macro_assembler_->PushBacktrack(&fail);
800   Trace new_trace;
801   start->Emit(this, &new_trace);
802   macro_assembler_->Bind(&fail);
803   macro_assembler_->Fail();
804   while (!work_list.is_empty()) {
805     work_list.RemoveLast()->Emit(this, &new_trace);
806   }
807   if (reg_exp_too_big_) return IrregexpRegExpTooBig();
808 
809   Handle<Object> code = macro_assembler_->GetCode(pattern);
810 
811   work_list_ = NULL;
812 #ifdef DEBUG
813   if (FLAG_trace_regexp_assembler) {
814     delete macro_assembler_;
815   }
816 #endif
817   return RegExpEngine::CompilationResult(*code, next_register_);
818 }
819 
820 
Mentions(int that)821 bool Trace::DeferredAction::Mentions(int that) {
822   if (type() == ActionNode::CLEAR_CAPTURES) {
823     Interval range = static_cast<DeferredClearCaptures*>(this)->range();
824     return range.Contains(that);
825   } else {
826     return reg() == that;
827   }
828 }
829 
830 
mentions_reg(int reg)831 bool Trace::mentions_reg(int reg) {
832   for (DeferredAction* action = actions_;
833        action != NULL;
834        action = action->next()) {
835     if (action->Mentions(reg))
836       return true;
837   }
838   return false;
839 }
840 
841 
GetStoredPosition(int reg,int * cp_offset)842 bool Trace::GetStoredPosition(int reg, int* cp_offset) {
843   ASSERT_EQ(0, *cp_offset);
844   for (DeferredAction* action = actions_;
845        action != NULL;
846        action = action->next()) {
847     if (action->Mentions(reg)) {
848       if (action->type() == ActionNode::STORE_POSITION) {
849         *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
850         return true;
851       } else {
852         return false;
853       }
854     }
855   }
856   return false;
857 }
858 
859 
FindAffectedRegisters(OutSet * affected_registers)860 int Trace::FindAffectedRegisters(OutSet* affected_registers) {
861   int max_register = RegExpCompiler::kNoRegister;
862   for (DeferredAction* action = actions_;
863        action != NULL;
864        action = action->next()) {
865     if (action->type() == ActionNode::CLEAR_CAPTURES) {
866       Interval range = static_cast<DeferredClearCaptures*>(action)->range();
867       for (int i = range.from(); i <= range.to(); i++)
868         affected_registers->Set(i);
869       if (range.to() > max_register) max_register = range.to();
870     } else {
871       affected_registers->Set(action->reg());
872       if (action->reg() > max_register) max_register = action->reg();
873     }
874   }
875   return max_register;
876 }
877 
878 
RestoreAffectedRegisters(RegExpMacroAssembler * assembler,int max_register,OutSet & registers_to_pop,OutSet & registers_to_clear)879 void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
880                                      int max_register,
881                                      OutSet& registers_to_pop,
882                                      OutSet& registers_to_clear) {
883   for (int reg = max_register; reg >= 0; reg--) {
884     if (registers_to_pop.Get(reg)) assembler->PopRegister(reg);
885     else if (registers_to_clear.Get(reg)) {
886       int clear_to = reg;
887       while (reg > 0 && registers_to_clear.Get(reg - 1)) {
888         reg--;
889       }
890       assembler->ClearRegisters(reg, clear_to);
891     }
892   }
893 }
894 
895 
PerformDeferredActions(RegExpMacroAssembler * assembler,int max_register,OutSet & affected_registers,OutSet * registers_to_pop,OutSet * registers_to_clear)896 void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
897                                    int max_register,
898                                    OutSet& affected_registers,
899                                    OutSet* registers_to_pop,
900                                    OutSet* registers_to_clear) {
901   // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
902   const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
903 
904   // Count pushes performed to force a stack limit check occasionally.
905   int pushes = 0;
906 
907   for (int reg = 0; reg <= max_register; reg++) {
908     if (!affected_registers.Get(reg)) {
909       continue;
910     }
911 
912     // The chronologically first deferred action in the trace
913     // is used to infer the action needed to restore a register
914     // to its previous state (or not, if it's safe to ignore it).
915     enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
916     DeferredActionUndoType undo_action = IGNORE;
917 
918     int value = 0;
919     bool absolute = false;
920     bool clear = false;
921     int store_position = -1;
922     // This is a little tricky because we are scanning the actions in reverse
923     // historical order (newest first).
924     for (DeferredAction* action = actions_;
925          action != NULL;
926          action = action->next()) {
927       if (action->Mentions(reg)) {
928         switch (action->type()) {
929           case ActionNode::SET_REGISTER: {
930             Trace::DeferredSetRegister* psr =
931                 static_cast<Trace::DeferredSetRegister*>(action);
932             if (!absolute) {
933               value += psr->value();
934               absolute = true;
935             }
936             // SET_REGISTER is currently only used for newly introduced loop
937             // counters. They can have a significant previous value if they
938             // occour in a loop. TODO(lrn): Propagate this information, so
939             // we can set undo_action to IGNORE if we know there is no value to
940             // restore.
941             undo_action = RESTORE;
942             ASSERT_EQ(store_position, -1);
943             ASSERT(!clear);
944             break;
945           }
946           case ActionNode::INCREMENT_REGISTER:
947             if (!absolute) {
948               value++;
949             }
950             ASSERT_EQ(store_position, -1);
951             ASSERT(!clear);
952             undo_action = RESTORE;
953             break;
954           case ActionNode::STORE_POSITION: {
955             Trace::DeferredCapture* pc =
956                 static_cast<Trace::DeferredCapture*>(action);
957             if (!clear && store_position == -1) {
958               store_position = pc->cp_offset();
959             }
960 
961             // For captures we know that stores and clears alternate.
962             // Other register, are never cleared, and if the occur
963             // inside a loop, they might be assigned more than once.
964             if (reg <= 1) {
965               // Registers zero and one, aka "capture zero", is
966               // always set correctly if we succeed. There is no
967               // need to undo a setting on backtrack, because we
968               // will set it again or fail.
969               undo_action = IGNORE;
970             } else {
971               undo_action = pc->is_capture() ? CLEAR : RESTORE;
972             }
973             ASSERT(!absolute);
974             ASSERT_EQ(value, 0);
975             break;
976           }
977           case ActionNode::CLEAR_CAPTURES: {
978             // Since we're scanning in reverse order, if we've already
979             // set the position we have to ignore historically earlier
980             // clearing operations.
981             if (store_position == -1) {
982               clear = true;
983             }
984             undo_action = RESTORE;
985             ASSERT(!absolute);
986             ASSERT_EQ(value, 0);
987             break;
988           }
989           default:
990             UNREACHABLE();
991             break;
992         }
993       }
994     }
995     // Prepare for the undo-action (e.g., push if it's going to be popped).
996     if (undo_action == RESTORE) {
997       pushes++;
998       RegExpMacroAssembler::StackCheckFlag stack_check =
999           RegExpMacroAssembler::kNoStackLimitCheck;
1000       if (pushes == push_limit) {
1001         stack_check = RegExpMacroAssembler::kCheckStackLimit;
1002         pushes = 0;
1003       }
1004 
1005       assembler->PushRegister(reg, stack_check);
1006       registers_to_pop->Set(reg);
1007     } else if (undo_action == CLEAR) {
1008       registers_to_clear->Set(reg);
1009     }
1010     // Perform the chronologically last action (or accumulated increment)
1011     // for the register.
1012     if (store_position != -1) {
1013       assembler->WriteCurrentPositionToRegister(reg, store_position);
1014     } else if (clear) {
1015       assembler->ClearRegisters(reg, reg);
1016     } else if (absolute) {
1017       assembler->SetRegister(reg, value);
1018     } else if (value != 0) {
1019       assembler->AdvanceRegister(reg, value);
1020     }
1021   }
1022 }
1023 
1024 
1025 // This is called as we come into a loop choice node and some other tricky
1026 // nodes.  It normalizes the state of the code generator to ensure we can
1027 // generate generic code.
Flush(RegExpCompiler * compiler,RegExpNode * successor)1028 void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
1029   RegExpMacroAssembler* assembler = compiler->macro_assembler();
1030 
1031   ASSERT(!is_trivial());
1032 
1033   if (actions_ == NULL && backtrack() == NULL) {
1034     // Here we just have some deferred cp advances to fix and we are back to
1035     // a normal situation.  We may also have to forget some information gained
1036     // through a quick check that was already performed.
1037     if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
1038     // Create a new trivial state and generate the node with that.
1039     Trace new_state;
1040     successor->Emit(compiler, &new_state);
1041     return;
1042   }
1043 
1044   // Generate deferred actions here along with code to undo them again.
1045   OutSet affected_registers;
1046 
1047   if (backtrack() != NULL) {
1048     // Here we have a concrete backtrack location.  These are set up by choice
1049     // nodes and so they indicate that we have a deferred save of the current
1050     // position which we may need to emit here.
1051     assembler->PushCurrentPosition();
1052   }
1053 
1054   int max_register = FindAffectedRegisters(&affected_registers);
1055   OutSet registers_to_pop;
1056   OutSet registers_to_clear;
1057   PerformDeferredActions(assembler,
1058                          max_register,
1059                          affected_registers,
1060                          &registers_to_pop,
1061                          &registers_to_clear);
1062   if (cp_offset_ != 0) {
1063     assembler->AdvanceCurrentPosition(cp_offset_);
1064   }
1065 
1066   // Create a new trivial state and generate the node with that.
1067   Label undo;
1068   assembler->PushBacktrack(&undo);
1069   Trace new_state;
1070   successor->Emit(compiler, &new_state);
1071 
1072   // On backtrack we need to restore state.
1073   assembler->Bind(&undo);
1074   RestoreAffectedRegisters(assembler,
1075                            max_register,
1076                            registers_to_pop,
1077                            registers_to_clear);
1078   if (backtrack() == NULL) {
1079     assembler->Backtrack();
1080   } else {
1081     assembler->PopCurrentPosition();
1082     assembler->GoTo(backtrack());
1083   }
1084 }
1085 
1086 
Emit(RegExpCompiler * compiler,Trace * trace)1087 void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
1088   RegExpMacroAssembler* assembler = compiler->macro_assembler();
1089 
1090   // Omit flushing the trace. We discard the entire stack frame anyway.
1091 
1092   if (!label()->is_bound()) {
1093     // We are completely independent of the trace, since we ignore it,
1094     // so this code can be used as the generic version.
1095     assembler->Bind(label());
1096   }
1097 
1098   // Throw away everything on the backtrack stack since the start
1099   // of the negative submatch and restore the character position.
1100   assembler->ReadCurrentPositionFromRegister(current_position_register_);
1101   assembler->ReadStackPointerFromRegister(stack_pointer_register_);
1102   if (clear_capture_count_ > 0) {
1103     // Clear any captures that might have been performed during the success
1104     // of the body of the negative look-ahead.
1105     int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
1106     assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
1107   }
1108   // Now that we have unwound the stack we find at the top of the stack the
1109   // backtrack that the BeginSubmatch node got.
1110   assembler->Backtrack();
1111 }
1112 
1113 
Emit(RegExpCompiler * compiler,Trace * trace)1114 void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
1115   if (!trace->is_trivial()) {
1116     trace->Flush(compiler, this);
1117     return;
1118   }
1119   RegExpMacroAssembler* assembler = compiler->macro_assembler();
1120   if (!label()->is_bound()) {
1121     assembler->Bind(label());
1122   }
1123   switch (action_) {
1124     case ACCEPT:
1125       assembler->Succeed();
1126       return;
1127     case BACKTRACK:
1128       assembler->GoTo(trace->backtrack());
1129       return;
1130     case NEGATIVE_SUBMATCH_SUCCESS:
1131       // This case is handled in a different virtual method.
1132       UNREACHABLE();
1133   }
1134   UNIMPLEMENTED();
1135 }
1136 
1137 
AddGuard(Guard * guard)1138 void GuardedAlternative::AddGuard(Guard* guard) {
1139   if (guards_ == NULL)
1140     guards_ = new ZoneList<Guard*>(1);
1141   guards_->Add(guard);
1142 }
1143 
1144 
SetRegister(int reg,int val,RegExpNode * on_success)1145 ActionNode* ActionNode::SetRegister(int reg,
1146                                     int val,
1147                                     RegExpNode* on_success) {
1148   ActionNode* result = new ActionNode(SET_REGISTER, on_success);
1149   result->data_.u_store_register.reg = reg;
1150   result->data_.u_store_register.value = val;
1151   return result;
1152 }
1153 
1154 
IncrementRegister(int reg,RegExpNode * on_success)1155 ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
1156   ActionNode* result = new ActionNode(INCREMENT_REGISTER, on_success);
1157   result->data_.u_increment_register.reg = reg;
1158   return result;
1159 }
1160 
1161 
StorePosition(int reg,bool is_capture,RegExpNode * on_success)1162 ActionNode* ActionNode::StorePosition(int reg,
1163                                       bool is_capture,
1164                                       RegExpNode* on_success) {
1165   ActionNode* result = new ActionNode(STORE_POSITION, on_success);
1166   result->data_.u_position_register.reg = reg;
1167   result->data_.u_position_register.is_capture = is_capture;
1168   return result;
1169 }
1170 
1171 
ClearCaptures(Interval range,RegExpNode * on_success)1172 ActionNode* ActionNode::ClearCaptures(Interval range,
1173                                       RegExpNode* on_success) {
1174   ActionNode* result = new ActionNode(CLEAR_CAPTURES, on_success);
1175   result->data_.u_clear_captures.range_from = range.from();
1176   result->data_.u_clear_captures.range_to = range.to();
1177   return result;
1178 }
1179 
1180 
BeginSubmatch(int stack_reg,int position_reg,RegExpNode * on_success)1181 ActionNode* ActionNode::BeginSubmatch(int stack_reg,
1182                                       int position_reg,
1183                                       RegExpNode* on_success) {
1184   ActionNode* result = new ActionNode(BEGIN_SUBMATCH, on_success);
1185   result->data_.u_submatch.stack_pointer_register = stack_reg;
1186   result->data_.u_submatch.current_position_register = position_reg;
1187   return result;
1188 }
1189 
1190 
PositiveSubmatchSuccess(int stack_reg,int position_reg,int clear_register_count,int clear_register_from,RegExpNode * on_success)1191 ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
1192                                                 int position_reg,
1193                                                 int clear_register_count,
1194                                                 int clear_register_from,
1195                                                 RegExpNode* on_success) {
1196   ActionNode* result = new ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
1197   result->data_.u_submatch.stack_pointer_register = stack_reg;
1198   result->data_.u_submatch.current_position_register = position_reg;
1199   result->data_.u_submatch.clear_register_count = clear_register_count;
1200   result->data_.u_submatch.clear_register_from = clear_register_from;
1201   return result;
1202 }
1203 
1204 
EmptyMatchCheck(int start_register,int repetition_register,int repetition_limit,RegExpNode * on_success)1205 ActionNode* ActionNode::EmptyMatchCheck(int start_register,
1206                                         int repetition_register,
1207                                         int repetition_limit,
1208                                         RegExpNode* on_success) {
1209   ActionNode* result = new ActionNode(EMPTY_MATCH_CHECK, on_success);
1210   result->data_.u_empty_match_check.start_register = start_register;
1211   result->data_.u_empty_match_check.repetition_register = repetition_register;
1212   result->data_.u_empty_match_check.repetition_limit = repetition_limit;
1213   return result;
1214 }
1215 
1216 
1217 #define DEFINE_ACCEPT(Type)                                          \
1218   void Type##Node::Accept(NodeVisitor* visitor) {                    \
1219     visitor->Visit##Type(this);                                      \
1220   }
FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)1221 FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
1222 #undef DEFINE_ACCEPT
1223 
1224 
1225 void LoopChoiceNode::Accept(NodeVisitor* visitor) {
1226   visitor->VisitLoopChoice(this);
1227 }
1228 
1229 
1230 // -------------------------------------------------------------------
1231 // Emit code.
1232 
1233 
GenerateGuard(RegExpMacroAssembler * macro_assembler,Guard * guard,Trace * trace)1234 void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
1235                                Guard* guard,
1236                                Trace* trace) {
1237   switch (guard->op()) {
1238     case Guard::LT:
1239       ASSERT(!trace->mentions_reg(guard->reg()));
1240       macro_assembler->IfRegisterGE(guard->reg(),
1241                                     guard->value(),
1242                                     trace->backtrack());
1243       break;
1244     case Guard::GEQ:
1245       ASSERT(!trace->mentions_reg(guard->reg()));
1246       macro_assembler->IfRegisterLT(guard->reg(),
1247                                     guard->value(),
1248                                     trace->backtrack());
1249       break;
1250   }
1251 }
1252 
1253 
1254 static unibrow::Mapping<unibrow::Ecma262UnCanonicalize> uncanonicalize;
1255 static unibrow::Mapping<unibrow::CanonicalizationRange> canonrange;
1256 
1257 
1258 // Returns the number of characters in the equivalence class, omitting those
1259 // that cannot occur in the source string because it is ASCII.
GetCaseIndependentLetters(uc16 character,bool ascii_subject,unibrow::uchar * letters)1260 static int GetCaseIndependentLetters(uc16 character,
1261                                      bool ascii_subject,
1262                                      unibrow::uchar* letters) {
1263   int length = uncanonicalize.get(character, '\0', letters);
1264   // Unibrow returns 0 or 1 for characters where case independependence is
1265   // trivial.
1266   if (length == 0) {
1267     letters[0] = character;
1268     length = 1;
1269   }
1270   if (!ascii_subject || character <= String::kMaxAsciiCharCode) {
1271     return length;
1272   }
1273   // The standard requires that non-ASCII characters cannot have ASCII
1274   // character codes in their equivalence class.
1275   return 0;
1276 }
1277 
1278 
EmitSimpleCharacter(RegExpCompiler * compiler,uc16 c,Label * on_failure,int cp_offset,bool check,bool preloaded)1279 static inline bool EmitSimpleCharacter(RegExpCompiler* compiler,
1280                                        uc16 c,
1281                                        Label* on_failure,
1282                                        int cp_offset,
1283                                        bool check,
1284                                        bool preloaded) {
1285   RegExpMacroAssembler* assembler = compiler->macro_assembler();
1286   bool bound_checked = false;
1287   if (!preloaded) {
1288     assembler->LoadCurrentCharacter(
1289         cp_offset,
1290         on_failure,
1291         check);
1292     bound_checked = true;
1293   }
1294   assembler->CheckNotCharacter(c, on_failure);
1295   return bound_checked;
1296 }
1297 
1298 
1299 // Only emits non-letters (things that don't have case).  Only used for case
1300 // independent matches.
EmitAtomNonLetter(RegExpCompiler * compiler,uc16 c,Label * on_failure,int cp_offset,bool check,bool preloaded)1301 static inline bool EmitAtomNonLetter(RegExpCompiler* compiler,
1302                                      uc16 c,
1303                                      Label* on_failure,
1304                                      int cp_offset,
1305                                      bool check,
1306                                      bool preloaded) {
1307   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
1308   bool ascii = compiler->ascii();
1309   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
1310   int length = GetCaseIndependentLetters(c, ascii, chars);
1311   if (length < 1) {
1312     // This can't match.  Must be an ASCII subject and a non-ASCII character.
1313     // We do not need to do anything since the ASCII pass already handled this.
1314     return false;  // Bounds not checked.
1315   }
1316   bool checked = false;
1317   // We handle the length > 1 case in a later pass.
1318   if (length == 1) {
1319     if (ascii && c > String::kMaxAsciiCharCodeU) {
1320       // Can't match - see above.
1321       return false;  // Bounds not checked.
1322     }
1323     if (!preloaded) {
1324       macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
1325       checked = check;
1326     }
1327     macro_assembler->CheckNotCharacter(c, on_failure);
1328   }
1329   return checked;
1330 }
1331 
1332 
ShortCutEmitCharacterPair(RegExpMacroAssembler * macro_assembler,bool ascii,uc16 c1,uc16 c2,Label * on_failure)1333 static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
1334                                       bool ascii,
1335                                       uc16 c1,
1336                                       uc16 c2,
1337                                       Label* on_failure) {
1338   uc16 char_mask;
1339   if (ascii) {
1340     char_mask = String::kMaxAsciiCharCode;
1341   } else {
1342     char_mask = String::kMaxUC16CharCode;
1343   }
1344   uc16 exor = c1 ^ c2;
1345   // Check whether exor has only one bit set.
1346   if (((exor - 1) & exor) == 0) {
1347     // If c1 and c2 differ only by one bit.
1348     // Ecma262UnCanonicalize always gives the highest number last.
1349     ASSERT(c2 > c1);
1350     uc16 mask = char_mask ^ exor;
1351     macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
1352     return true;
1353   }
1354   ASSERT(c2 > c1);
1355   uc16 diff = c2 - c1;
1356   if (((diff - 1) & diff) == 0 && c1 >= diff) {
1357     // If the characters differ by 2^n but don't differ by one bit then
1358     // subtract the difference from the found character, then do the or
1359     // trick.  We avoid the theoretical case where negative numbers are
1360     // involved in order to simplify code generation.
1361     uc16 mask = char_mask ^ diff;
1362     macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
1363                                                     diff,
1364                                                     mask,
1365                                                     on_failure);
1366     return true;
1367   }
1368   return false;
1369 }
1370 
1371 
1372 typedef bool EmitCharacterFunction(RegExpCompiler* compiler,
1373                                    uc16 c,
1374                                    Label* on_failure,
1375                                    int cp_offset,
1376                                    bool check,
1377                                    bool preloaded);
1378 
1379 // Only emits letters (things that have case).  Only used for case independent
1380 // matches.
EmitAtomLetter(RegExpCompiler * compiler,uc16 c,Label * on_failure,int cp_offset,bool check,bool preloaded)1381 static inline bool EmitAtomLetter(RegExpCompiler* compiler,
1382                                   uc16 c,
1383                                   Label* on_failure,
1384                                   int cp_offset,
1385                                   bool check,
1386                                   bool preloaded) {
1387   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
1388   bool ascii = compiler->ascii();
1389   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
1390   int length = GetCaseIndependentLetters(c, ascii, chars);
1391   if (length <= 1) return false;
1392   // We may not need to check against the end of the input string
1393   // if this character lies before a character that matched.
1394   if (!preloaded) {
1395     macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
1396   }
1397   Label ok;
1398   ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
1399   switch (length) {
1400     case 2: {
1401       if (ShortCutEmitCharacterPair(macro_assembler,
1402                                     ascii,
1403                                     chars[0],
1404                                     chars[1],
1405                                     on_failure)) {
1406       } else {
1407         macro_assembler->CheckCharacter(chars[0], &ok);
1408         macro_assembler->CheckNotCharacter(chars[1], on_failure);
1409         macro_assembler->Bind(&ok);
1410       }
1411       break;
1412     }
1413     case 4:
1414       macro_assembler->CheckCharacter(chars[3], &ok);
1415       // Fall through!
1416     case 3:
1417       macro_assembler->CheckCharacter(chars[0], &ok);
1418       macro_assembler->CheckCharacter(chars[1], &ok);
1419       macro_assembler->CheckNotCharacter(chars[2], on_failure);
1420       macro_assembler->Bind(&ok);
1421       break;
1422     default:
1423       UNREACHABLE();
1424       break;
1425   }
1426   return true;
1427 }
1428 
1429 
EmitCharClass(RegExpMacroAssembler * macro_assembler,RegExpCharacterClass * cc,bool ascii,Label * on_failure,int cp_offset,bool check_offset,bool preloaded)1430 static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
1431                           RegExpCharacterClass* cc,
1432                           bool ascii,
1433                           Label* on_failure,
1434                           int cp_offset,
1435                           bool check_offset,
1436                           bool preloaded) {
1437   if (cc->is_standard() &&
1438       macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
1439                                                   cp_offset,
1440                                                   check_offset,
1441                                                   on_failure)) {
1442     return;
1443   }
1444 
1445   ZoneList<CharacterRange>* ranges = cc->ranges();
1446   int max_char;
1447   if (ascii) {
1448     max_char = String::kMaxAsciiCharCode;
1449   } else {
1450     max_char = String::kMaxUC16CharCode;
1451   }
1452 
1453   Label success;
1454 
1455   Label* char_is_in_class =
1456       cc->is_negated() ? on_failure : &success;
1457 
1458   int range_count = ranges->length();
1459 
1460   int last_valid_range = range_count - 1;
1461   while (last_valid_range >= 0) {
1462     CharacterRange& range = ranges->at(last_valid_range);
1463     if (range.from() <= max_char) {
1464       break;
1465     }
1466     last_valid_range--;
1467   }
1468 
1469   if (last_valid_range < 0) {
1470     if (!cc->is_negated()) {
1471       // TODO(plesner): We can remove this when the node level does our
1472       // ASCII optimizations for us.
1473       macro_assembler->GoTo(on_failure);
1474     }
1475     if (check_offset) {
1476       macro_assembler->CheckPosition(cp_offset, on_failure);
1477     }
1478     return;
1479   }
1480 
1481   if (last_valid_range == 0 &&
1482       !cc->is_negated() &&
1483       ranges->at(0).IsEverything(max_char)) {
1484     // This is a common case hit by non-anchored expressions.
1485     if (check_offset) {
1486       macro_assembler->CheckPosition(cp_offset, on_failure);
1487     }
1488     return;
1489   }
1490 
1491   if (!preloaded) {
1492     macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
1493   }
1494 
1495   for (int i = 0; i < last_valid_range; i++) {
1496     CharacterRange& range = ranges->at(i);
1497     Label next_range;
1498     uc16 from = range.from();
1499     uc16 to = range.to();
1500     if (from > max_char) {
1501       continue;
1502     }
1503     if (to > max_char) to = max_char;
1504     if (to == from) {
1505       macro_assembler->CheckCharacter(to, char_is_in_class);
1506     } else {
1507       if (from != 0) {
1508         macro_assembler->CheckCharacterLT(from, &next_range);
1509       }
1510       if (to != max_char) {
1511         macro_assembler->CheckCharacterLT(to + 1, char_is_in_class);
1512       } else {
1513         macro_assembler->GoTo(char_is_in_class);
1514       }
1515     }
1516     macro_assembler->Bind(&next_range);
1517   }
1518 
1519   CharacterRange& range = ranges->at(last_valid_range);
1520   uc16 from = range.from();
1521   uc16 to = range.to();
1522 
1523   if (to > max_char) to = max_char;
1524   ASSERT(to >= from);
1525 
1526   if (to == from) {
1527     if (cc->is_negated()) {
1528       macro_assembler->CheckCharacter(to, on_failure);
1529     } else {
1530       macro_assembler->CheckNotCharacter(to, on_failure);
1531     }
1532   } else {
1533     if (from != 0) {
1534       if (cc->is_negated()) {
1535         macro_assembler->CheckCharacterLT(from, &success);
1536       } else {
1537         macro_assembler->CheckCharacterLT(from, on_failure);
1538       }
1539     }
1540     if (to != String::kMaxUC16CharCode) {
1541       if (cc->is_negated()) {
1542         macro_assembler->CheckCharacterLT(to + 1, on_failure);
1543       } else {
1544         macro_assembler->CheckCharacterGT(to, on_failure);
1545       }
1546     } else {
1547       if (cc->is_negated()) {
1548         macro_assembler->GoTo(on_failure);
1549       }
1550     }
1551   }
1552   macro_assembler->Bind(&success);
1553 }
1554 
1555 
~RegExpNode()1556 RegExpNode::~RegExpNode() {
1557 }
1558 
1559 
LimitVersions(RegExpCompiler * compiler,Trace * trace)1560 RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
1561                                                   Trace* trace) {
1562   // If we are generating a greedy loop then don't stop and don't reuse code.
1563   if (trace->stop_node() != NULL) {
1564     return CONTINUE;
1565   }
1566 
1567   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
1568   if (trace->is_trivial()) {
1569     if (label_.is_bound()) {
1570       // We are being asked to generate a generic version, but that's already
1571       // been done so just go to it.
1572       macro_assembler->GoTo(&label_);
1573       return DONE;
1574     }
1575     if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) {
1576       // To avoid too deep recursion we push the node to the work queue and just
1577       // generate a goto here.
1578       compiler->AddWork(this);
1579       macro_assembler->GoTo(&label_);
1580       return DONE;
1581     }
1582     // Generate generic version of the node and bind the label for later use.
1583     macro_assembler->Bind(&label_);
1584     return CONTINUE;
1585   }
1586 
1587   // We are being asked to make a non-generic version.  Keep track of how many
1588   // non-generic versions we generate so as not to overdo it.
1589   trace_count_++;
1590   if (FLAG_regexp_optimization &&
1591       trace_count_ < kMaxCopiesCodeGenerated &&
1592       compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) {
1593     return CONTINUE;
1594   }
1595 
1596   // If we get here code has been generated for this node too many times or
1597   // recursion is too deep.  Time to switch to a generic version.  The code for
1598   // generic versions above can handle deep recursion properly.
1599   trace->Flush(compiler, this);
1600   return DONE;
1601 }
1602 
1603 
EatsAtLeast(int still_to_find,int recursion_depth)1604 int ActionNode::EatsAtLeast(int still_to_find, int recursion_depth) {
1605   if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
1606   if (type_ == POSITIVE_SUBMATCH_SUCCESS) return 0;  // Rewinds input!
1607   return on_success()->EatsAtLeast(still_to_find, recursion_depth + 1);
1608 }
1609 
1610 
EatsAtLeast(int still_to_find,int recursion_depth)1611 int AssertionNode::EatsAtLeast(int still_to_find, int recursion_depth) {
1612   if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
1613   return on_success()->EatsAtLeast(still_to_find, recursion_depth + 1);
1614 }
1615 
1616 
EatsAtLeast(int still_to_find,int recursion_depth)1617 int BackReferenceNode::EatsAtLeast(int still_to_find, int recursion_depth) {
1618   if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
1619   return on_success()->EatsAtLeast(still_to_find, recursion_depth + 1);
1620 }
1621 
1622 
EatsAtLeast(int still_to_find,int recursion_depth)1623 int TextNode::EatsAtLeast(int still_to_find, int recursion_depth) {
1624   int answer = Length();
1625   if (answer >= still_to_find) return answer;
1626   if (recursion_depth > RegExpCompiler::kMaxRecursion) return answer;
1627   return answer + on_success()->EatsAtLeast(still_to_find - answer,
1628                                             recursion_depth + 1);
1629 }
1630 
1631 
EatsAtLeast(int still_to_find,int recursion_depth)1632 int NegativeLookaheadChoiceNode:: EatsAtLeast(int still_to_find,
1633                                               int recursion_depth) {
1634   if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
1635   // Alternative 0 is the negative lookahead, alternative 1 is what comes
1636   // afterwards.
1637   RegExpNode* node = alternatives_->at(1).node();
1638   return node->EatsAtLeast(still_to_find, recursion_depth + 1);
1639 }
1640 
1641 
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int filled_in,bool not_at_start)1642 void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
1643     QuickCheckDetails* details,
1644     RegExpCompiler* compiler,
1645     int filled_in,
1646     bool not_at_start) {
1647   // Alternative 0 is the negative lookahead, alternative 1 is what comes
1648   // afterwards.
1649   RegExpNode* node = alternatives_->at(1).node();
1650   return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
1651 }
1652 
1653 
EatsAtLeastHelper(int still_to_find,int recursion_depth,RegExpNode * ignore_this_node)1654 int ChoiceNode::EatsAtLeastHelper(int still_to_find,
1655                                   int recursion_depth,
1656                                   RegExpNode* ignore_this_node) {
1657   if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
1658   int min = 100;
1659   int choice_count = alternatives_->length();
1660   for (int i = 0; i < choice_count; i++) {
1661     RegExpNode* node = alternatives_->at(i).node();
1662     if (node == ignore_this_node) continue;
1663     int node_eats_at_least = node->EatsAtLeast(still_to_find,
1664                                                recursion_depth + 1);
1665     if (node_eats_at_least < min) min = node_eats_at_least;
1666   }
1667   return min;
1668 }
1669 
1670 
EatsAtLeast(int still_to_find,int recursion_depth)1671 int LoopChoiceNode::EatsAtLeast(int still_to_find, int recursion_depth) {
1672   return EatsAtLeastHelper(still_to_find, recursion_depth, loop_node_);
1673 }
1674 
1675 
EatsAtLeast(int still_to_find,int recursion_depth)1676 int ChoiceNode::EatsAtLeast(int still_to_find, int recursion_depth) {
1677   return EatsAtLeastHelper(still_to_find, recursion_depth, NULL);
1678 }
1679 
1680 
1681 // Takes the left-most 1-bit and smears it out, setting all bits to its right.
SmearBitsRight(uint32_t v)1682 static inline uint32_t SmearBitsRight(uint32_t v) {
1683   v |= v >> 1;
1684   v |= v >> 2;
1685   v |= v >> 4;
1686   v |= v >> 8;
1687   v |= v >> 16;
1688   return v;
1689 }
1690 
1691 
Rationalize(bool asc)1692 bool QuickCheckDetails::Rationalize(bool asc) {
1693   bool found_useful_op = false;
1694   uint32_t char_mask;
1695   if (asc) {
1696     char_mask = String::kMaxAsciiCharCode;
1697   } else {
1698     char_mask = String::kMaxUC16CharCode;
1699   }
1700   mask_ = 0;
1701   value_ = 0;
1702   int char_shift = 0;
1703   for (int i = 0; i < characters_; i++) {
1704     Position* pos = &positions_[i];
1705     if ((pos->mask & String::kMaxAsciiCharCode) != 0) {
1706       found_useful_op = true;
1707     }
1708     mask_ |= (pos->mask & char_mask) << char_shift;
1709     value_ |= (pos->value & char_mask) << char_shift;
1710     char_shift += asc ? 8 : 16;
1711   }
1712   return found_useful_op;
1713 }
1714 
1715 
EmitQuickCheck(RegExpCompiler * compiler,Trace * trace,bool preload_has_checked_bounds,Label * on_possible_success,QuickCheckDetails * details,bool fall_through_on_failure)1716 bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
1717                                 Trace* trace,
1718                                 bool preload_has_checked_bounds,
1719                                 Label* on_possible_success,
1720                                 QuickCheckDetails* details,
1721                                 bool fall_through_on_failure) {
1722   if (details->characters() == 0) return false;
1723   GetQuickCheckDetails(details, compiler, 0, trace->at_start() == Trace::FALSE);
1724   if (details->cannot_match()) return false;
1725   if (!details->Rationalize(compiler->ascii())) return false;
1726   ASSERT(details->characters() == 1 ||
1727          compiler->macro_assembler()->CanReadUnaligned());
1728   uint32_t mask = details->mask();
1729   uint32_t value = details->value();
1730 
1731   RegExpMacroAssembler* assembler = compiler->macro_assembler();
1732 
1733   if (trace->characters_preloaded() != details->characters()) {
1734     assembler->LoadCurrentCharacter(trace->cp_offset(),
1735                                     trace->backtrack(),
1736                                     !preload_has_checked_bounds,
1737                                     details->characters());
1738   }
1739 
1740 
1741   bool need_mask = true;
1742 
1743   if (details->characters() == 1) {
1744     // If number of characters preloaded is 1 then we used a byte or 16 bit
1745     // load so the value is already masked down.
1746     uint32_t char_mask;
1747     if (compiler->ascii()) {
1748       char_mask = String::kMaxAsciiCharCode;
1749     } else {
1750       char_mask = String::kMaxUC16CharCode;
1751     }
1752     if ((mask & char_mask) == char_mask) need_mask = false;
1753     mask &= char_mask;
1754   } else {
1755     // For 2-character preloads in ASCII mode we also use a 16 bit load with
1756     // zero extend.
1757     if (details->characters() == 2 && compiler->ascii()) {
1758       if ((mask & 0xffff) == 0xffff) need_mask = false;
1759     } else {
1760       if (mask == 0xffffffff) need_mask = false;
1761     }
1762   }
1763 
1764   if (fall_through_on_failure) {
1765     if (need_mask) {
1766       assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
1767     } else {
1768       assembler->CheckCharacter(value, on_possible_success);
1769     }
1770   } else {
1771     if (need_mask) {
1772       assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
1773     } else {
1774       assembler->CheckNotCharacter(value, trace->backtrack());
1775     }
1776   }
1777   return true;
1778 }
1779 
1780 
1781 // Here is the meat of GetQuickCheckDetails (see also the comment on the
1782 // super-class in the .h file).
1783 //
1784 // We iterate along the text object, building up for each character a
1785 // mask and value that can be used to test for a quick failure to match.
1786 // The masks and values for the positions will be combined into a single
1787 // machine word for the current character width in order to be used in
1788 // generating a quick check.
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)1789 void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
1790                                     RegExpCompiler* compiler,
1791                                     int characters_filled_in,
1792                                     bool not_at_start) {
1793   ASSERT(characters_filled_in < details->characters());
1794   int characters = details->characters();
1795   int char_mask;
1796   int char_shift;
1797   if (compiler->ascii()) {
1798     char_mask = String::kMaxAsciiCharCode;
1799     char_shift = 8;
1800   } else {
1801     char_mask = String::kMaxUC16CharCode;
1802     char_shift = 16;
1803   }
1804   for (int k = 0; k < elms_->length(); k++) {
1805     TextElement elm = elms_->at(k);
1806     if (elm.type == TextElement::ATOM) {
1807       Vector<const uc16> quarks = elm.data.u_atom->data();
1808       for (int i = 0; i < characters && i < quarks.length(); i++) {
1809         QuickCheckDetails::Position* pos =
1810             details->positions(characters_filled_in);
1811         uc16 c = quarks[i];
1812         if (c > char_mask) {
1813           // If we expect a non-ASCII character from an ASCII string,
1814           // there is no way we can match. Not even case independent
1815           // matching can turn an ASCII character into non-ASCII or
1816           // vice versa.
1817           details->set_cannot_match();
1818           pos->determines_perfectly = false;
1819           return;
1820         }
1821         if (compiler->ignore_case()) {
1822           unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
1823           int length = GetCaseIndependentLetters(c, compiler->ascii(), chars);
1824           ASSERT(length != 0);  // Can only happen if c > char_mask (see above).
1825           if (length == 1) {
1826             // This letter has no case equivalents, so it's nice and simple
1827             // and the mask-compare will determine definitely whether we have
1828             // a match at this character position.
1829             pos->mask = char_mask;
1830             pos->value = c;
1831             pos->determines_perfectly = true;
1832           } else {
1833             uint32_t common_bits = char_mask;
1834             uint32_t bits = chars[0];
1835             for (int j = 1; j < length; j++) {
1836               uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
1837               common_bits ^= differing_bits;
1838               bits &= common_bits;
1839             }
1840             // If length is 2 and common bits has only one zero in it then
1841             // our mask and compare instruction will determine definitely
1842             // whether we have a match at this character position.  Otherwise
1843             // it can only be an approximate check.
1844             uint32_t one_zero = (common_bits | ~char_mask);
1845             if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
1846               pos->determines_perfectly = true;
1847             }
1848             pos->mask = common_bits;
1849             pos->value = bits;
1850           }
1851         } else {
1852           // Don't ignore case.  Nice simple case where the mask-compare will
1853           // determine definitely whether we have a match at this character
1854           // position.
1855           pos->mask = char_mask;
1856           pos->value = c;
1857           pos->determines_perfectly = true;
1858         }
1859         characters_filled_in++;
1860         ASSERT(characters_filled_in <= details->characters());
1861         if (characters_filled_in == details->characters()) {
1862           return;
1863         }
1864       }
1865     } else {
1866       QuickCheckDetails::Position* pos =
1867           details->positions(characters_filled_in);
1868       RegExpCharacterClass* tree = elm.data.u_char_class;
1869       ZoneList<CharacterRange>* ranges = tree->ranges();
1870       if (tree->is_negated()) {
1871         // A quick check uses multi-character mask and compare.  There is no
1872         // useful way to incorporate a negative char class into this scheme
1873         // so we just conservatively create a mask and value that will always
1874         // succeed.
1875         pos->mask = 0;
1876         pos->value = 0;
1877       } else {
1878         int first_range = 0;
1879         while (ranges->at(first_range).from() > char_mask) {
1880           first_range++;
1881           if (first_range == ranges->length()) {
1882             details->set_cannot_match();
1883             pos->determines_perfectly = false;
1884             return;
1885           }
1886         }
1887         CharacterRange range = ranges->at(first_range);
1888         uc16 from = range.from();
1889         uc16 to = range.to();
1890         if (to > char_mask) {
1891           to = char_mask;
1892         }
1893         uint32_t differing_bits = (from ^ to);
1894         // A mask and compare is only perfect if the differing bits form a
1895         // number like 00011111 with one single block of trailing 1s.
1896         if ((differing_bits & (differing_bits + 1)) == 0 &&
1897              from + differing_bits == to) {
1898           pos->determines_perfectly = true;
1899         }
1900         uint32_t common_bits = ~SmearBitsRight(differing_bits);
1901         uint32_t bits = (from & common_bits);
1902         for (int i = first_range + 1; i < ranges->length(); i++) {
1903           CharacterRange range = ranges->at(i);
1904           uc16 from = range.from();
1905           uc16 to = range.to();
1906           if (from > char_mask) continue;
1907           if (to > char_mask) to = char_mask;
1908           // Here we are combining more ranges into the mask and compare
1909           // value.  With each new range the mask becomes more sparse and
1910           // so the chances of a false positive rise.  A character class
1911           // with multiple ranges is assumed never to be equivalent to a
1912           // mask and compare operation.
1913           pos->determines_perfectly = false;
1914           uint32_t new_common_bits = (from ^ to);
1915           new_common_bits = ~SmearBitsRight(new_common_bits);
1916           common_bits &= new_common_bits;
1917           bits &= new_common_bits;
1918           uint32_t differing_bits = (from & common_bits) ^ bits;
1919           common_bits ^= differing_bits;
1920           bits &= common_bits;
1921         }
1922         pos->mask = common_bits;
1923         pos->value = bits;
1924       }
1925       characters_filled_in++;
1926       ASSERT(characters_filled_in <= details->characters());
1927       if (characters_filled_in == details->characters()) {
1928         return;
1929       }
1930     }
1931   }
1932   ASSERT(characters_filled_in != details->characters());
1933   on_success()-> GetQuickCheckDetails(details,
1934                                       compiler,
1935                                       characters_filled_in,
1936                                       true);
1937 }
1938 
1939 
Clear()1940 void QuickCheckDetails::Clear() {
1941   for (int i = 0; i < characters_; i++) {
1942     positions_[i].mask = 0;
1943     positions_[i].value = 0;
1944     positions_[i].determines_perfectly = false;
1945   }
1946   characters_ = 0;
1947 }
1948 
1949 
Advance(int by,bool ascii)1950 void QuickCheckDetails::Advance(int by, bool ascii) {
1951   ASSERT(by >= 0);
1952   if (by >= characters_) {
1953     Clear();
1954     return;
1955   }
1956   for (int i = 0; i < characters_ - by; i++) {
1957     positions_[i] = positions_[by + i];
1958   }
1959   for (int i = characters_ - by; i < characters_; i++) {
1960     positions_[i].mask = 0;
1961     positions_[i].value = 0;
1962     positions_[i].determines_perfectly = false;
1963   }
1964   characters_ -= by;
1965   // We could change mask_ and value_ here but we would never advance unless
1966   // they had already been used in a check and they won't be used again because
1967   // it would gain us nothing.  So there's no point.
1968 }
1969 
1970 
Merge(QuickCheckDetails * other,int from_index)1971 void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
1972   ASSERT(characters_ == other->characters_);
1973   if (other->cannot_match_) {
1974     return;
1975   }
1976   if (cannot_match_) {
1977     *this = *other;
1978     return;
1979   }
1980   for (int i = from_index; i < characters_; i++) {
1981     QuickCheckDetails::Position* pos = positions(i);
1982     QuickCheckDetails::Position* other_pos = other->positions(i);
1983     if (pos->mask != other_pos->mask ||
1984         pos->value != other_pos->value ||
1985         !other_pos->determines_perfectly) {
1986       // Our mask-compare operation will be approximate unless we have the
1987       // exact same operation on both sides of the alternation.
1988       pos->determines_perfectly = false;
1989     }
1990     pos->mask &= other_pos->mask;
1991     pos->value &= pos->mask;
1992     other_pos->value &= pos->mask;
1993     uc16 differing_bits = (pos->value ^ other_pos->value);
1994     pos->mask &= ~differing_bits;
1995     pos->value &= pos->mask;
1996   }
1997 }
1998 
1999 
2000 class VisitMarker {
2001  public:
VisitMarker(NodeInfo * info)2002   explicit VisitMarker(NodeInfo* info) : info_(info) {
2003     ASSERT(!info->visited);
2004     info->visited = true;
2005   }
~VisitMarker()2006   ~VisitMarker() {
2007     info_->visited = false;
2008   }
2009  private:
2010   NodeInfo* info_;
2011 };
2012 
2013 
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)2014 void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
2015                                           RegExpCompiler* compiler,
2016                                           int characters_filled_in,
2017                                           bool not_at_start) {
2018   if (body_can_be_zero_length_ || info()->visited) return;
2019   VisitMarker marker(info());
2020   return ChoiceNode::GetQuickCheckDetails(details,
2021                                           compiler,
2022                                           characters_filled_in,
2023                                           not_at_start);
2024 }
2025 
2026 
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)2027 void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
2028                                       RegExpCompiler* compiler,
2029                                       int characters_filled_in,
2030                                       bool not_at_start) {
2031   not_at_start = (not_at_start || not_at_start_);
2032   int choice_count = alternatives_->length();
2033   ASSERT(choice_count > 0);
2034   alternatives_->at(0).node()->GetQuickCheckDetails(details,
2035                                                     compiler,
2036                                                     characters_filled_in,
2037                                                     not_at_start);
2038   for (int i = 1; i < choice_count; i++) {
2039     QuickCheckDetails new_details(details->characters());
2040     RegExpNode* node = alternatives_->at(i).node();
2041     node->GetQuickCheckDetails(&new_details, compiler,
2042                                characters_filled_in,
2043                                not_at_start);
2044     // Here we merge the quick match details of the two branches.
2045     details->Merge(&new_details, characters_filled_in);
2046   }
2047 }
2048 
2049 
2050 // Check for [0-9A-Z_a-z].
EmitWordCheck(RegExpMacroAssembler * assembler,Label * word,Label * non_word,bool fall_through_on_word)2051 static void EmitWordCheck(RegExpMacroAssembler* assembler,
2052                           Label* word,
2053                           Label* non_word,
2054                           bool fall_through_on_word) {
2055   assembler->CheckCharacterGT('z', non_word);
2056   assembler->CheckCharacterLT('0', non_word);
2057   assembler->CheckCharacterGT('a' - 1, word);
2058   assembler->CheckCharacterLT('9' + 1, word);
2059   assembler->CheckCharacterLT('A', non_word);
2060   assembler->CheckCharacterLT('Z' + 1, word);
2061   if (fall_through_on_word) {
2062     assembler->CheckNotCharacter('_', non_word);
2063   } else {
2064     assembler->CheckCharacter('_', word);
2065   }
2066 }
2067 
2068 
2069 // Emit the code to check for a ^ in multiline mode (1-character lookbehind
2070 // that matches newline or the start of input).
EmitHat(RegExpCompiler * compiler,RegExpNode * on_success,Trace * trace)2071 static void EmitHat(RegExpCompiler* compiler,
2072                     RegExpNode* on_success,
2073                     Trace* trace) {
2074   RegExpMacroAssembler* assembler = compiler->macro_assembler();
2075   // We will be loading the previous character into the current character
2076   // register.
2077   Trace new_trace(*trace);
2078   new_trace.InvalidateCurrentCharacter();
2079 
2080   Label ok;
2081   if (new_trace.cp_offset() == 0) {
2082     // The start of input counts as a newline in this context, so skip to
2083     // ok if we are at the start.
2084     assembler->CheckAtStart(&ok);
2085   }
2086   // We already checked that we are not at the start of input so it must be
2087   // OK to load the previous character.
2088   assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
2089                                   new_trace.backtrack(),
2090                                   false);
2091   // Newline means \n, \r, 0x2028 or 0x2029.
2092   if (!compiler->ascii()) {
2093     assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
2094   }
2095   assembler->CheckCharacter('\n', &ok);
2096   assembler->CheckNotCharacter('\r', new_trace.backtrack());
2097   assembler->Bind(&ok);
2098   on_success->Emit(compiler, &new_trace);
2099 }
2100 
2101 
2102 // Emit the code to handle \b and \B (word-boundary or non-word-boundary).
EmitBoundaryCheck(AssertionNode::AssertionNodeType type,RegExpCompiler * compiler,RegExpNode * on_success,Trace * trace)2103 static void EmitBoundaryCheck(AssertionNode::AssertionNodeType type,
2104                               RegExpCompiler* compiler,
2105                               RegExpNode* on_success,
2106                               Trace* trace) {
2107   RegExpMacroAssembler* assembler = compiler->macro_assembler();
2108   Label before_non_word;
2109   Label before_word;
2110   if (trace->characters_preloaded() != 1) {
2111     assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
2112   }
2113   // Fall through on non-word.
2114   EmitWordCheck(assembler, &before_word, &before_non_word, false);
2115 
2116   // We will be loading the previous character into the current character
2117   // register.
2118   Trace new_trace(*trace);
2119   new_trace.InvalidateCurrentCharacter();
2120 
2121   Label ok;
2122   Label* boundary;
2123   Label* not_boundary;
2124   if (type == AssertionNode::AT_BOUNDARY) {
2125     boundary = &ok;
2126     not_boundary = new_trace.backtrack();
2127   } else {
2128     not_boundary = &ok;
2129     boundary = new_trace.backtrack();
2130   }
2131 
2132   // Next character is not a word character.
2133   assembler->Bind(&before_non_word);
2134   if (new_trace.cp_offset() == 0) {
2135     // The start of input counts as a non-word character, so the question is
2136     // decided if we are at the start.
2137     assembler->CheckAtStart(not_boundary);
2138   }
2139   // We already checked that we are not at the start of input so it must be
2140   // OK to load the previous character.
2141   assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1,
2142                                   &ok,  // Unused dummy label in this call.
2143                                   false);
2144   // Fall through on non-word.
2145   EmitWordCheck(assembler, boundary, not_boundary, false);
2146   assembler->GoTo(not_boundary);
2147 
2148   // Next character is a word character.
2149   assembler->Bind(&before_word);
2150   if (new_trace.cp_offset() == 0) {
2151     // The start of input counts as a non-word character, so the question is
2152     // decided if we are at the start.
2153     assembler->CheckAtStart(boundary);
2154   }
2155   // We already checked that we are not at the start of input so it must be
2156   // OK to load the previous character.
2157   assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1,
2158                                   &ok,  // Unused dummy label in this call.
2159                                   false);
2160   bool fall_through_on_word = (type == AssertionNode::AT_NON_BOUNDARY);
2161   EmitWordCheck(assembler, not_boundary, boundary, fall_through_on_word);
2162 
2163   assembler->Bind(&ok);
2164 
2165   on_success->Emit(compiler, &new_trace);
2166 }
2167 
2168 
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int filled_in,bool not_at_start)2169 void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
2170                                          RegExpCompiler* compiler,
2171                                          int filled_in,
2172                                          bool not_at_start) {
2173   if (type_ == AT_START && not_at_start) {
2174     details->set_cannot_match();
2175     return;
2176   }
2177   return on_success()->GetQuickCheckDetails(details,
2178                                             compiler,
2179                                             filled_in,
2180                                             not_at_start);
2181 }
2182 
2183 
Emit(RegExpCompiler * compiler,Trace * trace)2184 void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
2185   RegExpMacroAssembler* assembler = compiler->macro_assembler();
2186   switch (type_) {
2187     case AT_END: {
2188       Label ok;
2189       assembler->CheckPosition(trace->cp_offset(), &ok);
2190       assembler->GoTo(trace->backtrack());
2191       assembler->Bind(&ok);
2192       break;
2193     }
2194     case AT_START: {
2195       if (trace->at_start() == Trace::FALSE) {
2196         assembler->GoTo(trace->backtrack());
2197         return;
2198       }
2199       if (trace->at_start() == Trace::UNKNOWN) {
2200         assembler->CheckNotAtStart(trace->backtrack());
2201         Trace at_start_trace = *trace;
2202         at_start_trace.set_at_start(true);
2203         on_success()->Emit(compiler, &at_start_trace);
2204         return;
2205       }
2206     }
2207     break;
2208     case AFTER_NEWLINE:
2209       EmitHat(compiler, on_success(), trace);
2210       return;
2211     case AT_NON_BOUNDARY:
2212     case AT_BOUNDARY:
2213       EmitBoundaryCheck(type_, compiler, on_success(), trace);
2214       return;
2215   }
2216   on_success()->Emit(compiler, trace);
2217 }
2218 
2219 
DeterminedAlready(QuickCheckDetails * quick_check,int offset)2220 static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
2221   if (quick_check == NULL) return false;
2222   if (offset >= quick_check->characters()) return false;
2223   return quick_check->positions(offset)->determines_perfectly;
2224 }
2225 
2226 
UpdateBoundsCheck(int index,int * checked_up_to)2227 static void UpdateBoundsCheck(int index, int* checked_up_to) {
2228   if (index > *checked_up_to) {
2229     *checked_up_to = index;
2230   }
2231 }
2232 
2233 
2234 // We call this repeatedly to generate code for each pass over the text node.
2235 // The passes are in increasing order of difficulty because we hope one
2236 // of the first passes will fail in which case we are saved the work of the
2237 // later passes.  for example for the case independent regexp /%[asdfghjkl]a/
2238 // we will check the '%' in the first pass, the case independent 'a' in the
2239 // second pass and the character class in the last pass.
2240 //
2241 // The passes are done from right to left, so for example to test for /bar/
2242 // we will first test for an 'r' with offset 2, then an 'a' with offset 1
2243 // and then a 'b' with offset 0.  This means we can avoid the end-of-input
2244 // bounds check most of the time.  In the example we only need to check for
2245 // end-of-input when loading the putative 'r'.
2246 //
2247 // A slight complication involves the fact that the first character may already
2248 // be fetched into a register by the previous node.  In this case we want to
2249 // do the test for that character first.  We do this in separate passes.  The
2250 // 'preloaded' argument indicates that we are doing such a 'pass'.  If such a
2251 // pass has been performed then subsequent passes will have true in
2252 // first_element_checked to indicate that that character does not need to be
2253 // checked again.
2254 //
2255 // In addition to all this we are passed a Trace, which can
2256 // contain an AlternativeGeneration object.  In this AlternativeGeneration
2257 // object we can see details of any quick check that was already passed in
2258 // order to get to the code we are now generating.  The quick check can involve
2259 // loading characters, which means we do not need to recheck the bounds
2260 // up to the limit the quick check already checked.  In addition the quick
2261 // check can have involved a mask and compare operation which may simplify
2262 // or obviate the need for further checks at some character positions.
TextEmitPass(RegExpCompiler * compiler,TextEmitPassType pass,bool preloaded,Trace * trace,bool first_element_checked,int * checked_up_to)2263 void TextNode::TextEmitPass(RegExpCompiler* compiler,
2264                             TextEmitPassType pass,
2265                             bool preloaded,
2266                             Trace* trace,
2267                             bool first_element_checked,
2268                             int* checked_up_to) {
2269   RegExpMacroAssembler* assembler = compiler->macro_assembler();
2270   bool ascii = compiler->ascii();
2271   Label* backtrack = trace->backtrack();
2272   QuickCheckDetails* quick_check = trace->quick_check_performed();
2273   int element_count = elms_->length();
2274   for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
2275     TextElement elm = elms_->at(i);
2276     int cp_offset = trace->cp_offset() + elm.cp_offset;
2277     if (elm.type == TextElement::ATOM) {
2278       Vector<const uc16> quarks = elm.data.u_atom->data();
2279       for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
2280         if (first_element_checked && i == 0 && j == 0) continue;
2281         if (DeterminedAlready(quick_check, elm.cp_offset + j)) continue;
2282         EmitCharacterFunction* emit_function = NULL;
2283         switch (pass) {
2284           case NON_ASCII_MATCH:
2285             ASSERT(ascii);
2286             if (quarks[j] > String::kMaxAsciiCharCode) {
2287               assembler->GoTo(backtrack);
2288               return;
2289             }
2290             break;
2291           case NON_LETTER_CHARACTER_MATCH:
2292             emit_function = &EmitAtomNonLetter;
2293             break;
2294           case SIMPLE_CHARACTER_MATCH:
2295             emit_function = &EmitSimpleCharacter;
2296             break;
2297           case CASE_CHARACTER_MATCH:
2298             emit_function = &EmitAtomLetter;
2299             break;
2300           default:
2301             break;
2302         }
2303         if (emit_function != NULL) {
2304           bool bound_checked = emit_function(compiler,
2305                                              quarks[j],
2306                                              backtrack,
2307                                              cp_offset + j,
2308                                              *checked_up_to < cp_offset + j,
2309                                              preloaded);
2310           if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
2311         }
2312       }
2313     } else {
2314       ASSERT_EQ(elm.type, TextElement::CHAR_CLASS);
2315       if (pass == CHARACTER_CLASS_MATCH) {
2316         if (first_element_checked && i == 0) continue;
2317         if (DeterminedAlready(quick_check, elm.cp_offset)) continue;
2318         RegExpCharacterClass* cc = elm.data.u_char_class;
2319         EmitCharClass(assembler,
2320                       cc,
2321                       ascii,
2322                       backtrack,
2323                       cp_offset,
2324                       *checked_up_to < cp_offset,
2325                       preloaded);
2326         UpdateBoundsCheck(cp_offset, checked_up_to);
2327       }
2328     }
2329   }
2330 }
2331 
2332 
Length()2333 int TextNode::Length() {
2334   TextElement elm = elms_->last();
2335   ASSERT(elm.cp_offset >= 0);
2336   if (elm.type == TextElement::ATOM) {
2337     return elm.cp_offset + elm.data.u_atom->data().length();
2338   } else {
2339     return elm.cp_offset + 1;
2340   }
2341 }
2342 
2343 
SkipPass(int int_pass,bool ignore_case)2344 bool TextNode::SkipPass(int int_pass, bool ignore_case) {
2345   TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
2346   if (ignore_case) {
2347     return pass == SIMPLE_CHARACTER_MATCH;
2348   } else {
2349     return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
2350   }
2351 }
2352 
2353 
2354 // This generates the code to match a text node.  A text node can contain
2355 // straight character sequences (possibly to be matched in a case-independent
2356 // way) and character classes.  For efficiency we do not do this in a single
2357 // pass from left to right.  Instead we pass over the text node several times,
2358 // emitting code for some character positions every time.  See the comment on
2359 // TextEmitPass for details.
Emit(RegExpCompiler * compiler,Trace * trace)2360 void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
2361   LimitResult limit_result = LimitVersions(compiler, trace);
2362   if (limit_result == DONE) return;
2363   ASSERT(limit_result == CONTINUE);
2364 
2365   if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
2366     compiler->SetRegExpTooBig();
2367     return;
2368   }
2369 
2370   if (compiler->ascii()) {
2371     int dummy = 0;
2372     TextEmitPass(compiler, NON_ASCII_MATCH, false, trace, false, &dummy);
2373   }
2374 
2375   bool first_elt_done = false;
2376   int bound_checked_to = trace->cp_offset() - 1;
2377   bound_checked_to += trace->bound_checked_up_to();
2378 
2379   // If a character is preloaded into the current character register then
2380   // check that now.
2381   if (trace->characters_preloaded() == 1) {
2382     for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
2383       if (!SkipPass(pass, compiler->ignore_case())) {
2384         TextEmitPass(compiler,
2385                      static_cast<TextEmitPassType>(pass),
2386                      true,
2387                      trace,
2388                      false,
2389                      &bound_checked_to);
2390       }
2391     }
2392     first_elt_done = true;
2393   }
2394 
2395   for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
2396     if (!SkipPass(pass, compiler->ignore_case())) {
2397       TextEmitPass(compiler,
2398                    static_cast<TextEmitPassType>(pass),
2399                    false,
2400                    trace,
2401                    first_elt_done,
2402                    &bound_checked_to);
2403     }
2404   }
2405 
2406   Trace successor_trace(*trace);
2407   successor_trace.set_at_start(false);
2408   successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler);
2409   RecursionCheck rc(compiler);
2410   on_success()->Emit(compiler, &successor_trace);
2411 }
2412 
2413 
InvalidateCurrentCharacter()2414 void Trace::InvalidateCurrentCharacter() {
2415   characters_preloaded_ = 0;
2416 }
2417 
2418 
AdvanceCurrentPositionInTrace(int by,RegExpCompiler * compiler)2419 void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
2420   ASSERT(by > 0);
2421   // We don't have an instruction for shifting the current character register
2422   // down or for using a shifted value for anything so lets just forget that
2423   // we preloaded any characters into it.
2424   characters_preloaded_ = 0;
2425   // Adjust the offsets of the quick check performed information.  This
2426   // information is used to find out what we already determined about the
2427   // characters by means of mask and compare.
2428   quick_check_performed_.Advance(by, compiler->ascii());
2429   cp_offset_ += by;
2430   if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
2431     compiler->SetRegExpTooBig();
2432     cp_offset_ = 0;
2433   }
2434   bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
2435 }
2436 
2437 
MakeCaseIndependent()2438 void TextNode::MakeCaseIndependent() {
2439   int element_count = elms_->length();
2440   for (int i = 0; i < element_count; i++) {
2441     TextElement elm = elms_->at(i);
2442     if (elm.type == TextElement::CHAR_CLASS) {
2443       RegExpCharacterClass* cc = elm.data.u_char_class;
2444       ZoneList<CharacterRange>* ranges = cc->ranges();
2445       int range_count = ranges->length();
2446       for (int i = 0; i < range_count; i++) {
2447         ranges->at(i).AddCaseEquivalents(ranges);
2448       }
2449     }
2450   }
2451 }
2452 
2453 
GreedyLoopTextLength()2454 int TextNode::GreedyLoopTextLength() {
2455   TextElement elm = elms_->at(elms_->length() - 1);
2456   if (elm.type == TextElement::CHAR_CLASS) {
2457     return elm.cp_offset + 1;
2458   } else {
2459     return elm.cp_offset + elm.data.u_atom->data().length();
2460   }
2461 }
2462 
2463 
2464 // Finds the fixed match length of a sequence of nodes that goes from
2465 // this alternative and back to this choice node.  If there are variable
2466 // length nodes or other complications in the way then return a sentinel
2467 // value indicating that a greedy loop cannot be constructed.
GreedyLoopTextLength(GuardedAlternative * alternative)2468 int ChoiceNode::GreedyLoopTextLength(GuardedAlternative* alternative) {
2469   int length = 0;
2470   RegExpNode* node = alternative->node();
2471   // Later we will generate code for all these text nodes using recursion
2472   // so we have to limit the max number.
2473   int recursion_depth = 0;
2474   while (node != this) {
2475     if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
2476       return kNodeIsTooComplexForGreedyLoops;
2477     }
2478     int node_length = node->GreedyLoopTextLength();
2479     if (node_length == kNodeIsTooComplexForGreedyLoops) {
2480       return kNodeIsTooComplexForGreedyLoops;
2481     }
2482     length += node_length;
2483     SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
2484     node = seq_node->on_success();
2485   }
2486   return length;
2487 }
2488 
2489 
AddLoopAlternative(GuardedAlternative alt)2490 void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
2491   ASSERT_EQ(loop_node_, NULL);
2492   AddAlternative(alt);
2493   loop_node_ = alt.node();
2494 }
2495 
2496 
AddContinueAlternative(GuardedAlternative alt)2497 void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
2498   ASSERT_EQ(continue_node_, NULL);
2499   AddAlternative(alt);
2500   continue_node_ = alt.node();
2501 }
2502 
2503 
Emit(RegExpCompiler * compiler,Trace * trace)2504 void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
2505   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
2506   if (trace->stop_node() == this) {
2507     int text_length = GreedyLoopTextLength(&(alternatives_->at(0)));
2508     ASSERT(text_length != kNodeIsTooComplexForGreedyLoops);
2509     // Update the counter-based backtracking info on the stack.  This is an
2510     // optimization for greedy loops (see below).
2511     ASSERT(trace->cp_offset() == text_length);
2512     macro_assembler->AdvanceCurrentPosition(text_length);
2513     macro_assembler->GoTo(trace->loop_label());
2514     return;
2515   }
2516   ASSERT(trace->stop_node() == NULL);
2517   if (!trace->is_trivial()) {
2518     trace->Flush(compiler, this);
2519     return;
2520   }
2521   ChoiceNode::Emit(compiler, trace);
2522 }
2523 
2524 
CalculatePreloadCharacters(RegExpCompiler * compiler)2525 int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler) {
2526   int preload_characters = EatsAtLeast(4, 0);
2527   if (compiler->macro_assembler()->CanReadUnaligned()) {
2528     bool ascii = compiler->ascii();
2529     if (ascii) {
2530       if (preload_characters > 4) preload_characters = 4;
2531       // We can't preload 3 characters because there is no machine instruction
2532       // to do that.  We can't just load 4 because we could be reading
2533       // beyond the end of the string, which could cause a memory fault.
2534       if (preload_characters == 3) preload_characters = 2;
2535     } else {
2536       if (preload_characters > 2) preload_characters = 2;
2537     }
2538   } else {
2539     if (preload_characters > 1) preload_characters = 1;
2540   }
2541   return preload_characters;
2542 }
2543 
2544 
2545 // This class is used when generating the alternatives in a choice node.  It
2546 // records the way the alternative is being code generated.
2547 class AlternativeGeneration: public Malloced {
2548  public:
AlternativeGeneration()2549   AlternativeGeneration()
2550       : possible_success(),
2551         expects_preload(false),
2552         after(),
2553         quick_check_details() { }
2554   Label possible_success;
2555   bool expects_preload;
2556   Label after;
2557   QuickCheckDetails quick_check_details;
2558 };
2559 
2560 
2561 // Creates a list of AlternativeGenerations.  If the list has a reasonable
2562 // size then it is on the stack, otherwise the excess is on the heap.
2563 class AlternativeGenerationList {
2564  public:
AlternativeGenerationList(int count)2565   explicit AlternativeGenerationList(int count)
2566       : alt_gens_(count) {
2567     for (int i = 0; i < count && i < kAFew; i++) {
2568       alt_gens_.Add(a_few_alt_gens_ + i);
2569     }
2570     for (int i = kAFew; i < count; i++) {
2571       alt_gens_.Add(new AlternativeGeneration());
2572     }
2573   }
~AlternativeGenerationList()2574   ~AlternativeGenerationList() {
2575     for (int i = kAFew; i < alt_gens_.length(); i++) {
2576       delete alt_gens_[i];
2577       alt_gens_[i] = NULL;
2578     }
2579   }
2580 
at(int i)2581   AlternativeGeneration* at(int i) {
2582     return alt_gens_[i];
2583   }
2584  private:
2585   static const int kAFew = 10;
2586   ZoneList<AlternativeGeneration*> alt_gens_;
2587   AlternativeGeneration a_few_alt_gens_[kAFew];
2588 };
2589 
2590 
2591 /* Code generation for choice nodes.
2592  *
2593  * We generate quick checks that do a mask and compare to eliminate a
2594  * choice.  If the quick check succeeds then it jumps to the continuation to
2595  * do slow checks and check subsequent nodes.  If it fails (the common case)
2596  * it falls through to the next choice.
2597  *
2598  * Here is the desired flow graph.  Nodes directly below each other imply
2599  * fallthrough.  Alternatives 1 and 2 have quick checks.  Alternative
2600  * 3 doesn't have a quick check so we have to call the slow check.
2601  * Nodes are marked Qn for quick checks and Sn for slow checks.  The entire
2602  * regexp continuation is generated directly after the Sn node, up to the
2603  * next GoTo if we decide to reuse some already generated code.  Some
2604  * nodes expect preload_characters to be preloaded into the current
2605  * character register.  R nodes do this preloading.  Vertices are marked
2606  * F for failures and S for success (possible success in the case of quick
2607  * nodes).  L, V, < and > are used as arrow heads.
2608  *
2609  * ----------> R
2610  *             |
2611  *             V
2612  *            Q1 -----> S1
2613  *             |   S   /
2614  *            F|      /
2615  *             |    F/
2616  *             |    /
2617  *             |   R
2618  *             |  /
2619  *             V L
2620  *            Q2 -----> S2
2621  *             |   S   /
2622  *            F|      /
2623  *             |    F/
2624  *             |    /
2625  *             |   R
2626  *             |  /
2627  *             V L
2628  *            S3
2629  *             |
2630  *            F|
2631  *             |
2632  *             R
2633  *             |
2634  * backtrack   V
2635  * <----------Q4
2636  *   \    F    |
2637  *    \        |S
2638  *     \   F   V
2639  *      \-----S4
2640  *
2641  * For greedy loops we reverse our expectation and expect to match rather
2642  * than fail. Therefore we want the loop code to look like this (U is the
2643  * unwind code that steps back in the greedy loop).  The following alternatives
2644  * look the same as above.
2645  *              _____
2646  *             /     \
2647  *             V     |
2648  * ----------> S1    |
2649  *            /|     |
2650  *           / |S    |
2651  *         F/  \_____/
2652  *         /
2653  *        |<-----------
2654  *        |            \
2655  *        V             \
2656  *        Q2 ---> S2     \
2657  *        |  S   /       |
2658  *       F|     /        |
2659  *        |   F/         |
2660  *        |   /          |
2661  *        |  R           |
2662  *        | /            |
2663  *   F    VL             |
2664  * <------U              |
2665  * back   |S             |
2666  *        \______________/
2667  */
2668 
2669 
Emit(RegExpCompiler * compiler,Trace * trace)2670 void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
2671   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
2672   int choice_count = alternatives_->length();
2673 #ifdef DEBUG
2674   for (int i = 0; i < choice_count - 1; i++) {
2675     GuardedAlternative alternative = alternatives_->at(i);
2676     ZoneList<Guard*>* guards = alternative.guards();
2677     int guard_count = (guards == NULL) ? 0 : guards->length();
2678     for (int j = 0; j < guard_count; j++) {
2679       ASSERT(!trace->mentions_reg(guards->at(j)->reg()));
2680     }
2681   }
2682 #endif
2683 
2684   LimitResult limit_result = LimitVersions(compiler, trace);
2685   if (limit_result == DONE) return;
2686   ASSERT(limit_result == CONTINUE);
2687 
2688   int new_flush_budget = trace->flush_budget() / choice_count;
2689   if (trace->flush_budget() == 0 && trace->actions() != NULL) {
2690     trace->Flush(compiler, this);
2691     return;
2692   }
2693 
2694   RecursionCheck rc(compiler);
2695 
2696   Trace* current_trace = trace;
2697 
2698   int text_length = GreedyLoopTextLength(&(alternatives_->at(0)));
2699   bool greedy_loop = false;
2700   Label greedy_loop_label;
2701   Trace counter_backtrack_trace;
2702   counter_backtrack_trace.set_backtrack(&greedy_loop_label);
2703   if (not_at_start()) counter_backtrack_trace.set_at_start(false);
2704 
2705   if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
2706     // Here we have special handling for greedy loops containing only text nodes
2707     // and other simple nodes.  These are handled by pushing the current
2708     // position on the stack and then incrementing the current position each
2709     // time around the switch.  On backtrack we decrement the current position
2710     // and check it against the pushed value.  This avoids pushing backtrack
2711     // information for each iteration of the loop, which could take up a lot of
2712     // space.
2713     greedy_loop = true;
2714     ASSERT(trace->stop_node() == NULL);
2715     macro_assembler->PushCurrentPosition();
2716     current_trace = &counter_backtrack_trace;
2717     Label greedy_match_failed;
2718     Trace greedy_match_trace;
2719     if (not_at_start()) greedy_match_trace.set_at_start(false);
2720     greedy_match_trace.set_backtrack(&greedy_match_failed);
2721     Label loop_label;
2722     macro_assembler->Bind(&loop_label);
2723     greedy_match_trace.set_stop_node(this);
2724     greedy_match_trace.set_loop_label(&loop_label);
2725     alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
2726     macro_assembler->Bind(&greedy_match_failed);
2727   }
2728 
2729   Label second_choice;  // For use in greedy matches.
2730   macro_assembler->Bind(&second_choice);
2731 
2732   int first_normal_choice = greedy_loop ? 1 : 0;
2733 
2734   int preload_characters = CalculatePreloadCharacters(compiler);
2735   bool preload_is_current =
2736       (current_trace->characters_preloaded() == preload_characters);
2737   bool preload_has_checked_bounds = preload_is_current;
2738 
2739   AlternativeGenerationList alt_gens(choice_count);
2740 
2741   // For now we just call all choices one after the other.  The idea ultimately
2742   // is to use the Dispatch table to try only the relevant ones.
2743   for (int i = first_normal_choice; i < choice_count; i++) {
2744     GuardedAlternative alternative = alternatives_->at(i);
2745     AlternativeGeneration* alt_gen = alt_gens.at(i);
2746     alt_gen->quick_check_details.set_characters(preload_characters);
2747     ZoneList<Guard*>* guards = alternative.guards();
2748     int guard_count = (guards == NULL) ? 0 : guards->length();
2749     Trace new_trace(*current_trace);
2750     new_trace.set_characters_preloaded(preload_is_current ?
2751                                          preload_characters :
2752                                          0);
2753     if (preload_has_checked_bounds) {
2754       new_trace.set_bound_checked_up_to(preload_characters);
2755     }
2756     new_trace.quick_check_performed()->Clear();
2757     if (not_at_start_) new_trace.set_at_start(Trace::FALSE);
2758     alt_gen->expects_preload = preload_is_current;
2759     bool generate_full_check_inline = false;
2760     if (FLAG_regexp_optimization &&
2761         try_to_emit_quick_check_for_alternative(i) &&
2762         alternative.node()->EmitQuickCheck(compiler,
2763                                            &new_trace,
2764                                            preload_has_checked_bounds,
2765                                            &alt_gen->possible_success,
2766                                            &alt_gen->quick_check_details,
2767                                            i < choice_count - 1)) {
2768       // Quick check was generated for this choice.
2769       preload_is_current = true;
2770       preload_has_checked_bounds = true;
2771       // On the last choice in the ChoiceNode we generated the quick
2772       // check to fall through on possible success.  So now we need to
2773       // generate the full check inline.
2774       if (i == choice_count - 1) {
2775         macro_assembler->Bind(&alt_gen->possible_success);
2776         new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
2777         new_trace.set_characters_preloaded(preload_characters);
2778         new_trace.set_bound_checked_up_to(preload_characters);
2779         generate_full_check_inline = true;
2780       }
2781     } else if (alt_gen->quick_check_details.cannot_match()) {
2782       if (i == choice_count - 1 && !greedy_loop) {
2783         macro_assembler->GoTo(trace->backtrack());
2784       }
2785       continue;
2786     } else {
2787       // No quick check was generated.  Put the full code here.
2788       // If this is not the first choice then there could be slow checks from
2789       // previous cases that go here when they fail.  There's no reason to
2790       // insist that they preload characters since the slow check we are about
2791       // to generate probably can't use it.
2792       if (i != first_normal_choice) {
2793         alt_gen->expects_preload = false;
2794         new_trace.set_characters_preloaded(0);
2795       }
2796       if (i < choice_count - 1) {
2797         new_trace.set_backtrack(&alt_gen->after);
2798       }
2799       generate_full_check_inline = true;
2800     }
2801     if (generate_full_check_inline) {
2802       if (new_trace.actions() != NULL) {
2803         new_trace.set_flush_budget(new_flush_budget);
2804       }
2805       for (int j = 0; j < guard_count; j++) {
2806         GenerateGuard(macro_assembler, guards->at(j), &new_trace);
2807       }
2808       alternative.node()->Emit(compiler, &new_trace);
2809       preload_is_current = false;
2810     }
2811     macro_assembler->Bind(&alt_gen->after);
2812   }
2813   if (greedy_loop) {
2814     macro_assembler->Bind(&greedy_loop_label);
2815     // If we have unwound to the bottom then backtrack.
2816     macro_assembler->CheckGreedyLoop(trace->backtrack());
2817     // Otherwise try the second priority at an earlier position.
2818     macro_assembler->AdvanceCurrentPosition(-text_length);
2819     macro_assembler->GoTo(&second_choice);
2820   }
2821 
2822   // At this point we need to generate slow checks for the alternatives where
2823   // the quick check was inlined.  We can recognize these because the associated
2824   // label was bound.
2825   for (int i = first_normal_choice; i < choice_count - 1; i++) {
2826     AlternativeGeneration* alt_gen = alt_gens.at(i);
2827     Trace new_trace(*current_trace);
2828     // If there are actions to be flushed we have to limit how many times
2829     // they are flushed.  Take the budget of the parent trace and distribute
2830     // it fairly amongst the children.
2831     if (new_trace.actions() != NULL) {
2832       new_trace.set_flush_budget(new_flush_budget);
2833     }
2834     EmitOutOfLineContinuation(compiler,
2835                               &new_trace,
2836                               alternatives_->at(i),
2837                               alt_gen,
2838                               preload_characters,
2839                               alt_gens.at(i + 1)->expects_preload);
2840   }
2841 }
2842 
2843 
EmitOutOfLineContinuation(RegExpCompiler * compiler,Trace * trace,GuardedAlternative alternative,AlternativeGeneration * alt_gen,int preload_characters,bool next_expects_preload)2844 void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
2845                                            Trace* trace,
2846                                            GuardedAlternative alternative,
2847                                            AlternativeGeneration* alt_gen,
2848                                            int preload_characters,
2849                                            bool next_expects_preload) {
2850   if (!alt_gen->possible_success.is_linked()) return;
2851 
2852   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
2853   macro_assembler->Bind(&alt_gen->possible_success);
2854   Trace out_of_line_trace(*trace);
2855   out_of_line_trace.set_characters_preloaded(preload_characters);
2856   out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
2857   if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE);
2858   ZoneList<Guard*>* guards = alternative.guards();
2859   int guard_count = (guards == NULL) ? 0 : guards->length();
2860   if (next_expects_preload) {
2861     Label reload_current_char;
2862     out_of_line_trace.set_backtrack(&reload_current_char);
2863     for (int j = 0; j < guard_count; j++) {
2864       GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
2865     }
2866     alternative.node()->Emit(compiler, &out_of_line_trace);
2867     macro_assembler->Bind(&reload_current_char);
2868     // Reload the current character, since the next quick check expects that.
2869     // We don't need to check bounds here because we only get into this
2870     // code through a quick check which already did the checked load.
2871     macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
2872                                           NULL,
2873                                           false,
2874                                           preload_characters);
2875     macro_assembler->GoTo(&(alt_gen->after));
2876   } else {
2877     out_of_line_trace.set_backtrack(&(alt_gen->after));
2878     for (int j = 0; j < guard_count; j++) {
2879       GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
2880     }
2881     alternative.node()->Emit(compiler, &out_of_line_trace);
2882   }
2883 }
2884 
2885 
Emit(RegExpCompiler * compiler,Trace * trace)2886 void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
2887   RegExpMacroAssembler* assembler = compiler->macro_assembler();
2888   LimitResult limit_result = LimitVersions(compiler, trace);
2889   if (limit_result == DONE) return;
2890   ASSERT(limit_result == CONTINUE);
2891 
2892   RecursionCheck rc(compiler);
2893 
2894   switch (type_) {
2895     case STORE_POSITION: {
2896       Trace::DeferredCapture
2897           new_capture(data_.u_position_register.reg,
2898                       data_.u_position_register.is_capture,
2899                       trace);
2900       Trace new_trace = *trace;
2901       new_trace.add_action(&new_capture);
2902       on_success()->Emit(compiler, &new_trace);
2903       break;
2904     }
2905     case INCREMENT_REGISTER: {
2906       Trace::DeferredIncrementRegister
2907           new_increment(data_.u_increment_register.reg);
2908       Trace new_trace = *trace;
2909       new_trace.add_action(&new_increment);
2910       on_success()->Emit(compiler, &new_trace);
2911       break;
2912     }
2913     case SET_REGISTER: {
2914       Trace::DeferredSetRegister
2915           new_set(data_.u_store_register.reg, data_.u_store_register.value);
2916       Trace new_trace = *trace;
2917       new_trace.add_action(&new_set);
2918       on_success()->Emit(compiler, &new_trace);
2919       break;
2920     }
2921     case CLEAR_CAPTURES: {
2922       Trace::DeferredClearCaptures
2923         new_capture(Interval(data_.u_clear_captures.range_from,
2924                              data_.u_clear_captures.range_to));
2925       Trace new_trace = *trace;
2926       new_trace.add_action(&new_capture);
2927       on_success()->Emit(compiler, &new_trace);
2928       break;
2929     }
2930     case BEGIN_SUBMATCH:
2931       if (!trace->is_trivial()) {
2932         trace->Flush(compiler, this);
2933       } else {
2934         assembler->WriteCurrentPositionToRegister(
2935             data_.u_submatch.current_position_register, 0);
2936         assembler->WriteStackPointerToRegister(
2937             data_.u_submatch.stack_pointer_register);
2938         on_success()->Emit(compiler, trace);
2939       }
2940       break;
2941     case EMPTY_MATCH_CHECK: {
2942       int start_pos_reg = data_.u_empty_match_check.start_register;
2943       int stored_pos = 0;
2944       int rep_reg = data_.u_empty_match_check.repetition_register;
2945       bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
2946       bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
2947       if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
2948         // If we know we haven't advanced and there is no minimum we
2949         // can just backtrack immediately.
2950         assembler->GoTo(trace->backtrack());
2951       } else if (know_dist && stored_pos < trace->cp_offset()) {
2952         // If we know we've advanced we can generate the continuation
2953         // immediately.
2954         on_success()->Emit(compiler, trace);
2955       } else if (!trace->is_trivial()) {
2956         trace->Flush(compiler, this);
2957       } else {
2958         Label skip_empty_check;
2959         // If we have a minimum number of repetitions we check the current
2960         // number first and skip the empty check if it's not enough.
2961         if (has_minimum) {
2962           int limit = data_.u_empty_match_check.repetition_limit;
2963           assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
2964         }
2965         // If the match is empty we bail out, otherwise we fall through
2966         // to the on-success continuation.
2967         assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
2968                                    trace->backtrack());
2969         assembler->Bind(&skip_empty_check);
2970         on_success()->Emit(compiler, trace);
2971       }
2972       break;
2973     }
2974     case POSITIVE_SUBMATCH_SUCCESS: {
2975       if (!trace->is_trivial()) {
2976         trace->Flush(compiler, this);
2977         return;
2978       }
2979       assembler->ReadCurrentPositionFromRegister(
2980           data_.u_submatch.current_position_register);
2981       assembler->ReadStackPointerFromRegister(
2982           data_.u_submatch.stack_pointer_register);
2983       int clear_register_count = data_.u_submatch.clear_register_count;
2984       if (clear_register_count == 0) {
2985         on_success()->Emit(compiler, trace);
2986         return;
2987       }
2988       int clear_registers_from = data_.u_submatch.clear_register_from;
2989       Label clear_registers_backtrack;
2990       Trace new_trace = *trace;
2991       new_trace.set_backtrack(&clear_registers_backtrack);
2992       on_success()->Emit(compiler, &new_trace);
2993 
2994       assembler->Bind(&clear_registers_backtrack);
2995       int clear_registers_to = clear_registers_from + clear_register_count - 1;
2996       assembler->ClearRegisters(clear_registers_from, clear_registers_to);
2997 
2998       ASSERT(trace->backtrack() == NULL);
2999       assembler->Backtrack();
3000       return;
3001     }
3002     default:
3003       UNREACHABLE();
3004   }
3005 }
3006 
3007 
Emit(RegExpCompiler * compiler,Trace * trace)3008 void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
3009   RegExpMacroAssembler* assembler = compiler->macro_assembler();
3010   if (!trace->is_trivial()) {
3011     trace->Flush(compiler, this);
3012     return;
3013   }
3014 
3015   LimitResult limit_result = LimitVersions(compiler, trace);
3016   if (limit_result == DONE) return;
3017   ASSERT(limit_result == CONTINUE);
3018 
3019   RecursionCheck rc(compiler);
3020 
3021   ASSERT_EQ(start_reg_ + 1, end_reg_);
3022   if (compiler->ignore_case()) {
3023     assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
3024                                                trace->backtrack());
3025   } else {
3026     assembler->CheckNotBackReference(start_reg_, trace->backtrack());
3027   }
3028   on_success()->Emit(compiler, trace);
3029 }
3030 
3031 
3032 // -------------------------------------------------------------------
3033 // Dot/dotty output
3034 
3035 
3036 #ifdef DEBUG
3037 
3038 
3039 class DotPrinter: public NodeVisitor {
3040  public:
DotPrinter(bool ignore_case)3041   explicit DotPrinter(bool ignore_case)
3042       : ignore_case_(ignore_case),
3043         stream_(&alloc_) { }
3044   void PrintNode(const char* label, RegExpNode* node);
3045   void Visit(RegExpNode* node);
3046   void PrintAttributes(RegExpNode* from);
stream()3047   StringStream* stream() { return &stream_; }
3048   void PrintOnFailure(RegExpNode* from, RegExpNode* to);
3049 #define DECLARE_VISIT(Type)                                          \
3050   virtual void Visit##Type(Type##Node* that);
3051 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
3052 #undef DECLARE_VISIT
3053  private:
3054   bool ignore_case_;
3055   HeapStringAllocator alloc_;
3056   StringStream stream_;
3057 };
3058 
3059 
PrintNode(const char * label,RegExpNode * node)3060 void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
3061   stream()->Add("digraph G {\n  graph [label=\"");
3062   for (int i = 0; label[i]; i++) {
3063     switch (label[i]) {
3064       case '\\':
3065         stream()->Add("\\\\");
3066         break;
3067       case '"':
3068         stream()->Add("\"");
3069         break;
3070       default:
3071         stream()->Put(label[i]);
3072         break;
3073     }
3074   }
3075   stream()->Add("\"];\n");
3076   Visit(node);
3077   stream()->Add("}\n");
3078   printf("%s", *(stream()->ToCString()));
3079 }
3080 
3081 
Visit(RegExpNode * node)3082 void DotPrinter::Visit(RegExpNode* node) {
3083   if (node->info()->visited) return;
3084   node->info()->visited = true;
3085   node->Accept(this);
3086 }
3087 
3088 
PrintOnFailure(RegExpNode * from,RegExpNode * on_failure)3089 void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
3090   stream()->Add("  n%p -> n%p [style=dotted];\n", from, on_failure);
3091   Visit(on_failure);
3092 }
3093 
3094 
3095 class TableEntryBodyPrinter {
3096  public:
TableEntryBodyPrinter(StringStream * stream,ChoiceNode * choice)3097   TableEntryBodyPrinter(StringStream* stream, ChoiceNode* choice)
3098       : stream_(stream), choice_(choice) { }
Call(uc16 from,DispatchTable::Entry entry)3099   void Call(uc16 from, DispatchTable::Entry entry) {
3100     OutSet* out_set = entry.out_set();
3101     for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
3102       if (out_set->Get(i)) {
3103         stream()->Add("    n%p:s%io%i -> n%p;\n",
3104                       choice(),
3105                       from,
3106                       i,
3107                       choice()->alternatives()->at(i).node());
3108       }
3109     }
3110   }
3111  private:
stream()3112   StringStream* stream() { return stream_; }
choice()3113   ChoiceNode* choice() { return choice_; }
3114   StringStream* stream_;
3115   ChoiceNode* choice_;
3116 };
3117 
3118 
3119 class TableEntryHeaderPrinter {
3120  public:
TableEntryHeaderPrinter(StringStream * stream)3121   explicit TableEntryHeaderPrinter(StringStream* stream)
3122       : first_(true), stream_(stream) { }
Call(uc16 from,DispatchTable::Entry entry)3123   void Call(uc16 from, DispatchTable::Entry entry) {
3124     if (first_) {
3125       first_ = false;
3126     } else {
3127       stream()->Add("|");
3128     }
3129     stream()->Add("{\\%k-\\%k|{", from, entry.to());
3130     OutSet* out_set = entry.out_set();
3131     int priority = 0;
3132     for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
3133       if (out_set->Get(i)) {
3134         if (priority > 0) stream()->Add("|");
3135         stream()->Add("<s%io%i> %i", from, i, priority);
3136         priority++;
3137       }
3138     }
3139     stream()->Add("}}");
3140   }
3141  private:
3142   bool first_;
stream()3143   StringStream* stream() { return stream_; }
3144   StringStream* stream_;
3145 };
3146 
3147 
3148 class AttributePrinter {
3149  public:
AttributePrinter(DotPrinter * out)3150   explicit AttributePrinter(DotPrinter* out)
3151       : out_(out), first_(true) { }
PrintSeparator()3152   void PrintSeparator() {
3153     if (first_) {
3154       first_ = false;
3155     } else {
3156       out_->stream()->Add("|");
3157     }
3158   }
PrintBit(const char * name,bool value)3159   void PrintBit(const char* name, bool value) {
3160     if (!value) return;
3161     PrintSeparator();
3162     out_->stream()->Add("{%s}", name);
3163   }
PrintPositive(const char * name,int value)3164   void PrintPositive(const char* name, int value) {
3165     if (value < 0) return;
3166     PrintSeparator();
3167     out_->stream()->Add("{%s|%x}", name, value);
3168   }
3169  private:
3170   DotPrinter* out_;
3171   bool first_;
3172 };
3173 
3174 
PrintAttributes(RegExpNode * that)3175 void DotPrinter::PrintAttributes(RegExpNode* that) {
3176   stream()->Add("  a%p [shape=Mrecord, color=grey, fontcolor=grey, "
3177                 "margin=0.1, fontsize=10, label=\"{",
3178                 that);
3179   AttributePrinter printer(this);
3180   NodeInfo* info = that->info();
3181   printer.PrintBit("NI", info->follows_newline_interest);
3182   printer.PrintBit("WI", info->follows_word_interest);
3183   printer.PrintBit("SI", info->follows_start_interest);
3184   Label* label = that->label();
3185   if (label->is_bound())
3186     printer.PrintPositive("@", label->pos());
3187   stream()->Add("}\"];\n");
3188   stream()->Add("  a%p -> n%p [style=dashed, color=grey, "
3189                 "arrowhead=none];\n", that, that);
3190 }
3191 
3192 
3193 static const bool kPrintDispatchTable = false;
VisitChoice(ChoiceNode * that)3194 void DotPrinter::VisitChoice(ChoiceNode* that) {
3195   if (kPrintDispatchTable) {
3196     stream()->Add("  n%p [shape=Mrecord, label=\"", that);
3197     TableEntryHeaderPrinter header_printer(stream());
3198     that->GetTable(ignore_case_)->ForEach(&header_printer);
3199     stream()->Add("\"]\n", that);
3200     PrintAttributes(that);
3201     TableEntryBodyPrinter body_printer(stream(), that);
3202     that->GetTable(ignore_case_)->ForEach(&body_printer);
3203   } else {
3204     stream()->Add("  n%p [shape=Mrecord, label=\"?\"];\n", that);
3205     for (int i = 0; i < that->alternatives()->length(); i++) {
3206       GuardedAlternative alt = that->alternatives()->at(i);
3207       stream()->Add("  n%p -> n%p;\n", that, alt.node());
3208     }
3209   }
3210   for (int i = 0; i < that->alternatives()->length(); i++) {
3211     GuardedAlternative alt = that->alternatives()->at(i);
3212     alt.node()->Accept(this);
3213   }
3214 }
3215 
3216 
VisitText(TextNode * that)3217 void DotPrinter::VisitText(TextNode* that) {
3218   stream()->Add("  n%p [label=\"", that);
3219   for (int i = 0; i < that->elements()->length(); i++) {
3220     if (i > 0) stream()->Add(" ");
3221     TextElement elm = that->elements()->at(i);
3222     switch (elm.type) {
3223       case TextElement::ATOM: {
3224         stream()->Add("'%w'", elm.data.u_atom->data());
3225         break;
3226       }
3227       case TextElement::CHAR_CLASS: {
3228         RegExpCharacterClass* node = elm.data.u_char_class;
3229         stream()->Add("[");
3230         if (node->is_negated())
3231           stream()->Add("^");
3232         for (int j = 0; j < node->ranges()->length(); j++) {
3233           CharacterRange range = node->ranges()->at(j);
3234           stream()->Add("%k-%k", range.from(), range.to());
3235         }
3236         stream()->Add("]");
3237         break;
3238       }
3239       default:
3240         UNREACHABLE();
3241     }
3242   }
3243   stream()->Add("\", shape=box, peripheries=2];\n");
3244   PrintAttributes(that);
3245   stream()->Add("  n%p -> n%p;\n", that, that->on_success());
3246   Visit(that->on_success());
3247 }
3248 
3249 
VisitBackReference(BackReferenceNode * that)3250 void DotPrinter::VisitBackReference(BackReferenceNode* that) {
3251   stream()->Add("  n%p [label=\"$%i..$%i\", shape=doubleoctagon];\n",
3252                 that,
3253                 that->start_register(),
3254                 that->end_register());
3255   PrintAttributes(that);
3256   stream()->Add("  n%p -> n%p;\n", that, that->on_success());
3257   Visit(that->on_success());
3258 }
3259 
3260 
VisitEnd(EndNode * that)3261 void DotPrinter::VisitEnd(EndNode* that) {
3262   stream()->Add("  n%p [style=bold, shape=point];\n", that);
3263   PrintAttributes(that);
3264 }
3265 
3266 
VisitAssertion(AssertionNode * that)3267 void DotPrinter::VisitAssertion(AssertionNode* that) {
3268   stream()->Add("  n%p [", that);
3269   switch (that->type()) {
3270     case AssertionNode::AT_END:
3271       stream()->Add("label=\"$\", shape=septagon");
3272       break;
3273     case AssertionNode::AT_START:
3274       stream()->Add("label=\"^\", shape=septagon");
3275       break;
3276     case AssertionNode::AT_BOUNDARY:
3277       stream()->Add("label=\"\\b\", shape=septagon");
3278       break;
3279     case AssertionNode::AT_NON_BOUNDARY:
3280       stream()->Add("label=\"\\B\", shape=septagon");
3281       break;
3282     case AssertionNode::AFTER_NEWLINE:
3283       stream()->Add("label=\"(?<=\\n)\", shape=septagon");
3284       break;
3285   }
3286   stream()->Add("];\n");
3287   PrintAttributes(that);
3288   RegExpNode* successor = that->on_success();
3289   stream()->Add("  n%p -> n%p;\n", that, successor);
3290   Visit(successor);
3291 }
3292 
3293 
VisitAction(ActionNode * that)3294 void DotPrinter::VisitAction(ActionNode* that) {
3295   stream()->Add("  n%p [", that);
3296   switch (that->type_) {
3297     case ActionNode::SET_REGISTER:
3298       stream()->Add("label=\"$%i:=%i\", shape=octagon",
3299                     that->data_.u_store_register.reg,
3300                     that->data_.u_store_register.value);
3301       break;
3302     case ActionNode::INCREMENT_REGISTER:
3303       stream()->Add("label=\"$%i++\", shape=octagon",
3304                     that->data_.u_increment_register.reg);
3305       break;
3306     case ActionNode::STORE_POSITION:
3307       stream()->Add("label=\"$%i:=$pos\", shape=octagon",
3308                     that->data_.u_position_register.reg);
3309       break;
3310     case ActionNode::BEGIN_SUBMATCH:
3311       stream()->Add("label=\"$%i:=$pos,begin\", shape=septagon",
3312                     that->data_.u_submatch.current_position_register);
3313       break;
3314     case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
3315       stream()->Add("label=\"escape\", shape=septagon");
3316       break;
3317     case ActionNode::EMPTY_MATCH_CHECK:
3318       stream()->Add("label=\"$%i=$pos?,$%i<%i?\", shape=septagon",
3319                     that->data_.u_empty_match_check.start_register,
3320                     that->data_.u_empty_match_check.repetition_register,
3321                     that->data_.u_empty_match_check.repetition_limit);
3322       break;
3323     case ActionNode::CLEAR_CAPTURES: {
3324       stream()->Add("label=\"clear $%i to $%i\", shape=septagon",
3325                     that->data_.u_clear_captures.range_from,
3326                     that->data_.u_clear_captures.range_to);
3327       break;
3328     }
3329   }
3330   stream()->Add("];\n");
3331   PrintAttributes(that);
3332   RegExpNode* successor = that->on_success();
3333   stream()->Add("  n%p -> n%p;\n", that, successor);
3334   Visit(successor);
3335 }
3336 
3337 
3338 class DispatchTableDumper {
3339  public:
DispatchTableDumper(StringStream * stream)3340   explicit DispatchTableDumper(StringStream* stream) : stream_(stream) { }
3341   void Call(uc16 key, DispatchTable::Entry entry);
stream()3342   StringStream* stream() { return stream_; }
3343  private:
3344   StringStream* stream_;
3345 };
3346 
3347 
Call(uc16 key,DispatchTable::Entry entry)3348 void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
3349   stream()->Add("[%k-%k]: {", key, entry.to());
3350   OutSet* set = entry.out_set();
3351   bool first = true;
3352   for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
3353     if (set->Get(i)) {
3354       if (first) {
3355         first = false;
3356       } else {
3357         stream()->Add(", ");
3358       }
3359       stream()->Add("%i", i);
3360     }
3361   }
3362   stream()->Add("}\n");
3363 }
3364 
3365 
Dump()3366 void DispatchTable::Dump() {
3367   HeapStringAllocator alloc;
3368   StringStream stream(&alloc);
3369   DispatchTableDumper dumper(&stream);
3370   tree()->ForEach(&dumper);
3371   OS::PrintError("%s", *stream.ToCString());
3372 }
3373 
3374 
DotPrint(const char * label,RegExpNode * node,bool ignore_case)3375 void RegExpEngine::DotPrint(const char* label,
3376                             RegExpNode* node,
3377                             bool ignore_case) {
3378   DotPrinter printer(ignore_case);
3379   printer.PrintNode(label, node);
3380 }
3381 
3382 
3383 #endif  // DEBUG
3384 
3385 
3386 // -------------------------------------------------------------------
3387 // Tree to graph conversion
3388 
3389 static const int kSpaceRangeCount = 20;
3390 static const int kSpaceRangeAsciiCount = 4;
3391 static const uc16 kSpaceRanges[kSpaceRangeCount] = { 0x0009, 0x000D, 0x0020,
3392     0x0020, 0x00A0, 0x00A0, 0x1680, 0x1680, 0x180E, 0x180E, 0x2000, 0x200A,
3393     0x2028, 0x2029, 0x202F, 0x202F, 0x205F, 0x205F, 0x3000, 0x3000 };
3394 
3395 static const int kWordRangeCount = 8;
3396 static const uc16 kWordRanges[kWordRangeCount] = { '0', '9', 'A', 'Z', '_',
3397     '_', 'a', 'z' };
3398 
3399 static const int kDigitRangeCount = 2;
3400 static const uc16 kDigitRanges[kDigitRangeCount] = { '0', '9' };
3401 
3402 static const int kLineTerminatorRangeCount = 6;
3403 static const uc16 kLineTerminatorRanges[kLineTerminatorRangeCount] = { 0x000A,
3404     0x000A, 0x000D, 0x000D, 0x2028, 0x2029 };
3405 
ToNode(RegExpCompiler * compiler,RegExpNode * on_success)3406 RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
3407                                RegExpNode* on_success) {
3408   ZoneList<TextElement>* elms = new ZoneList<TextElement>(1);
3409   elms->Add(TextElement::Atom(this));
3410   return new TextNode(elms, on_success);
3411 }
3412 
3413 
ToNode(RegExpCompiler * compiler,RegExpNode * on_success)3414 RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
3415                                RegExpNode* on_success) {
3416   return new TextNode(elements(), on_success);
3417 }
3418 
CompareInverseRanges(ZoneList<CharacterRange> * ranges,const uc16 * special_class,int length)3419 static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
3420                                  const uc16* special_class,
3421                                  int length) {
3422   ASSERT(ranges->length() != 0);
3423   ASSERT(length != 0);
3424   ASSERT(special_class[0] != 0);
3425   if (ranges->length() != (length >> 1) + 1) {
3426     return false;
3427   }
3428   CharacterRange range = ranges->at(0);
3429   if (range.from() != 0) {
3430     return false;
3431   }
3432   for (int i = 0; i < length; i += 2) {
3433     if (special_class[i] != (range.to() + 1)) {
3434       return false;
3435     }
3436     range = ranges->at((i >> 1) + 1);
3437     if (special_class[i+1] != range.from() - 1) {
3438       return false;
3439     }
3440   }
3441   if (range.to() != 0xffff) {
3442     return false;
3443   }
3444   return true;
3445 }
3446 
3447 
CompareRanges(ZoneList<CharacterRange> * ranges,const uc16 * special_class,int length)3448 static bool CompareRanges(ZoneList<CharacterRange>* ranges,
3449                           const uc16* special_class,
3450                           int length) {
3451   if (ranges->length() * 2 != length) {
3452     return false;
3453   }
3454   for (int i = 0; i < length; i += 2) {
3455     CharacterRange range = ranges->at(i >> 1);
3456     if (range.from() != special_class[i] || range.to() != special_class[i+1]) {
3457       return false;
3458     }
3459   }
3460   return true;
3461 }
3462 
3463 
is_standard()3464 bool RegExpCharacterClass::is_standard() {
3465   // TODO(lrn): Remove need for this function, by not throwing away information
3466   // along the way.
3467   if (is_negated_) {
3468     return false;
3469   }
3470   if (set_.is_standard()) {
3471     return true;
3472   }
3473   if (CompareRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
3474     set_.set_standard_set_type('s');
3475     return true;
3476   }
3477   if (CompareInverseRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
3478     set_.set_standard_set_type('S');
3479     return true;
3480   }
3481   if (CompareInverseRanges(set_.ranges(),
3482                            kLineTerminatorRanges,
3483                            kLineTerminatorRangeCount)) {
3484     set_.set_standard_set_type('.');
3485     return true;
3486   }
3487   return false;
3488 }
3489 
3490 
ToNode(RegExpCompiler * compiler,RegExpNode * on_success)3491 RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
3492                                          RegExpNode* on_success) {
3493   return new TextNode(this, on_success);
3494 }
3495 
3496 
ToNode(RegExpCompiler * compiler,RegExpNode * on_success)3497 RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
3498                                       RegExpNode* on_success) {
3499   ZoneList<RegExpTree*>* alternatives = this->alternatives();
3500   int length = alternatives->length();
3501   ChoiceNode* result = new ChoiceNode(length);
3502   for (int i = 0; i < length; i++) {
3503     GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
3504                                                                on_success));
3505     result->AddAlternative(alternative);
3506   }
3507   return result;
3508 }
3509 
3510 
ToNode(RegExpCompiler * compiler,RegExpNode * on_success)3511 RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
3512                                      RegExpNode* on_success) {
3513   return ToNode(min(),
3514                 max(),
3515                 is_greedy(),
3516                 body(),
3517                 compiler,
3518                 on_success);
3519 }
3520 
3521 
ToNode(int min,int max,bool is_greedy,RegExpTree * body,RegExpCompiler * compiler,RegExpNode * on_success,bool not_at_start)3522 RegExpNode* RegExpQuantifier::ToNode(int min,
3523                                      int max,
3524                                      bool is_greedy,
3525                                      RegExpTree* body,
3526                                      RegExpCompiler* compiler,
3527                                      RegExpNode* on_success,
3528                                      bool not_at_start) {
3529   // x{f, t} becomes this:
3530   //
3531   //             (r++)<-.
3532   //               |     `
3533   //               |     (x)
3534   //               v     ^
3535   //      (r=0)-->(?)---/ [if r < t]
3536   //               |
3537   //   [if r >= f] \----> ...
3538   //
3539 
3540   // 15.10.2.5 RepeatMatcher algorithm.
3541   // The parser has already eliminated the case where max is 0.  In the case
3542   // where max_match is zero the parser has removed the quantifier if min was
3543   // > 0 and removed the atom if min was 0.  See AddQuantifierToAtom.
3544 
3545   // If we know that we cannot match zero length then things are a little
3546   // simpler since we don't need to make the special zero length match check
3547   // from step 2.1.  If the min and max are small we can unroll a little in
3548   // this case.
3549   static const int kMaxUnrolledMinMatches = 3;  // Unroll (foo)+ and (foo){3,}
3550   static const int kMaxUnrolledMaxMatches = 3;  // Unroll (foo)? and (foo){x,3}
3551   if (max == 0) return on_success;  // This can happen due to recursion.
3552   bool body_can_be_empty = (body->min_match() == 0);
3553   int body_start_reg = RegExpCompiler::kNoRegister;
3554   Interval capture_registers = body->CaptureRegisters();
3555   bool needs_capture_clearing = !capture_registers.is_empty();
3556   if (body_can_be_empty) {
3557     body_start_reg = compiler->AllocateRegister();
3558   } else if (FLAG_regexp_optimization && !needs_capture_clearing) {
3559     // Only unroll if there are no captures and the body can't be
3560     // empty.
3561     if (min > 0 && min <= kMaxUnrolledMinMatches) {
3562       int new_max = (max == kInfinity) ? max : max - min;
3563       // Recurse once to get the loop or optional matches after the fixed ones.
3564       RegExpNode* answer = ToNode(
3565           0, new_max, is_greedy, body, compiler, on_success, true);
3566       // Unroll the forced matches from 0 to min.  This can cause chains of
3567       // TextNodes (which the parser does not generate).  These should be
3568       // combined if it turns out they hinder good code generation.
3569       for (int i = 0; i < min; i++) {
3570         answer = body->ToNode(compiler, answer);
3571       }
3572       return answer;
3573     }
3574     if (max <= kMaxUnrolledMaxMatches) {
3575       ASSERT(min == 0);
3576       // Unroll the optional matches up to max.
3577       RegExpNode* answer = on_success;
3578       for (int i = 0; i < max; i++) {
3579         ChoiceNode* alternation = new ChoiceNode(2);
3580         if (is_greedy) {
3581           alternation->AddAlternative(GuardedAlternative(body->ToNode(compiler,
3582                                                                       answer)));
3583           alternation->AddAlternative(GuardedAlternative(on_success));
3584         } else {
3585           alternation->AddAlternative(GuardedAlternative(on_success));
3586           alternation->AddAlternative(GuardedAlternative(body->ToNode(compiler,
3587                                                                       answer)));
3588         }
3589         answer = alternation;
3590         if (not_at_start) alternation->set_not_at_start();
3591       }
3592       return answer;
3593     }
3594   }
3595   bool has_min = min > 0;
3596   bool has_max = max < RegExpTree::kInfinity;
3597   bool needs_counter = has_min || has_max;
3598   int reg_ctr = needs_counter
3599       ? compiler->AllocateRegister()
3600       : RegExpCompiler::kNoRegister;
3601   LoopChoiceNode* center = new LoopChoiceNode(body->min_match() == 0);
3602   if (not_at_start) center->set_not_at_start();
3603   RegExpNode* loop_return = needs_counter
3604       ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
3605       : static_cast<RegExpNode*>(center);
3606   if (body_can_be_empty) {
3607     // If the body can be empty we need to check if it was and then
3608     // backtrack.
3609     loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
3610                                               reg_ctr,
3611                                               min,
3612                                               loop_return);
3613   }
3614   RegExpNode* body_node = body->ToNode(compiler, loop_return);
3615   if (body_can_be_empty) {
3616     // If the body can be empty we need to store the start position
3617     // so we can bail out if it was empty.
3618     body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
3619   }
3620   if (needs_capture_clearing) {
3621     // Before entering the body of this loop we need to clear captures.
3622     body_node = ActionNode::ClearCaptures(capture_registers, body_node);
3623   }
3624   GuardedAlternative body_alt(body_node);
3625   if (has_max) {
3626     Guard* body_guard = new Guard(reg_ctr, Guard::LT, max);
3627     body_alt.AddGuard(body_guard);
3628   }
3629   GuardedAlternative rest_alt(on_success);
3630   if (has_min) {
3631     Guard* rest_guard = new Guard(reg_ctr, Guard::GEQ, min);
3632     rest_alt.AddGuard(rest_guard);
3633   }
3634   if (is_greedy) {
3635     center->AddLoopAlternative(body_alt);
3636     center->AddContinueAlternative(rest_alt);
3637   } else {
3638     center->AddContinueAlternative(rest_alt);
3639     center->AddLoopAlternative(body_alt);
3640   }
3641   if (needs_counter) {
3642     return ActionNode::SetRegister(reg_ctr, 0, center);
3643   } else {
3644     return center;
3645   }
3646 }
3647 
3648 
ToNode(RegExpCompiler * compiler,RegExpNode * on_success)3649 RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
3650                                     RegExpNode* on_success) {
3651   NodeInfo info;
3652   switch (type()) {
3653     case START_OF_LINE:
3654       return AssertionNode::AfterNewline(on_success);
3655     case START_OF_INPUT:
3656       return AssertionNode::AtStart(on_success);
3657     case BOUNDARY:
3658       return AssertionNode::AtBoundary(on_success);
3659     case NON_BOUNDARY:
3660       return AssertionNode::AtNonBoundary(on_success);
3661     case END_OF_INPUT:
3662       return AssertionNode::AtEnd(on_success);
3663     case END_OF_LINE: {
3664       // Compile $ in multiline regexps as an alternation with a positive
3665       // lookahead in one side and an end-of-input on the other side.
3666       // We need two registers for the lookahead.
3667       int stack_pointer_register = compiler->AllocateRegister();
3668       int position_register = compiler->AllocateRegister();
3669       // The ChoiceNode to distinguish between a newline and end-of-input.
3670       ChoiceNode* result = new ChoiceNode(2);
3671       // Create a newline atom.
3672       ZoneList<CharacterRange>* newline_ranges =
3673           new ZoneList<CharacterRange>(3);
3674       CharacterRange::AddClassEscape('n', newline_ranges);
3675       RegExpCharacterClass* newline_atom = new RegExpCharacterClass('n');
3676       TextNode* newline_matcher = new TextNode(
3677          newline_atom,
3678          ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
3679                                              position_register,
3680                                              0,  // No captures inside.
3681                                              -1,  // Ignored if no captures.
3682                                              on_success));
3683       // Create an end-of-input matcher.
3684       RegExpNode* end_of_line = ActionNode::BeginSubmatch(
3685           stack_pointer_register,
3686           position_register,
3687           newline_matcher);
3688       // Add the two alternatives to the ChoiceNode.
3689       GuardedAlternative eol_alternative(end_of_line);
3690       result->AddAlternative(eol_alternative);
3691       GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
3692       result->AddAlternative(end_alternative);
3693       return result;
3694     }
3695     default:
3696       UNREACHABLE();
3697   }
3698   return on_success;
3699 }
3700 
3701 
ToNode(RegExpCompiler * compiler,RegExpNode * on_success)3702 RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
3703                                         RegExpNode* on_success) {
3704   return new BackReferenceNode(RegExpCapture::StartRegister(index()),
3705                                RegExpCapture::EndRegister(index()),
3706                                on_success);
3707 }
3708 
3709 
ToNode(RegExpCompiler * compiler,RegExpNode * on_success)3710 RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
3711                                 RegExpNode* on_success) {
3712   return on_success;
3713 }
3714 
3715 
ToNode(RegExpCompiler * compiler,RegExpNode * on_success)3716 RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
3717                                     RegExpNode* on_success) {
3718   int stack_pointer_register = compiler->AllocateRegister();
3719   int position_register = compiler->AllocateRegister();
3720 
3721   const int registers_per_capture = 2;
3722   const int register_of_first_capture = 2;
3723   int register_count = capture_count_ * registers_per_capture;
3724   int register_start =
3725     register_of_first_capture + capture_from_ * registers_per_capture;
3726 
3727   RegExpNode* success;
3728   if (is_positive()) {
3729     RegExpNode* node = ActionNode::BeginSubmatch(
3730         stack_pointer_register,
3731         position_register,
3732         body()->ToNode(
3733             compiler,
3734             ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
3735                                                 position_register,
3736                                                 register_count,
3737                                                 register_start,
3738                                                 on_success)));
3739     return node;
3740   } else {
3741     // We use a ChoiceNode for a negative lookahead because it has most of
3742     // the characteristics we need.  It has the body of the lookahead as its
3743     // first alternative and the expression after the lookahead of the second
3744     // alternative.  If the first alternative succeeds then the
3745     // NegativeSubmatchSuccess will unwind the stack including everything the
3746     // choice node set up and backtrack.  If the first alternative fails then
3747     // the second alternative is tried, which is exactly the desired result
3748     // for a negative lookahead.  The NegativeLookaheadChoiceNode is a special
3749     // ChoiceNode that knows to ignore the first exit when calculating quick
3750     // checks.
3751     GuardedAlternative body_alt(
3752         body()->ToNode(
3753             compiler,
3754             success = new NegativeSubmatchSuccess(stack_pointer_register,
3755                                                   position_register,
3756                                                   register_count,
3757                                                   register_start)));
3758     ChoiceNode* choice_node =
3759         new NegativeLookaheadChoiceNode(body_alt,
3760                                         GuardedAlternative(on_success));
3761     return ActionNode::BeginSubmatch(stack_pointer_register,
3762                                      position_register,
3763                                      choice_node);
3764   }
3765 }
3766 
3767 
ToNode(RegExpCompiler * compiler,RegExpNode * on_success)3768 RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
3769                                   RegExpNode* on_success) {
3770   return ToNode(body(), index(), compiler, on_success);
3771 }
3772 
3773 
ToNode(RegExpTree * body,int index,RegExpCompiler * compiler,RegExpNode * on_success)3774 RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
3775                                   int index,
3776                                   RegExpCompiler* compiler,
3777                                   RegExpNode* on_success) {
3778   int start_reg = RegExpCapture::StartRegister(index);
3779   int end_reg = RegExpCapture::EndRegister(index);
3780   RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
3781   RegExpNode* body_node = body->ToNode(compiler, store_end);
3782   return ActionNode::StorePosition(start_reg, true, body_node);
3783 }
3784 
3785 
ToNode(RegExpCompiler * compiler,RegExpNode * on_success)3786 RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
3787                                       RegExpNode* on_success) {
3788   ZoneList<RegExpTree*>* children = nodes();
3789   RegExpNode* current = on_success;
3790   for (int i = children->length() - 1; i >= 0; i--) {
3791     current = children->at(i)->ToNode(compiler, current);
3792   }
3793   return current;
3794 }
3795 
3796 
AddClass(const uc16 * elmv,int elmc,ZoneList<CharacterRange> * ranges)3797 static void AddClass(const uc16* elmv,
3798                      int elmc,
3799                      ZoneList<CharacterRange>* ranges) {
3800   for (int i = 0; i < elmc; i += 2) {
3801     ASSERT(elmv[i] <= elmv[i + 1]);
3802     ranges->Add(CharacterRange(elmv[i], elmv[i + 1]));
3803   }
3804 }
3805 
3806 
AddClassNegated(const uc16 * elmv,int elmc,ZoneList<CharacterRange> * ranges)3807 static void AddClassNegated(const uc16 *elmv,
3808                             int elmc,
3809                             ZoneList<CharacterRange>* ranges) {
3810   ASSERT(elmv[0] != 0x0000);
3811   ASSERT(elmv[elmc-1] != String::kMaxUC16CharCode);
3812   uc16 last = 0x0000;
3813   for (int i = 0; i < elmc; i += 2) {
3814     ASSERT(last <= elmv[i] - 1);
3815     ASSERT(elmv[i] <= elmv[i + 1]);
3816     ranges->Add(CharacterRange(last, elmv[i] - 1));
3817     last = elmv[i + 1] + 1;
3818   }
3819   ranges->Add(CharacterRange(last, String::kMaxUC16CharCode));
3820 }
3821 
3822 
AddClassEscape(uc16 type,ZoneList<CharacterRange> * ranges)3823 void CharacterRange::AddClassEscape(uc16 type,
3824                                     ZoneList<CharacterRange>* ranges) {
3825   switch (type) {
3826     case 's':
3827       AddClass(kSpaceRanges, kSpaceRangeCount, ranges);
3828       break;
3829     case 'S':
3830       AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges);
3831       break;
3832     case 'w':
3833       AddClass(kWordRanges, kWordRangeCount, ranges);
3834       break;
3835     case 'W':
3836       AddClassNegated(kWordRanges, kWordRangeCount, ranges);
3837       break;
3838     case 'd':
3839       AddClass(kDigitRanges, kDigitRangeCount, ranges);
3840       break;
3841     case 'D':
3842       AddClassNegated(kDigitRanges, kDigitRangeCount, ranges);
3843       break;
3844     case '.':
3845       AddClassNegated(kLineTerminatorRanges,
3846                       kLineTerminatorRangeCount,
3847                       ranges);
3848       break;
3849     // This is not a character range as defined by the spec but a
3850     // convenient shorthand for a character class that matches any
3851     // character.
3852     case '*':
3853       ranges->Add(CharacterRange::Everything());
3854       break;
3855     // This is the set of characters matched by the $ and ^ symbols
3856     // in multiline mode.
3857     case 'n':
3858       AddClass(kLineTerminatorRanges,
3859                kLineTerminatorRangeCount,
3860                ranges);
3861       break;
3862     default:
3863       UNREACHABLE();
3864   }
3865 }
3866 
3867 
GetWordBounds()3868 Vector<const uc16> CharacterRange::GetWordBounds() {
3869   return Vector<const uc16>(kWordRanges, kWordRangeCount);
3870 }
3871 
3872 
3873 class CharacterRangeSplitter {
3874  public:
CharacterRangeSplitter(ZoneList<CharacterRange> ** included,ZoneList<CharacterRange> ** excluded)3875   CharacterRangeSplitter(ZoneList<CharacterRange>** included,
3876                           ZoneList<CharacterRange>** excluded)
3877       : included_(included),
3878         excluded_(excluded) { }
3879   void Call(uc16 from, DispatchTable::Entry entry);
3880 
3881   static const int kInBase = 0;
3882   static const int kInOverlay = 1;
3883 
3884  private:
3885   ZoneList<CharacterRange>** included_;
3886   ZoneList<CharacterRange>** excluded_;
3887 };
3888 
3889 
Call(uc16 from,DispatchTable::Entry entry)3890 void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
3891   if (!entry.out_set()->Get(kInBase)) return;
3892   ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
3893     ? included_
3894     : excluded_;
3895   if (*target == NULL) *target = new ZoneList<CharacterRange>(2);
3896   (*target)->Add(CharacterRange(entry.from(), entry.to()));
3897 }
3898 
3899 
Split(ZoneList<CharacterRange> * base,Vector<const uc16> overlay,ZoneList<CharacterRange> ** included,ZoneList<CharacterRange> ** excluded)3900 void CharacterRange::Split(ZoneList<CharacterRange>* base,
3901                            Vector<const uc16> overlay,
3902                            ZoneList<CharacterRange>** included,
3903                            ZoneList<CharacterRange>** excluded) {
3904   ASSERT_EQ(NULL, *included);
3905   ASSERT_EQ(NULL, *excluded);
3906   DispatchTable table;
3907   for (int i = 0; i < base->length(); i++)
3908     table.AddRange(base->at(i), CharacterRangeSplitter::kInBase);
3909   for (int i = 0; i < overlay.length(); i += 2) {
3910     table.AddRange(CharacterRange(overlay[i], overlay[i+1]),
3911                    CharacterRangeSplitter::kInOverlay);
3912   }
3913   CharacterRangeSplitter callback(included, excluded);
3914   table.ForEach(&callback);
3915 }
3916 
3917 
AddCaseEquivalents(ZoneList<CharacterRange> * ranges)3918 void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges) {
3919   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
3920   if (IsSingleton()) {
3921     // If this is a singleton we just expand the one character.
3922     int length = uncanonicalize.get(from(), '\0', chars);
3923     for (int i = 0; i < length; i++) {
3924       uc32 chr = chars[i];
3925       if (chr != from()) {
3926         ranges->Add(CharacterRange::Singleton(chars[i]));
3927       }
3928     }
3929   } else if (from() <= kRangeCanonicalizeMax &&
3930              to() <= kRangeCanonicalizeMax) {
3931     // If this is a range we expand the characters block by block,
3932     // expanding contiguous subranges (blocks) one at a time.
3933     // The approach is as follows.  For a given start character we
3934     // look up the block that contains it, for instance 'a' if the
3935     // start character is 'c'.  A block is characterized by the property
3936     // that all characters uncanonicalize in the same way as the first
3937     // element, except that each entry in the result is incremented
3938     // by the distance from the first element.  So a-z is a block
3939     // because 'a' uncanonicalizes to ['a', 'A'] and the k'th letter
3940     // uncanonicalizes to ['a' + k, 'A' + k].
3941     // Once we've found the start point we look up its uncanonicalization
3942     // and produce a range for each element.  For instance for [c-f]
3943     // we look up ['a', 'A'] and produce [c-f] and [C-F].  We then only
3944     // add a range if it is not already contained in the input, so [c-f]
3945     // will be skipped but [C-F] will be added.  If this range is not
3946     // completely contained in a block we do this for all the blocks
3947     // covered by the range.
3948     unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
3949     // First, look up the block that contains the 'from' character.
3950     int length = canonrange.get(from(), '\0', range);
3951     if (length == 0) {
3952       range[0] = from();
3953     } else {
3954       ASSERT_EQ(1, length);
3955     }
3956     int pos = from();
3957     // The start of the current block.  Note that except for the first
3958     // iteration 'start' is always equal to 'pos'.
3959     int start;
3960     // If it is not the start point of a block the entry contains the
3961     // offset of the character from the start point.
3962     if ((range[0] & kStartMarker) == 0) {
3963       start = pos - range[0];
3964     } else {
3965       start = pos;
3966     }
3967     // Then we add the ranges on at a time, incrementing the current
3968     // position to be after the last block each time.  The position
3969     // always points to the start of a block.
3970     while (pos < to()) {
3971       length = canonrange.get(start, '\0', range);
3972       if (length == 0) {
3973         range[0] = start;
3974       } else {
3975         ASSERT_EQ(1, length);
3976       }
3977       ASSERT((range[0] & kStartMarker) != 0);
3978       // The start point of a block contains the distance to the end
3979       // of the range.
3980       int block_end = start + (range[0] & kPayloadMask) - 1;
3981       int end = (block_end > to()) ? to() : block_end;
3982       length = uncanonicalize.get(start, '\0', range);
3983       for (int i = 0; i < length; i++) {
3984         uc32 c = range[i];
3985         uc16 range_from = c + (pos - start);
3986         uc16 range_to = c + (end - start);
3987         if (!(from() <= range_from && range_to <= to())) {
3988           ranges->Add(CharacterRange(range_from, range_to));
3989         }
3990       }
3991       start = pos = block_end + 1;
3992     }
3993   } else {
3994     // TODO(plesner) when we've fixed the 2^11 bug in unibrow.
3995   }
3996 }
3997 
3998 
ranges()3999 ZoneList<CharacterRange>* CharacterSet::ranges() {
4000   if (ranges_ == NULL) {
4001     ranges_ = new ZoneList<CharacterRange>(2);
4002     CharacterRange::AddClassEscape(standard_set_type_, ranges_);
4003   }
4004   return ranges_;
4005 }
4006 
4007 
4008 
4009 // -------------------------------------------------------------------
4010 // Interest propagation
4011 
4012 
TryGetSibling(NodeInfo * info)4013 RegExpNode* RegExpNode::TryGetSibling(NodeInfo* info) {
4014   for (int i = 0; i < siblings_.length(); i++) {
4015     RegExpNode* sibling = siblings_.Get(i);
4016     if (sibling->info()->Matches(info))
4017       return sibling;
4018   }
4019   return NULL;
4020 }
4021 
4022 
EnsureSibling(NodeInfo * info,bool * cloned)4023 RegExpNode* RegExpNode::EnsureSibling(NodeInfo* info, bool* cloned) {
4024   ASSERT_EQ(false, *cloned);
4025   siblings_.Ensure(this);
4026   RegExpNode* result = TryGetSibling(info);
4027   if (result != NULL) return result;
4028   result = this->Clone();
4029   NodeInfo* new_info = result->info();
4030   new_info->ResetCompilationState();
4031   new_info->AddFromPreceding(info);
4032   AddSibling(result);
4033   *cloned = true;
4034   return result;
4035 }
4036 
4037 
4038 template <class C>
PropagateToEndpoint(C * node,NodeInfo * info)4039 static RegExpNode* PropagateToEndpoint(C* node, NodeInfo* info) {
4040   NodeInfo full_info(*node->info());
4041   full_info.AddFromPreceding(info);
4042   bool cloned = false;
4043   return RegExpNode::EnsureSibling(node, &full_info, &cloned);
4044 }
4045 
4046 
4047 // -------------------------------------------------------------------
4048 // Splay tree
4049 
4050 
Extend(unsigned value)4051 OutSet* OutSet::Extend(unsigned value) {
4052   if (Get(value))
4053     return this;
4054   if (successors() != NULL) {
4055     for (int i = 0; i < successors()->length(); i++) {
4056       OutSet* successor = successors()->at(i);
4057       if (successor->Get(value))
4058         return successor;
4059     }
4060   } else {
4061     successors_ = new ZoneList<OutSet*>(2);
4062   }
4063   OutSet* result = new OutSet(first_, remaining_);
4064   result->Set(value);
4065   successors()->Add(result);
4066   return result;
4067 }
4068 
4069 
Set(unsigned value)4070 void OutSet::Set(unsigned value) {
4071   if (value < kFirstLimit) {
4072     first_ |= (1 << value);
4073   } else {
4074     if (remaining_ == NULL)
4075       remaining_ = new ZoneList<unsigned>(1);
4076     if (remaining_->is_empty() || !remaining_->Contains(value))
4077       remaining_->Add(value);
4078   }
4079 }
4080 
4081 
Get(unsigned value)4082 bool OutSet::Get(unsigned value) {
4083   if (value < kFirstLimit) {
4084     return (first_ & (1 << value)) != 0;
4085   } else if (remaining_ == NULL) {
4086     return false;
4087   } else {
4088     return remaining_->Contains(value);
4089   }
4090 }
4091 
4092 
4093 const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
4094 const DispatchTable::Entry DispatchTable::Config::kNoValue;
4095 
4096 
AddRange(CharacterRange full_range,int value)4097 void DispatchTable::AddRange(CharacterRange full_range, int value) {
4098   CharacterRange current = full_range;
4099   if (tree()->is_empty()) {
4100     // If this is the first range we just insert into the table.
4101     ZoneSplayTree<Config>::Locator loc;
4102     ASSERT_RESULT(tree()->Insert(current.from(), &loc));
4103     loc.set_value(Entry(current.from(), current.to(), empty()->Extend(value)));
4104     return;
4105   }
4106   // First see if there is a range to the left of this one that
4107   // overlaps.
4108   ZoneSplayTree<Config>::Locator loc;
4109   if (tree()->FindGreatestLessThan(current.from(), &loc)) {
4110     Entry* entry = &loc.value();
4111     // If we've found a range that overlaps with this one, and it
4112     // starts strictly to the left of this one, we have to fix it
4113     // because the following code only handles ranges that start on
4114     // or after the start point of the range we're adding.
4115     if (entry->from() < current.from() && entry->to() >= current.from()) {
4116       // Snap the overlapping range in half around the start point of
4117       // the range we're adding.
4118       CharacterRange left(entry->from(), current.from() - 1);
4119       CharacterRange right(current.from(), entry->to());
4120       // The left part of the overlapping range doesn't overlap.
4121       // Truncate the whole entry to be just the left part.
4122       entry->set_to(left.to());
4123       // The right part is the one that overlaps.  We add this part
4124       // to the map and let the next step deal with merging it with
4125       // the range we're adding.
4126       ZoneSplayTree<Config>::Locator loc;
4127       ASSERT_RESULT(tree()->Insert(right.from(), &loc));
4128       loc.set_value(Entry(right.from(),
4129                           right.to(),
4130                           entry->out_set()));
4131     }
4132   }
4133   while (current.is_valid()) {
4134     if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
4135         (loc.value().from() <= current.to()) &&
4136         (loc.value().to() >= current.from())) {
4137       Entry* entry = &loc.value();
4138       // We have overlap.  If there is space between the start point of
4139       // the range we're adding and where the overlapping range starts
4140       // then we have to add a range covering just that space.
4141       if (current.from() < entry->from()) {
4142         ZoneSplayTree<Config>::Locator ins;
4143         ASSERT_RESULT(tree()->Insert(current.from(), &ins));
4144         ins.set_value(Entry(current.from(),
4145                             entry->from() - 1,
4146                             empty()->Extend(value)));
4147         current.set_from(entry->from());
4148       }
4149       ASSERT_EQ(current.from(), entry->from());
4150       // If the overlapping range extends beyond the one we want to add
4151       // we have to snap the right part off and add it separately.
4152       if (entry->to() > current.to()) {
4153         ZoneSplayTree<Config>::Locator ins;
4154         ASSERT_RESULT(tree()->Insert(current.to() + 1, &ins));
4155         ins.set_value(Entry(current.to() + 1,
4156                             entry->to(),
4157                             entry->out_set()));
4158         entry->set_to(current.to());
4159       }
4160       ASSERT(entry->to() <= current.to());
4161       // The overlapping range is now completely contained by the range
4162       // we're adding so we can just update it and move the start point
4163       // of the range we're adding just past it.
4164       entry->AddValue(value);
4165       // Bail out if the last interval ended at 0xFFFF since otherwise
4166       // adding 1 will wrap around to 0.
4167       if (entry->to() == String::kMaxUC16CharCode)
4168         break;
4169       ASSERT(entry->to() + 1 > current.from());
4170       current.set_from(entry->to() + 1);
4171     } else {
4172       // There is no overlap so we can just add the range
4173       ZoneSplayTree<Config>::Locator ins;
4174       ASSERT_RESULT(tree()->Insert(current.from(), &ins));
4175       ins.set_value(Entry(current.from(),
4176                           current.to(),
4177                           empty()->Extend(value)));
4178       break;
4179     }
4180   }
4181 }
4182 
4183 
Get(uc16 value)4184 OutSet* DispatchTable::Get(uc16 value) {
4185   ZoneSplayTree<Config>::Locator loc;
4186   if (!tree()->FindGreatestLessThan(value, &loc))
4187     return empty();
4188   Entry* entry = &loc.value();
4189   if (value <= entry->to())
4190     return entry->out_set();
4191   else
4192     return empty();
4193 }
4194 
4195 
4196 // -------------------------------------------------------------------
4197 // Analysis
4198 
4199 
EnsureAnalyzed(RegExpNode * that)4200 void Analysis::EnsureAnalyzed(RegExpNode* that) {
4201   StackLimitCheck check;
4202   if (check.HasOverflowed()) {
4203     fail("Stack overflow");
4204     return;
4205   }
4206   if (that->info()->been_analyzed || that->info()->being_analyzed)
4207     return;
4208   that->info()->being_analyzed = true;
4209   that->Accept(this);
4210   that->info()->being_analyzed = false;
4211   that->info()->been_analyzed = true;
4212 }
4213 
4214 
VisitEnd(EndNode * that)4215 void Analysis::VisitEnd(EndNode* that) {
4216   // nothing to do
4217 }
4218 
4219 
CalculateOffsets()4220 void TextNode::CalculateOffsets() {
4221   int element_count = elements()->length();
4222   // Set up the offsets of the elements relative to the start.  This is a fixed
4223   // quantity since a TextNode can only contain fixed-width things.
4224   int cp_offset = 0;
4225   for (int i = 0; i < element_count; i++) {
4226     TextElement& elm = elements()->at(i);
4227     elm.cp_offset = cp_offset;
4228     if (elm.type == TextElement::ATOM) {
4229       cp_offset += elm.data.u_atom->data().length();
4230     } else {
4231       cp_offset++;
4232       Vector<const uc16> quarks = elm.data.u_atom->data();
4233     }
4234   }
4235 }
4236 
4237 
VisitText(TextNode * that)4238 void Analysis::VisitText(TextNode* that) {
4239   if (ignore_case_) {
4240     that->MakeCaseIndependent();
4241   }
4242   EnsureAnalyzed(that->on_success());
4243   if (!has_failed()) {
4244     that->CalculateOffsets();
4245   }
4246 }
4247 
4248 
VisitAction(ActionNode * that)4249 void Analysis::VisitAction(ActionNode* that) {
4250   RegExpNode* target = that->on_success();
4251   EnsureAnalyzed(target);
4252   if (!has_failed()) {
4253     // If the next node is interested in what it follows then this node
4254     // has to be interested too so it can pass the information on.
4255     that->info()->AddFromFollowing(target->info());
4256   }
4257 }
4258 
4259 
VisitChoice(ChoiceNode * that)4260 void Analysis::VisitChoice(ChoiceNode* that) {
4261   NodeInfo* info = that->info();
4262   for (int i = 0; i < that->alternatives()->length(); i++) {
4263     RegExpNode* node = that->alternatives()->at(i).node();
4264     EnsureAnalyzed(node);
4265     if (has_failed()) return;
4266     // Anything the following nodes need to know has to be known by
4267     // this node also, so it can pass it on.
4268     info->AddFromFollowing(node->info());
4269   }
4270 }
4271 
4272 
VisitLoopChoice(LoopChoiceNode * that)4273 void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
4274   NodeInfo* info = that->info();
4275   for (int i = 0; i < that->alternatives()->length(); i++) {
4276     RegExpNode* node = that->alternatives()->at(i).node();
4277     if (node != that->loop_node()) {
4278       EnsureAnalyzed(node);
4279       if (has_failed()) return;
4280       info->AddFromFollowing(node->info());
4281     }
4282   }
4283   // Check the loop last since it may need the value of this node
4284   // to get a correct result.
4285   EnsureAnalyzed(that->loop_node());
4286   if (!has_failed()) {
4287     info->AddFromFollowing(that->loop_node()->info());
4288   }
4289 }
4290 
4291 
VisitBackReference(BackReferenceNode * that)4292 void Analysis::VisitBackReference(BackReferenceNode* that) {
4293   EnsureAnalyzed(that->on_success());
4294 }
4295 
4296 
VisitAssertion(AssertionNode * that)4297 void Analysis::VisitAssertion(AssertionNode* that) {
4298   EnsureAnalyzed(that->on_success());
4299 }
4300 
4301 
4302 // -------------------------------------------------------------------
4303 // Dispatch table construction
4304 
4305 
VisitEnd(EndNode * that)4306 void DispatchTableConstructor::VisitEnd(EndNode* that) {
4307   AddRange(CharacterRange::Everything());
4308 }
4309 
4310 
BuildTable(ChoiceNode * node)4311 void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
4312   node->set_being_calculated(true);
4313   ZoneList<GuardedAlternative>* alternatives = node->alternatives();
4314   for (int i = 0; i < alternatives->length(); i++) {
4315     set_choice_index(i);
4316     alternatives->at(i).node()->Accept(this);
4317   }
4318   node->set_being_calculated(false);
4319 }
4320 
4321 
4322 class AddDispatchRange {
4323  public:
AddDispatchRange(DispatchTableConstructor * constructor)4324   explicit AddDispatchRange(DispatchTableConstructor* constructor)
4325     : constructor_(constructor) { }
4326   void Call(uc32 from, DispatchTable::Entry entry);
4327  private:
4328   DispatchTableConstructor* constructor_;
4329 };
4330 
4331 
Call(uc32 from,DispatchTable::Entry entry)4332 void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
4333   CharacterRange range(from, entry.to());
4334   constructor_->AddRange(range);
4335 }
4336 
4337 
VisitChoice(ChoiceNode * node)4338 void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
4339   if (node->being_calculated())
4340     return;
4341   DispatchTable* table = node->GetTable(ignore_case_);
4342   AddDispatchRange adder(this);
4343   table->ForEach(&adder);
4344 }
4345 
4346 
VisitBackReference(BackReferenceNode * that)4347 void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
4348   // TODO(160): Find the node that we refer back to and propagate its start
4349   // set back to here.  For now we just accept anything.
4350   AddRange(CharacterRange::Everything());
4351 }
4352 
4353 
VisitAssertion(AssertionNode * that)4354 void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
4355   RegExpNode* target = that->on_success();
4356   target->Accept(this);
4357 }
4358 
4359 
4360 
CompareRangeByFrom(const CharacterRange * a,const CharacterRange * b)4361 static int CompareRangeByFrom(const CharacterRange* a,
4362                               const CharacterRange* b) {
4363   return Compare<uc16>(a->from(), b->from());
4364 }
4365 
4366 
AddInverse(ZoneList<CharacterRange> * ranges)4367 void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
4368   ranges->Sort(CompareRangeByFrom);
4369   uc16 last = 0;
4370   for (int i = 0; i < ranges->length(); i++) {
4371     CharacterRange range = ranges->at(i);
4372     if (last < range.from())
4373       AddRange(CharacterRange(last, range.from() - 1));
4374     if (range.to() >= last) {
4375       if (range.to() == String::kMaxUC16CharCode) {
4376         return;
4377       } else {
4378         last = range.to() + 1;
4379       }
4380     }
4381   }
4382   AddRange(CharacterRange(last, String::kMaxUC16CharCode));
4383 }
4384 
4385 
VisitText(TextNode * that)4386 void DispatchTableConstructor::VisitText(TextNode* that) {
4387   TextElement elm = that->elements()->at(0);
4388   switch (elm.type) {
4389     case TextElement::ATOM: {
4390       uc16 c = elm.data.u_atom->data()[0];
4391       AddRange(CharacterRange(c, c));
4392       break;
4393     }
4394     case TextElement::CHAR_CLASS: {
4395       RegExpCharacterClass* tree = elm.data.u_char_class;
4396       ZoneList<CharacterRange>* ranges = tree->ranges();
4397       if (tree->is_negated()) {
4398         AddInverse(ranges);
4399       } else {
4400         for (int i = 0; i < ranges->length(); i++)
4401           AddRange(ranges->at(i));
4402       }
4403       break;
4404     }
4405     default: {
4406       UNIMPLEMENTED();
4407     }
4408   }
4409 }
4410 
4411 
VisitAction(ActionNode * that)4412 void DispatchTableConstructor::VisitAction(ActionNode* that) {
4413   RegExpNode* target = that->on_success();
4414   target->Accept(this);
4415 }
4416 
4417 
Compile(RegExpCompileData * data,bool ignore_case,bool is_multiline,Handle<String> pattern,bool is_ascii)4418 RegExpEngine::CompilationResult RegExpEngine::Compile(RegExpCompileData* data,
4419                                                       bool ignore_case,
4420                                                       bool is_multiline,
4421                                                       Handle<String> pattern,
4422                                                       bool is_ascii) {
4423   if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
4424     return IrregexpRegExpTooBig();
4425   }
4426   RegExpCompiler compiler(data->capture_count, ignore_case, is_ascii);
4427   // Wrap the body of the regexp in capture #0.
4428   RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
4429                                                     0,
4430                                                     &compiler,
4431                                                     compiler.accept());
4432   RegExpNode* node = captured_body;
4433   if (!data->tree->IsAnchored()) {
4434     // Add a .*? at the beginning, outside the body capture, unless
4435     // this expression is anchored at the beginning.
4436     RegExpNode* loop_node =
4437         RegExpQuantifier::ToNode(0,
4438                                  RegExpTree::kInfinity,
4439                                  false,
4440                                  new RegExpCharacterClass('*'),
4441                                  &compiler,
4442                                  captured_body,
4443                                  data->contains_anchor);
4444 
4445     if (data->contains_anchor) {
4446       // Unroll loop once, to take care of the case that might start
4447       // at the start of input.
4448       ChoiceNode* first_step_node = new ChoiceNode(2);
4449       first_step_node->AddAlternative(GuardedAlternative(captured_body));
4450       first_step_node->AddAlternative(GuardedAlternative(
4451           new TextNode(new RegExpCharacterClass('*'), loop_node)));
4452       node = first_step_node;
4453     } else {
4454       node = loop_node;
4455     }
4456   }
4457   data->node = node;
4458   Analysis analysis(ignore_case);
4459   analysis.EnsureAnalyzed(node);
4460   if (analysis.has_failed()) {
4461     const char* error_message = analysis.error_message();
4462     return CompilationResult(error_message);
4463   }
4464 
4465   NodeInfo info = *node->info();
4466 
4467   // Create the correct assembler for the architecture.
4468 #ifdef V8_NATIVE_REGEXP
4469   // Native regexp implementation.
4470 
4471   NativeRegExpMacroAssembler::Mode mode =
4472       is_ascii ? NativeRegExpMacroAssembler::ASCII
4473                : NativeRegExpMacroAssembler::UC16;
4474 
4475 #if V8_TARGET_ARCH_IA32
4476   RegExpMacroAssemblerIA32 macro_assembler(mode, (data->capture_count + 1) * 2);
4477 #elif V8_TARGET_ARCH_X64
4478   RegExpMacroAssemblerX64 macro_assembler(mode, (data->capture_count + 1) * 2);
4479 #elif V8_TARGET_ARCH_ARM
4480   RegExpMacroAssemblerARM macro_assembler(mode, (data->capture_count + 1) * 2);
4481 #endif
4482 
4483 #else  // ! V8_NATIVE_REGEXP
4484   // Interpreted regexp implementation.
4485   EmbeddedVector<byte, 1024> codes;
4486   RegExpMacroAssemblerIrregexp macro_assembler(codes);
4487 #endif
4488 
4489   return compiler.Assemble(&macro_assembler,
4490                            node,
4491                            data->capture_count,
4492                            pattern);
4493 }
4494 
4495 }}  // namespace v8::internal
4496