• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_UTILS_H_
29 #define V8_UTILS_H_
30 
31 #include <stdlib.h>
32 
33 namespace v8 {
34 namespace internal {
35 
36 // ----------------------------------------------------------------------------
37 // General helper functions
38 
39 // Returns true iff x is a power of 2.  Does not work for zero.
40 template <typename T>
IsPowerOf2(T x)41 static inline bool IsPowerOf2(T x) {
42   return (x & (x - 1)) == 0;
43 }
44 
45 
46 // The C++ standard leaves the semantics of '>>' undefined for
47 // negative signed operands. Most implementations do the right thing,
48 // though.
ArithmeticShiftRight(int x,int s)49 static inline int ArithmeticShiftRight(int x, int s) {
50   return x >> s;
51 }
52 
53 
54 // Compute the 0-relative offset of some absolute value x of type T.
55 // This allows conversion of Addresses and integral types into
56 // 0-relative int offsets.
57 template <typename T>
OffsetFrom(T x)58 static inline intptr_t OffsetFrom(T x) {
59   return x - static_cast<T>(0);
60 }
61 
62 
63 // Compute the absolute value of type T for some 0-relative offset x.
64 // This allows conversion of 0-relative int offsets into Addresses and
65 // integral types.
66 template <typename T>
AddressFrom(intptr_t x)67 static inline T AddressFrom(intptr_t x) {
68   return static_cast<T>(0) + x;
69 }
70 
71 
72 // Return the largest multiple of m which is <= x.
73 template <typename T>
RoundDown(T x,int m)74 static inline T RoundDown(T x, int m) {
75   ASSERT(IsPowerOf2(m));
76   return AddressFrom<T>(OffsetFrom(x) & -m);
77 }
78 
79 
80 // Return the smallest multiple of m which is >= x.
81 template <typename T>
RoundUp(T x,int m)82 static inline T RoundUp(T x, int m) {
83   return RoundDown(x + m - 1, m);
84 }
85 
86 
87 template <typename T>
Compare(const T & a,const T & b)88 static int Compare(const T& a, const T& b) {
89   if (a == b)
90     return 0;
91   else if (a < b)
92     return -1;
93   else
94     return 1;
95 }
96 
97 
98 template <typename T>
PointerValueCompare(const T * a,const T * b)99 static int PointerValueCompare(const T* a, const T* b) {
100   return Compare<T>(*a, *b);
101 }
102 
103 
104 // Returns the smallest power of two which is >= x. If you pass in a
105 // number that is already a power of two, it is returned as is.
106 uint32_t RoundUpToPowerOf2(uint32_t x);
107 
108 
109 template <typename T>
IsAligned(T value,T alignment)110 static inline bool IsAligned(T value, T alignment) {
111   ASSERT(IsPowerOf2(alignment));
112   return (value & (alignment - 1)) == 0;
113 }
114 
115 
116 // Returns true if (addr + offset) is aligned.
IsAddressAligned(Address addr,intptr_t alignment,int offset)117 static inline bool IsAddressAligned(Address addr,
118                                     intptr_t alignment,
119                                     int offset) {
120   intptr_t offs = OffsetFrom(addr + offset);
121   return IsAligned(offs, alignment);
122 }
123 
124 
125 // Returns the maximum of the two parameters.
126 template <typename T>
Max(T a,T b)127 static T Max(T a, T b) {
128   return a < b ? b : a;
129 }
130 
131 
132 // Returns the minimum of the two parameters.
133 template <typename T>
Min(T a,T b)134 static T Min(T a, T b) {
135   return a < b ? a : b;
136 }
137 
138 
139 // ----------------------------------------------------------------------------
140 // BitField is a help template for encoding and decode bitfield with
141 // unsigned content.
142 template<class T, int shift, int size>
143 class BitField {
144  public:
145   // Tells whether the provided value fits into the bit field.
is_valid(T value)146   static bool is_valid(T value) {
147     return (static_cast<uint32_t>(value) & ~((1U << (size)) - 1)) == 0;
148   }
149 
150   // Returns a uint32_t mask of bit field.
mask()151   static uint32_t mask() {
152     return (1U << (size + shift)) - (1U << shift);
153   }
154 
155   // Returns a uint32_t with the bit field value encoded.
encode(T value)156   static uint32_t encode(T value) {
157     ASSERT(is_valid(value));
158     return static_cast<uint32_t>(value) << shift;
159   }
160 
161   // Extracts the bit field from the value.
decode(uint32_t value)162   static T decode(uint32_t value) {
163     return static_cast<T>((value >> shift) & ((1U << (size)) - 1));
164   }
165 };
166 
167 
168 // ----------------------------------------------------------------------------
169 // Support for compressed, machine-independent encoding
170 // and decoding of integer values of arbitrary size.
171 
172 // Encoding and decoding from/to a buffer at position p;
173 // the result is the position after the encoded integer.
174 // Small signed integers in the range -64 <= x && x < 64
175 // are encoded in 1 byte; larger values are encoded in 2
176 // or more bytes. At most sizeof(int) + 1 bytes are used
177 // in the worst case.
178 byte* EncodeInt(byte* p, int x);
179 byte* DecodeInt(byte* p, int* x);
180 
181 
182 // Encoding and decoding from/to a buffer at position p - 1
183 // moving backward; the result is the position of the last
184 // byte written. These routines are useful to read/write
185 // into a buffer starting at the end of the buffer.
186 byte* EncodeUnsignedIntBackward(byte* p, unsigned int x);
187 
188 // The decoding function is inlined since its performance is
189 // important to mark-sweep garbage collection.
DecodeUnsignedIntBackward(byte * p,unsigned int * x)190 inline byte* DecodeUnsignedIntBackward(byte* p, unsigned int* x) {
191   byte b = *--p;
192   if (b >= 128) {
193     *x = static_cast<unsigned int>(b) - 128;
194     return p;
195   }
196   unsigned int r = static_cast<unsigned int>(b);
197   unsigned int s = 7;
198   b = *--p;
199   while (b < 128) {
200     r |= static_cast<unsigned int>(b) << s;
201     s += 7;
202     b = *--p;
203   }
204   // b >= 128
205   *x = r | ((static_cast<unsigned int>(b) - 128) << s);
206   return p;
207 }
208 
209 
210 // ----------------------------------------------------------------------------
211 // Hash function.
212 
213 uint32_t ComputeIntegerHash(uint32_t key);
214 
215 
216 // ----------------------------------------------------------------------------
217 // I/O support.
218 
219 // Our version of printf(). Avoids compilation errors that we get
220 // with standard printf when attempting to print pointers, etc.
221 // (the errors are due to the extra compilation flags, which we
222 // want elsewhere).
223 void PrintF(const char* format, ...);
224 
225 // Our version of fflush.
226 void Flush();
227 
228 
229 // Read a line of characters after printing the prompt to stdout. The resulting
230 // char* needs to be disposed off with DeleteArray by the caller.
231 char* ReadLine(const char* prompt);
232 
233 
234 // Read and return the raw bytes in a file. the size of the buffer is returned
235 // in size.
236 // The returned buffer must be freed by the caller.
237 byte* ReadBytes(const char* filename, int* size, bool verbose = true);
238 
239 
240 // Write size chars from str to the file given by filename.
241 // The file is overwritten. Returns the number of chars written.
242 int WriteChars(const char* filename,
243                const char* str,
244                int size,
245                bool verbose = true);
246 
247 
248 // Write size bytes to the file given by filename.
249 // The file is overwritten. Returns the number of bytes written.
250 int WriteBytes(const char* filename,
251                const byte* bytes,
252                int size,
253                bool verbose = true);
254 
255 
256 // Write the C code
257 // const char* <varname> = "<str>";
258 // const int <varname>_len = <len>;
259 // to the file given by filename. Only the first len chars are written.
260 int WriteAsCFile(const char* filename, const char* varname,
261                  const char* str, int size, bool verbose = true);
262 
263 
264 // ----------------------------------------------------------------------------
265 // Miscellaneous
266 
267 // A static resource holds a static instance that can be reserved in
268 // a local scope using an instance of Access.  Attempts to re-reserve
269 // the instance will cause an error.
270 template <typename T>
271 class StaticResource {
272  public:
StaticResource()273   StaticResource() : is_reserved_(false)  {}
274 
275  private:
276   template <typename S> friend class Access;
277   T instance_;
278   bool is_reserved_;
279 };
280 
281 
282 // Locally scoped access to a static resource.
283 template <typename T>
284 class Access {
285  public:
Access(StaticResource<T> * resource)286   explicit Access(StaticResource<T>* resource)
287     : resource_(resource)
288     , instance_(&resource->instance_) {
289     ASSERT(!resource->is_reserved_);
290     resource->is_reserved_ = true;
291   }
292 
~Access()293   ~Access() {
294     resource_->is_reserved_ = false;
295     resource_ = NULL;
296     instance_ = NULL;
297   }
298 
value()299   T* value()  { return instance_; }
300   T* operator -> ()  { return instance_; }
301 
302  private:
303   StaticResource<T>* resource_;
304   T* instance_;
305 };
306 
307 
308 template <typename T>
309 class Vector {
310  public:
Vector()311   Vector() : start_(NULL), length_(0) {}
Vector(T * data,int length)312   Vector(T* data, int length) : start_(data), length_(length) {
313     ASSERT(length == 0 || (length > 0 && data != NULL));
314   }
315 
New(int length)316   static Vector<T> New(int length) {
317     return Vector<T>(NewArray<T>(length), length);
318   }
319 
320   // Returns a vector using the same backing storage as this one,
321   // spanning from and including 'from', to but not including 'to'.
SubVector(int from,int to)322   Vector<T> SubVector(int from, int to) {
323     ASSERT(from < length_);
324     ASSERT(to <= length_);
325     ASSERT(from < to);
326     return Vector<T>(start() + from, to - from);
327   }
328 
329   // Returns the length of the vector.
length()330   int length() const { return length_; }
331 
332   // Returns whether or not the vector is empty.
is_empty()333   bool is_empty() const { return length_ == 0; }
334 
335   // Returns the pointer to the start of the data in the vector.
start()336   T* start() const { return start_; }
337 
338   // Access individual vector elements - checks bounds in debug mode.
339   T& operator[](int index) const {
340     ASSERT(0 <= index && index < length_);
341     return start_[index];
342   }
343 
first()344   T& first() { return start_[0]; }
345 
last()346   T& last() { return start_[length_ - 1]; }
347 
348   // Returns a clone of this vector with a new backing store.
Clone()349   Vector<T> Clone() const {
350     T* result = NewArray<T>(length_);
351     for (int i = 0; i < length_; i++) result[i] = start_[i];
352     return Vector<T>(result, length_);
353   }
354 
Sort(int (* cmp)(const T *,const T *))355   void Sort(int (*cmp)(const T*, const T*)) {
356     typedef int (*RawComparer)(const void*, const void*);
357     qsort(start(),
358           length(),
359           sizeof(T),
360           reinterpret_cast<RawComparer>(cmp));
361   }
362 
Sort()363   void Sort() {
364     Sort(PointerValueCompare<T>);
365   }
366 
Truncate(int length)367   void Truncate(int length) {
368     ASSERT(length <= length_);
369     length_ = length;
370   }
371 
372   // Releases the array underlying this vector. Once disposed the
373   // vector is empty.
Dispose()374   void Dispose() {
375     if (is_empty()) return;
376     DeleteArray(start_);
377     start_ = NULL;
378     length_ = 0;
379   }
380 
381   inline Vector<T> operator+(int offset) {
382     ASSERT(offset < length_);
383     return Vector<T>(start_ + offset, length_ - offset);
384   }
385 
386   // Factory method for creating empty vectors.
empty()387   static Vector<T> empty() { return Vector<T>(NULL, 0); }
388 
389  protected:
set_start(T * start)390   void set_start(T* start) { start_ = start; }
391 
392  private:
393   T* start_;
394   int length_;
395 };
396 
397 
398 // A temporary assignment sets a (non-local) variable to a value on
399 // construction and resets it the value on destruction.
400 template <typename T>
401 class TempAssign {
402  public:
TempAssign(T * var,T value)403   TempAssign(T* var, T value): var_(var), old_value_(*var) {
404     *var = value;
405   }
406 
~TempAssign()407   ~TempAssign() { *var_ = old_value_; }
408 
409  private:
410   T* var_;
411   T old_value_;
412 };
413 
414 
415 template <typename T, int kSize>
416 class EmbeddedVector : public Vector<T> {
417  public:
EmbeddedVector()418   EmbeddedVector() : Vector<T>(buffer_, kSize) { }
419 
420   // When copying, make underlying Vector to reference our buffer.
EmbeddedVector(const EmbeddedVector & rhs)421   EmbeddedVector(const EmbeddedVector& rhs)
422       : Vector<T>(rhs) {
423     memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
424     set_start(buffer_);
425   }
426 
427   EmbeddedVector& operator=(const EmbeddedVector& rhs) {
428     if (this == &rhs) return *this;
429     Vector<T>::operator=(rhs);
430     memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
431     set_start(buffer_);
432     return *this;
433   }
434 
435  private:
436   T buffer_[kSize];
437 };
438 
439 
440 template <typename T>
441 class ScopedVector : public Vector<T> {
442  public:
ScopedVector(int length)443   explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
~ScopedVector()444   ~ScopedVector() {
445     DeleteArray(this->start());
446   }
447 };
448 
449 
CStrVector(const char * data)450 inline Vector<const char> CStrVector(const char* data) {
451   return Vector<const char>(data, static_cast<int>(strlen(data)));
452 }
453 
MutableCStrVector(char * data)454 inline Vector<char> MutableCStrVector(char* data) {
455   return Vector<char>(data, static_cast<int>(strlen(data)));
456 }
457 
MutableCStrVector(char * data,int max)458 inline Vector<char> MutableCStrVector(char* data, int max) {
459   int length = static_cast<int>(strlen(data));
460   return Vector<char>(data, (length < max) ? length : max);
461 }
462 
463 template <typename T>
HandleVector(v8::internal::Handle<T> * elms,int length)464 inline Vector< Handle<Object> > HandleVector(v8::internal::Handle<T>* elms,
465                                              int length) {
466   return Vector< Handle<Object> >(
467       reinterpret_cast<v8::internal::Handle<Object>*>(elms), length);
468 }
469 
470 
471 // Simple support to read a file into a 0-terminated C-string.
472 // The returned buffer must be freed by the caller.
473 // On return, *exits tells whether the file existed.
474 Vector<const char> ReadFile(const char* filename,
475                             bool* exists,
476                             bool verbose = true);
477 
478 
479 // Simple wrapper that allows an ExternalString to refer to a
480 // Vector<const char>. Doesn't assume ownership of the data.
481 class AsciiStringAdapter: public v8::String::ExternalAsciiStringResource {
482  public:
AsciiStringAdapter(Vector<const char> data)483   explicit AsciiStringAdapter(Vector<const char> data) : data_(data) {}
484 
data()485   virtual const char* data() const { return data_.start(); }
486 
length()487   virtual size_t length() const { return data_.length(); }
488 
489  private:
490   Vector<const char> data_;
491 };
492 
493 
494 // Helper class for building result strings in a character buffer. The
495 // purpose of the class is to use safe operations that checks the
496 // buffer bounds on all operations in debug mode.
497 class StringBuilder {
498  public:
499   // Create a string builder with a buffer of the given size. The
500   // buffer is allocated through NewArray<char> and must be
501   // deallocated by the caller of Finalize().
502   explicit StringBuilder(int size);
503 
StringBuilder(char * buffer,int size)504   StringBuilder(char* buffer, int size)
505       : buffer_(buffer, size), position_(0) { }
506 
~StringBuilder()507   ~StringBuilder() { if (!is_finalized()) Finalize(); }
508 
size()509   int size() const { return buffer_.length(); }
510 
511   // Get the current position in the builder.
position()512   int position() const {
513     ASSERT(!is_finalized());
514     return position_;
515   }
516 
517   // Reset the position.
Reset()518   void Reset() { position_ = 0; }
519 
520   // Add a single character to the builder. It is not allowed to add
521   // 0-characters; use the Finalize() method to terminate the string
522   // instead.
AddCharacter(char c)523   void AddCharacter(char c) {
524     ASSERT(c != '\0');
525     ASSERT(!is_finalized() && position_ < buffer_.length());
526     buffer_[position_++] = c;
527   }
528 
529   // Add an entire string to the builder. Uses strlen() internally to
530   // compute the length of the input string.
531   void AddString(const char* s);
532 
533   // Add the first 'n' characters of the given string 's' to the
534   // builder. The input string must have enough characters.
535   void AddSubstring(const char* s, int n);
536 
537   // Add formatted contents to the builder just like printf().
538   void AddFormatted(const char* format, ...);
539 
540   // Add character padding to the builder. If count is non-positive,
541   // nothing is added to the builder.
542   void AddPadding(char c, int count);
543 
544   // Finalize the string by 0-terminating it and returning the buffer.
545   char* Finalize();
546 
547  private:
548   Vector<char> buffer_;
549   int position_;
550 
is_finalized()551   bool is_finalized() const { return position_ < 0; }
552 
553   DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
554 };
555 
556 
557 // Copy from ASCII/16bit chars to ASCII/16bit chars.
558 template <typename sourcechar, typename sinkchar>
CopyChars(sinkchar * dest,const sourcechar * src,int chars)559 static inline void CopyChars(sinkchar* dest, const sourcechar* src, int chars) {
560   sinkchar* limit = dest + chars;
561 #ifdef V8_HOST_CAN_READ_UNALIGNED
562   if (sizeof(*dest) == sizeof(*src)) {
563     // Number of characters in a uint32_t.
564     static const int kStepSize = sizeof(uint32_t) / sizeof(*dest);  // NOLINT
565     while (dest <= limit - kStepSize) {
566       *reinterpret_cast<uint32_t*>(dest) =
567           *reinterpret_cast<const uint32_t*>(src);
568       dest += kStepSize;
569       src += kStepSize;
570     }
571   }
572 #endif
573   while (dest < limit) {
574     *dest++ = static_cast<sinkchar>(*src++);
575   }
576 }
577 
578 
579 } }  // namespace v8::internal
580 
581 #endif  // V8_UTILS_H_
582