• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2009 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_OBJECTS_H_
29 #define V8_OBJECTS_H_
30 
31 #include "builtins.h"
32 #include "code-stubs.h"
33 #include "smart-pointer.h"
34 #include "unicode-inl.h"
35 
36 //
37 // All object types in the V8 JavaScript are described in this file.
38 //
39 // Inheritance hierarchy:
40 //   - Object
41 //     - Smi          (immediate small integer)
42 //     - Failure      (immediate for marking failed operation)
43 //     - HeapObject   (superclass for everything allocated in the heap)
44 //       - JSObject
45 //         - JSArray
46 //         - JSRegExp
47 //         - JSFunction
48 //         - GlobalObject
49 //           - JSGlobalObject
50 //           - JSBuiltinsObject
51 //         - JSGlobalProxy
52 //         - JSValue
53 //       - Array
54 //         - ByteArray
55 //         - PixelArray
56 //         - FixedArray
57 //           - DescriptorArray
58 //           - HashTable
59 //             - Dictionary
60 //             - SymbolTable
61 //             - CompilationCacheTable
62 //             - MapCache
63 //           - Context
64 //           - GlobalContext
65 //       - String
66 //         - SeqString
67 //           - SeqAsciiString
68 //           - SeqTwoByteString
69 //         - ConsString
70 //         - SlicedString
71 //         - ExternalString
72 //           - ExternalAsciiString
73 //           - ExternalTwoByteString
74 //       - HeapNumber
75 //       - Code
76 //       - Map
77 //       - Oddball
78 //       - Proxy
79 //       - SharedFunctionInfo
80 //       - Struct
81 //         - AccessorInfo
82 //         - AccessCheckInfo
83 //         - InterceptorInfo
84 //         - CallHandlerInfo
85 //         - TemplateInfo
86 //           - FunctionTemplateInfo
87 //           - ObjectTemplateInfo
88 //         - Script
89 //         - SignatureInfo
90 //         - TypeSwitchInfo
91 //         - DebugInfo
92 //         - BreakPointInfo
93 //
94 // Formats of Object*:
95 //  Smi:        [31 bit signed int] 0
96 //  HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
97 //  Failure:    [30 bit signed int] 11
98 
99 // Ecma-262 3rd 8.6.1
100 enum PropertyAttributes {
101   NONE              = v8::None,
102   READ_ONLY         = v8::ReadOnly,
103   DONT_ENUM         = v8::DontEnum,
104   DONT_DELETE       = v8::DontDelete,
105   ABSENT            = 16  // Used in runtime to indicate a property is absent.
106   // ABSENT can never be stored in or returned from a descriptor's attributes
107   // bitfield.  It is only used as a return value meaning the attributes of
108   // a non-existent property.
109 };
110 
111 namespace v8 {
112 namespace internal {
113 
114 
115 // PropertyDetails captures type and attributes for a property.
116 // They are used both in property dictionaries and instance descriptors.
117 class PropertyDetails BASE_EMBEDDED {
118  public:
119 
120   PropertyDetails(PropertyAttributes attributes,
121                   PropertyType type,
122                   int index = 0) {
123     ASSERT(TypeField::is_valid(type));
124     ASSERT(AttributesField::is_valid(attributes));
125     ASSERT(IndexField::is_valid(index));
126 
127     value_ = TypeField::encode(type)
128         | AttributesField::encode(attributes)
129         | IndexField::encode(index);
130 
131     ASSERT(type == this->type());
132     ASSERT(attributes == this->attributes());
133     ASSERT(index == this->index());
134   }
135 
136   // Conversion for storing details as Object*.
137   inline PropertyDetails(Smi* smi);
138   inline Smi* AsSmi();
139 
type()140   PropertyType type() { return TypeField::decode(value_); }
141 
IsTransition()142   bool IsTransition() {
143     PropertyType t = type();
144     ASSERT(t != INTERCEPTOR);
145     return t == MAP_TRANSITION || t == CONSTANT_TRANSITION;
146   }
147 
IsProperty()148   bool IsProperty() {
149     return type() < FIRST_PHANTOM_PROPERTY_TYPE;
150   }
151 
attributes()152   PropertyAttributes attributes() { return AttributesField::decode(value_); }
153 
index()154   int index() { return IndexField::decode(value_); }
155 
156   inline PropertyDetails AsDeleted();
157 
IsValidIndex(int index)158   static bool IsValidIndex(int index) { return IndexField::is_valid(index); }
159 
IsReadOnly()160   bool IsReadOnly() { return (attributes() & READ_ONLY) != 0; }
IsDontDelete()161   bool IsDontDelete() { return (attributes() & DONT_DELETE) != 0; }
IsDontEnum()162   bool IsDontEnum() { return (attributes() & DONT_ENUM) != 0; }
IsDeleted()163   bool IsDeleted() { return DeletedField::decode(value_) != 0;}
164 
165   // Bit fields in value_ (type, shift, size). Must be public so the
166   // constants can be embedded in generated code.
167   class TypeField:       public BitField<PropertyType,       0, 3> {};
168   class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
169   class DeletedField:    public BitField<uint32_t,           6, 1> {};
170   class IndexField:      public BitField<uint32_t,           7, 31-7> {};
171 
172   static const int kInitialIndex = 1;
173  private:
174   uint32_t value_;
175 };
176 
177 
178 // Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
179 enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
180 
181 
182 // PropertyNormalizationMode is used to specify whether to keep
183 // inobject properties when normalizing properties of a JSObject.
184 enum PropertyNormalizationMode {
185   CLEAR_INOBJECT_PROPERTIES,
186   KEEP_INOBJECT_PROPERTIES
187 };
188 
189 
190 // All Maps have a field instance_type containing a InstanceType.
191 // It describes the type of the instances.
192 //
193 // As an example, a JavaScript object is a heap object and its map
194 // instance_type is JS_OBJECT_TYPE.
195 //
196 // The names of the string instance types are intended to systematically
197 // mirror their encoding in the instance_type field of the map.  The length
198 // (SHORT, MEDIUM, or LONG) is always mentioned.  The default encoding is
199 // considered TWO_BYTE.  It is not mentioned in the name.  ASCII encoding is
200 // mentioned explicitly in the name.  Likewise, the default representation is
201 // considered sequential.  It is not mentioned in the name.  The other
202 // representations (eg, CONS, SLICED, EXTERNAL) are explicitly mentioned.
203 // Finally, the string is either a SYMBOL_TYPE (if it is a symbol) or a
204 // STRING_TYPE (if it is not a symbol).
205 //
206 // NOTE: The following things are some that depend on the string types having
207 // instance_types that are less than those of all other types:
208 // HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
209 // Object::IsString.
210 //
211 // NOTE: Everything following JS_VALUE_TYPE is considered a
212 // JSObject for GC purposes. The first four entries here have typeof
213 // 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
214 #define INSTANCE_TYPE_LIST(V)                   \
215   V(SHORT_SYMBOL_TYPE)                          \
216   V(MEDIUM_SYMBOL_TYPE)                         \
217   V(LONG_SYMBOL_TYPE)                           \
218   V(SHORT_ASCII_SYMBOL_TYPE)                    \
219   V(MEDIUM_ASCII_SYMBOL_TYPE)                   \
220   V(LONG_ASCII_SYMBOL_TYPE)                     \
221   V(SHORT_CONS_SYMBOL_TYPE)                     \
222   V(MEDIUM_CONS_SYMBOL_TYPE)                    \
223   V(LONG_CONS_SYMBOL_TYPE)                      \
224   V(SHORT_CONS_ASCII_SYMBOL_TYPE)               \
225   V(MEDIUM_CONS_ASCII_SYMBOL_TYPE)              \
226   V(LONG_CONS_ASCII_SYMBOL_TYPE)                \
227   V(SHORT_SLICED_SYMBOL_TYPE)                   \
228   V(MEDIUM_SLICED_SYMBOL_TYPE)                  \
229   V(LONG_SLICED_SYMBOL_TYPE)                    \
230   V(SHORT_SLICED_ASCII_SYMBOL_TYPE)             \
231   V(MEDIUM_SLICED_ASCII_SYMBOL_TYPE)            \
232   V(LONG_SLICED_ASCII_SYMBOL_TYPE)              \
233   V(SHORT_EXTERNAL_SYMBOL_TYPE)                 \
234   V(MEDIUM_EXTERNAL_SYMBOL_TYPE)                \
235   V(LONG_EXTERNAL_SYMBOL_TYPE)                  \
236   V(SHORT_EXTERNAL_ASCII_SYMBOL_TYPE)           \
237   V(MEDIUM_EXTERNAL_ASCII_SYMBOL_TYPE)          \
238   V(LONG_EXTERNAL_ASCII_SYMBOL_TYPE)            \
239   V(SHORT_STRING_TYPE)                          \
240   V(MEDIUM_STRING_TYPE)                         \
241   V(LONG_STRING_TYPE)                           \
242   V(SHORT_ASCII_STRING_TYPE)                    \
243   V(MEDIUM_ASCII_STRING_TYPE)                   \
244   V(LONG_ASCII_STRING_TYPE)                     \
245   V(SHORT_CONS_STRING_TYPE)                     \
246   V(MEDIUM_CONS_STRING_TYPE)                    \
247   V(LONG_CONS_STRING_TYPE)                      \
248   V(SHORT_CONS_ASCII_STRING_TYPE)               \
249   V(MEDIUM_CONS_ASCII_STRING_TYPE)              \
250   V(LONG_CONS_ASCII_STRING_TYPE)                \
251   V(SHORT_SLICED_STRING_TYPE)                   \
252   V(MEDIUM_SLICED_STRING_TYPE)                  \
253   V(LONG_SLICED_STRING_TYPE)                    \
254   V(SHORT_SLICED_ASCII_STRING_TYPE)             \
255   V(MEDIUM_SLICED_ASCII_STRING_TYPE)            \
256   V(LONG_SLICED_ASCII_STRING_TYPE)              \
257   V(SHORT_EXTERNAL_STRING_TYPE)                 \
258   V(MEDIUM_EXTERNAL_STRING_TYPE)                \
259   V(LONG_EXTERNAL_STRING_TYPE)                  \
260   V(SHORT_EXTERNAL_ASCII_STRING_TYPE)           \
261   V(MEDIUM_EXTERNAL_ASCII_STRING_TYPE)          \
262   V(LONG_EXTERNAL_ASCII_STRING_TYPE)            \
263   V(LONG_PRIVATE_EXTERNAL_ASCII_STRING_TYPE)    \
264                                                 \
265   V(MAP_TYPE)                                   \
266   V(HEAP_NUMBER_TYPE)                           \
267   V(FIXED_ARRAY_TYPE)                           \
268   V(CODE_TYPE)                                  \
269   V(JS_GLOBAL_PROPERTY_CELL_TYPE)               \
270   V(ODDBALL_TYPE)                               \
271   V(PROXY_TYPE)                                 \
272   V(BYTE_ARRAY_TYPE)                            \
273   V(PIXEL_ARRAY_TYPE)                           \
274   V(FILLER_TYPE)                                \
275                                                 \
276   V(ACCESSOR_INFO_TYPE)                         \
277   V(ACCESS_CHECK_INFO_TYPE)                     \
278   V(INTERCEPTOR_INFO_TYPE)                      \
279   V(SHARED_FUNCTION_INFO_TYPE)                  \
280   V(CALL_HANDLER_INFO_TYPE)                     \
281   V(FUNCTION_TEMPLATE_INFO_TYPE)                \
282   V(OBJECT_TEMPLATE_INFO_TYPE)                  \
283   V(SIGNATURE_INFO_TYPE)                        \
284   V(TYPE_SWITCH_INFO_TYPE)                      \
285   V(DEBUG_INFO_TYPE)                            \
286   V(BREAK_POINT_INFO_TYPE)                      \
287   V(SCRIPT_TYPE)                                \
288                                                 \
289   V(JS_VALUE_TYPE)                              \
290   V(JS_OBJECT_TYPE)                             \
291   V(JS_CONTEXT_EXTENSION_OBJECT_TYPE)           \
292   V(JS_GLOBAL_OBJECT_TYPE)                      \
293   V(JS_BUILTINS_OBJECT_TYPE)                    \
294   V(JS_GLOBAL_PROXY_TYPE)                       \
295   V(JS_ARRAY_TYPE)                              \
296   V(JS_REGEXP_TYPE)                             \
297                                                 \
298   V(JS_FUNCTION_TYPE)                           \
299 
300 
301 
302 // Since string types are not consecutive, this macro is used to
303 // iterate over them.
304 #define STRING_TYPE_LIST(V)                                                    \
305   V(SHORT_SYMBOL_TYPE,                                                         \
306     SeqTwoByteString::kAlignedSize,                                            \
307     short_symbol,                                                              \
308     ShortSymbol)                                                               \
309   V(MEDIUM_SYMBOL_TYPE,                                                        \
310     SeqTwoByteString::kAlignedSize,                                            \
311     medium_symbol,                                                             \
312     MediumSymbol)                                                              \
313   V(LONG_SYMBOL_TYPE,                                                          \
314     SeqTwoByteString::kAlignedSize,                                            \
315     long_symbol,                                                               \
316     LongSymbol)                                                                \
317   V(SHORT_ASCII_SYMBOL_TYPE,                                                   \
318     SeqAsciiString::kAlignedSize,                                              \
319     short_ascii_symbol,                                                        \
320     ShortAsciiSymbol)                                                          \
321   V(MEDIUM_ASCII_SYMBOL_TYPE,                                                  \
322     SeqAsciiString::kAlignedSize,                                              \
323     medium_ascii_symbol,                                                       \
324     MediumAsciiSymbol)                                                         \
325   V(LONG_ASCII_SYMBOL_TYPE,                                                    \
326     SeqAsciiString::kAlignedSize,                                              \
327     long_ascii_symbol,                                                         \
328     LongAsciiSymbol)                                                           \
329   V(SHORT_CONS_SYMBOL_TYPE,                                                    \
330     ConsString::kSize,                                                         \
331     short_cons_symbol,                                                         \
332     ShortConsSymbol)                                                           \
333   V(MEDIUM_CONS_SYMBOL_TYPE,                                                   \
334     ConsString::kSize,                                                         \
335     medium_cons_symbol,                                                        \
336     MediumConsSymbol)                                                          \
337   V(LONG_CONS_SYMBOL_TYPE,                                                     \
338     ConsString::kSize,                                                         \
339     long_cons_symbol,                                                          \
340     LongConsSymbol)                                                            \
341   V(SHORT_CONS_ASCII_SYMBOL_TYPE,                                              \
342     ConsString::kSize,                                                         \
343     short_cons_ascii_symbol,                                                   \
344     ShortConsAsciiSymbol)                                                      \
345   V(MEDIUM_CONS_ASCII_SYMBOL_TYPE,                                             \
346     ConsString::kSize,                                                         \
347     medium_cons_ascii_symbol,                                                  \
348     MediumConsAsciiSymbol)                                                     \
349   V(LONG_CONS_ASCII_SYMBOL_TYPE,                                               \
350     ConsString::kSize,                                                         \
351     long_cons_ascii_symbol,                                                    \
352     LongConsAsciiSymbol)                                                       \
353   V(SHORT_SLICED_SYMBOL_TYPE,                                                  \
354     SlicedString::kSize,                                                       \
355     short_sliced_symbol,                                                       \
356     ShortSlicedSymbol)                                                         \
357   V(MEDIUM_SLICED_SYMBOL_TYPE,                                                 \
358     SlicedString::kSize,                                                       \
359     medium_sliced_symbol,                                                      \
360     MediumSlicedSymbol)                                                        \
361   V(LONG_SLICED_SYMBOL_TYPE,                                                   \
362     SlicedString::kSize,                                                       \
363     long_sliced_symbol,                                                        \
364     LongSlicedSymbol)                                                          \
365   V(SHORT_SLICED_ASCII_SYMBOL_TYPE,                                            \
366     SlicedString::kSize,                                                       \
367     short_sliced_ascii_symbol,                                                 \
368     ShortSlicedAsciiSymbol)                                                    \
369   V(MEDIUM_SLICED_ASCII_SYMBOL_TYPE,                                           \
370     SlicedString::kSize,                                                       \
371     medium_sliced_ascii_symbol,                                                \
372     MediumSlicedAsciiSymbol)                                                   \
373   V(LONG_SLICED_ASCII_SYMBOL_TYPE,                                             \
374     SlicedString::kSize,                                                       \
375     long_sliced_ascii_symbol,                                                  \
376     LongSlicedAsciiSymbol)                                                     \
377   V(SHORT_EXTERNAL_SYMBOL_TYPE,                                                \
378     ExternalTwoByteString::kSize,                                              \
379     short_external_symbol,                                                     \
380     ShortExternalSymbol)                                                       \
381   V(MEDIUM_EXTERNAL_SYMBOL_TYPE,                                               \
382     ExternalTwoByteString::kSize,                                              \
383     medium_external_symbol,                                                    \
384     MediumExternalSymbol)                                                      \
385   V(LONG_EXTERNAL_SYMBOL_TYPE,                                                 \
386     ExternalTwoByteString::kSize,                                              \
387     long_external_symbol,                                                      \
388     LongExternalSymbol)                                                        \
389   V(SHORT_EXTERNAL_ASCII_SYMBOL_TYPE,                                          \
390     ExternalAsciiString::kSize,                                                \
391     short_external_ascii_symbol,                                               \
392     ShortExternalAsciiSymbol)                                                  \
393   V(MEDIUM_EXTERNAL_ASCII_SYMBOL_TYPE,                                         \
394     ExternalAsciiString::kSize,                                                \
395     medium_external_ascii_symbol,                                              \
396     MediumExternalAsciiSymbol)                                                 \
397   V(LONG_EXTERNAL_ASCII_SYMBOL_TYPE,                                           \
398     ExternalAsciiString::kSize,                                                \
399     long_external_ascii_symbol,                                                \
400     LongExternalAsciiSymbol)                                                   \
401   V(SHORT_STRING_TYPE,                                                         \
402     SeqTwoByteString::kAlignedSize,                                            \
403     short_string,                                                              \
404     ShortString)                                                               \
405   V(MEDIUM_STRING_TYPE,                                                        \
406     SeqTwoByteString::kAlignedSize,                                            \
407     medium_string,                                                             \
408     MediumString)                                                              \
409   V(LONG_STRING_TYPE,                                                          \
410     SeqTwoByteString::kAlignedSize,                                            \
411     long_string,                                                               \
412     LongString)                                                                \
413   V(SHORT_ASCII_STRING_TYPE,                                                   \
414     SeqAsciiString::kAlignedSize,                                              \
415     short_ascii_string,                                                        \
416     ShortAsciiString)                                                          \
417   V(MEDIUM_ASCII_STRING_TYPE,                                                  \
418     SeqAsciiString::kAlignedSize,                                              \
419     medium_ascii_string,                                                       \
420     MediumAsciiString)                                                         \
421   V(LONG_ASCII_STRING_TYPE,                                                    \
422     SeqAsciiString::kAlignedSize,                                              \
423     long_ascii_string,                                                         \
424     LongAsciiString)                                                           \
425   V(SHORT_CONS_STRING_TYPE,                                                    \
426     ConsString::kSize,                                                         \
427     short_cons_string,                                                         \
428     ShortConsString)                                                           \
429   V(MEDIUM_CONS_STRING_TYPE,                                                   \
430     ConsString::kSize,                                                         \
431     medium_cons_string,                                                        \
432     MediumConsString)                                                          \
433   V(LONG_CONS_STRING_TYPE,                                                     \
434     ConsString::kSize,                                                         \
435     long_cons_string,                                                          \
436     LongConsString)                                                            \
437   V(SHORT_CONS_ASCII_STRING_TYPE,                                              \
438     ConsString::kSize,                                                         \
439     short_cons_ascii_string,                                                   \
440     ShortConsAsciiString)                                                      \
441   V(MEDIUM_CONS_ASCII_STRING_TYPE,                                             \
442     ConsString::kSize,                                                         \
443     medium_cons_ascii_string,                                                  \
444     MediumConsAsciiString)                                                     \
445   V(LONG_CONS_ASCII_STRING_TYPE,                                               \
446     ConsString::kSize,                                                         \
447     long_cons_ascii_string,                                                    \
448     LongConsAsciiString)                                                       \
449   V(SHORT_SLICED_STRING_TYPE,                                                  \
450     SlicedString::kSize,                                                       \
451     short_sliced_string,                                                       \
452     ShortSlicedString)                                                         \
453   V(MEDIUM_SLICED_STRING_TYPE,                                                 \
454     SlicedString::kSize,                                                       \
455     medium_sliced_string,                                                      \
456     MediumSlicedString)                                                        \
457   V(LONG_SLICED_STRING_TYPE,                                                   \
458     SlicedString::kSize,                                                       \
459     long_sliced_string,                                                        \
460     LongSlicedString)                                                          \
461   V(SHORT_SLICED_ASCII_STRING_TYPE,                                            \
462     SlicedString::kSize,                                                       \
463     short_sliced_ascii_string,                                                 \
464     ShortSlicedAsciiString)                                                    \
465   V(MEDIUM_SLICED_ASCII_STRING_TYPE,                                           \
466     SlicedString::kSize,                                                       \
467     medium_sliced_ascii_string,                                                \
468     MediumSlicedAsciiString)                                                   \
469   V(LONG_SLICED_ASCII_STRING_TYPE,                                             \
470     SlicedString::kSize,                                                       \
471     long_sliced_ascii_string,                                                  \
472     LongSlicedAsciiString)                                                     \
473   V(SHORT_EXTERNAL_STRING_TYPE,                                                \
474     ExternalTwoByteString::kSize,                                              \
475     short_external_string,                                                     \
476     ShortExternalString)                                                       \
477   V(MEDIUM_EXTERNAL_STRING_TYPE,                                               \
478     ExternalTwoByteString::kSize,                                              \
479     medium_external_string,                                                    \
480     MediumExternalString)                                                      \
481   V(LONG_EXTERNAL_STRING_TYPE,                                                 \
482     ExternalTwoByteString::kSize,                                              \
483     long_external_string,                                                      \
484     LongExternalString)                                                        \
485   V(SHORT_EXTERNAL_ASCII_STRING_TYPE,                                          \
486     ExternalAsciiString::kSize,                                                \
487     short_external_ascii_string,                                               \
488     ShortExternalAsciiString)                                                  \
489   V(MEDIUM_EXTERNAL_ASCII_STRING_TYPE,                                         \
490     ExternalAsciiString::kSize,                                                \
491     medium_external_ascii_string,                                              \
492     MediumExternalAsciiString)                                                 \
493   V(LONG_EXTERNAL_ASCII_STRING_TYPE,                                           \
494     ExternalAsciiString::kSize,                                                \
495     long_external_ascii_string,                                                \
496     LongExternalAsciiString)
497 
498 // A struct is a simple object a set of object-valued fields.  Including an
499 // object type in this causes the compiler to generate most of the boilerplate
500 // code for the class including allocation and garbage collection routines,
501 // casts and predicates.  All you need to define is the class, methods and
502 // object verification routines.  Easy, no?
503 //
504 // Note that for subtle reasons related to the ordering or numerical values of
505 // type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
506 // manually.
507 #define STRUCT_LIST_ALL(V)                                                \
508   V(ACCESSOR_INFO, AccessorInfo, accessor_info)                           \
509   V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info)                \
510   V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info)                  \
511   V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info)                \
512   V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \
513   V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info)       \
514   V(SIGNATURE_INFO, SignatureInfo, signature_info)                        \
515   V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info)                   \
516   V(SCRIPT, Script, script)
517 
518 #ifdef ENABLE_DEBUGGER_SUPPORT
519 #define STRUCT_LIST_DEBUGGER(V)                                           \
520   V(DEBUG_INFO, DebugInfo, debug_info)                                    \
521   V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
522 #else
523 #define STRUCT_LIST_DEBUGGER(V)
524 #endif
525 
526 #define STRUCT_LIST(V)                                                    \
527   STRUCT_LIST_ALL(V)                                                      \
528   STRUCT_LIST_DEBUGGER(V)
529 
530 // We use the full 8 bits of the instance_type field to encode heap object
531 // instance types.  The high-order bit (bit 7) is set if the object is not a
532 // string, and cleared if it is a string.
533 const uint32_t kIsNotStringMask = 0x80;
534 const uint32_t kStringTag = 0x0;
535 const uint32_t kNotStringTag = 0x80;
536 
537 // If bit 7 is clear, bit 5 indicates that the string is a symbol (if set) or
538 // not (if cleared).
539 const uint32_t kIsSymbolMask = 0x20;
540 const uint32_t kNotSymbolTag = 0x0;
541 const uint32_t kSymbolTag = 0x20;
542 
543 // If bit 7 is clear, bits 3 and 4 are the string's size (short, medium or
544 // long).  These values are very special in that they are also used to shift
545 // the length field to get the length, removing the hash value.  This avoids
546 // using if or switch when getting the length of a string.
547 const uint32_t kStringSizeMask = 0x18;
548 const uint32_t kShortStringTag = 0x18;
549 const uint32_t kMediumStringTag = 0x10;
550 const uint32_t kLongStringTag = 0x00;
551 
552 // If bit 7 is clear then bit 2 indicates whether the string consists of
553 // two-byte characters or one-byte characters.
554 const uint32_t kStringEncodingMask = 0x4;
555 const uint32_t kTwoByteStringTag = 0x0;
556 const uint32_t kAsciiStringTag = 0x4;
557 
558 // If bit 7 is clear, the low-order 2 bits indicate the representation
559 // of the string.
560 const uint32_t kStringRepresentationMask = 0x03;
561 enum StringRepresentationTag {
562   kSeqStringTag = 0x0,
563   kConsStringTag = 0x1,
564   kSlicedStringTag = 0x2,
565   kExternalStringTag = 0x3
566 };
567 
568 
569 // A ConsString with an empty string as the right side is a candidate
570 // for being shortcut by the garbage collector unless it is a
571 // symbol. It's not common to have non-flat symbols, so we do not
572 // shortcut them thereby avoiding turning symbols into strings. See
573 // heap.cc and mark-compact.cc.
574 const uint32_t kShortcutTypeMask =
575     kIsNotStringMask |
576     kIsSymbolMask |
577     kStringRepresentationMask;
578 const uint32_t kShortcutTypeTag = kConsStringTag;
579 
580 
581 enum InstanceType {
582   SHORT_SYMBOL_TYPE = kShortStringTag | kSymbolTag | kSeqStringTag,
583   MEDIUM_SYMBOL_TYPE = kMediumStringTag | kSymbolTag | kSeqStringTag,
584   LONG_SYMBOL_TYPE = kLongStringTag | kSymbolTag | kSeqStringTag,
585   SHORT_ASCII_SYMBOL_TYPE =
586       kShortStringTag | kAsciiStringTag | kSymbolTag | kSeqStringTag,
587   MEDIUM_ASCII_SYMBOL_TYPE =
588       kMediumStringTag | kAsciiStringTag | kSymbolTag | kSeqStringTag,
589   LONG_ASCII_SYMBOL_TYPE =
590       kLongStringTag | kAsciiStringTag | kSymbolTag | kSeqStringTag,
591   SHORT_CONS_SYMBOL_TYPE = kShortStringTag | kSymbolTag | kConsStringTag,
592   MEDIUM_CONS_SYMBOL_TYPE = kMediumStringTag | kSymbolTag | kConsStringTag,
593   LONG_CONS_SYMBOL_TYPE = kLongStringTag | kSymbolTag | kConsStringTag,
594   SHORT_CONS_ASCII_SYMBOL_TYPE =
595       kShortStringTag | kAsciiStringTag | kSymbolTag | kConsStringTag,
596   MEDIUM_CONS_ASCII_SYMBOL_TYPE =
597       kMediumStringTag | kAsciiStringTag | kSymbolTag | kConsStringTag,
598   LONG_CONS_ASCII_SYMBOL_TYPE =
599       kLongStringTag | kAsciiStringTag | kSymbolTag | kConsStringTag,
600   SHORT_SLICED_SYMBOL_TYPE = kShortStringTag | kSymbolTag | kSlicedStringTag,
601   MEDIUM_SLICED_SYMBOL_TYPE = kMediumStringTag | kSymbolTag | kSlicedStringTag,
602   LONG_SLICED_SYMBOL_TYPE = kLongStringTag | kSymbolTag | kSlicedStringTag,
603   SHORT_SLICED_ASCII_SYMBOL_TYPE =
604       kShortStringTag | kAsciiStringTag | kSymbolTag | kSlicedStringTag,
605   MEDIUM_SLICED_ASCII_SYMBOL_TYPE =
606       kMediumStringTag | kAsciiStringTag | kSymbolTag | kSlicedStringTag,
607   LONG_SLICED_ASCII_SYMBOL_TYPE =
608       kLongStringTag | kAsciiStringTag | kSymbolTag | kSlicedStringTag,
609   SHORT_EXTERNAL_SYMBOL_TYPE =
610       kShortStringTag | kSymbolTag | kExternalStringTag,
611   MEDIUM_EXTERNAL_SYMBOL_TYPE =
612       kMediumStringTag | kSymbolTag | kExternalStringTag,
613   LONG_EXTERNAL_SYMBOL_TYPE = kLongStringTag | kSymbolTag | kExternalStringTag,
614   SHORT_EXTERNAL_ASCII_SYMBOL_TYPE =
615       kShortStringTag | kAsciiStringTag | kSymbolTag | kExternalStringTag,
616   MEDIUM_EXTERNAL_ASCII_SYMBOL_TYPE =
617       kMediumStringTag | kAsciiStringTag | kSymbolTag | kExternalStringTag,
618   LONG_EXTERNAL_ASCII_SYMBOL_TYPE =
619       kLongStringTag | kAsciiStringTag | kSymbolTag | kExternalStringTag,
620   SHORT_STRING_TYPE = kShortStringTag | kSeqStringTag,
621   MEDIUM_STRING_TYPE = kMediumStringTag | kSeqStringTag,
622   LONG_STRING_TYPE = kLongStringTag | kSeqStringTag,
623   SHORT_ASCII_STRING_TYPE = kShortStringTag | kAsciiStringTag | kSeqStringTag,
624   MEDIUM_ASCII_STRING_TYPE = kMediumStringTag | kAsciiStringTag | kSeqStringTag,
625   LONG_ASCII_STRING_TYPE = kLongStringTag | kAsciiStringTag | kSeqStringTag,
626   SHORT_CONS_STRING_TYPE = kShortStringTag | kConsStringTag,
627   MEDIUM_CONS_STRING_TYPE = kMediumStringTag | kConsStringTag,
628   LONG_CONS_STRING_TYPE = kLongStringTag | kConsStringTag,
629   SHORT_CONS_ASCII_STRING_TYPE =
630       kShortStringTag | kAsciiStringTag | kConsStringTag,
631   MEDIUM_CONS_ASCII_STRING_TYPE =
632       kMediumStringTag | kAsciiStringTag | kConsStringTag,
633   LONG_CONS_ASCII_STRING_TYPE =
634       kLongStringTag | kAsciiStringTag | kConsStringTag,
635   SHORT_SLICED_STRING_TYPE = kShortStringTag | kSlicedStringTag,
636   MEDIUM_SLICED_STRING_TYPE = kMediumStringTag | kSlicedStringTag,
637   LONG_SLICED_STRING_TYPE = kLongStringTag | kSlicedStringTag,
638   SHORT_SLICED_ASCII_STRING_TYPE =
639       kShortStringTag | kAsciiStringTag | kSlicedStringTag,
640   MEDIUM_SLICED_ASCII_STRING_TYPE =
641       kMediumStringTag | kAsciiStringTag | kSlicedStringTag,
642   LONG_SLICED_ASCII_STRING_TYPE =
643       kLongStringTag | kAsciiStringTag | kSlicedStringTag,
644   SHORT_EXTERNAL_STRING_TYPE = kShortStringTag | kExternalStringTag,
645   MEDIUM_EXTERNAL_STRING_TYPE = kMediumStringTag | kExternalStringTag,
646   LONG_EXTERNAL_STRING_TYPE = kLongStringTag | kExternalStringTag,
647   SHORT_EXTERNAL_ASCII_STRING_TYPE =
648       kShortStringTag | kAsciiStringTag | kExternalStringTag,
649   MEDIUM_EXTERNAL_ASCII_STRING_TYPE =
650       kMediumStringTag | kAsciiStringTag | kExternalStringTag,
651   LONG_EXTERNAL_ASCII_STRING_TYPE =
652       kLongStringTag | kAsciiStringTag | kExternalStringTag,
653   LONG_PRIVATE_EXTERNAL_ASCII_STRING_TYPE = LONG_EXTERNAL_ASCII_STRING_TYPE,
654 
655   MAP_TYPE = kNotStringTag,
656   HEAP_NUMBER_TYPE,
657   FIXED_ARRAY_TYPE,
658   CODE_TYPE,
659   ODDBALL_TYPE,
660   JS_GLOBAL_PROPERTY_CELL_TYPE,
661   PROXY_TYPE,
662   BYTE_ARRAY_TYPE,
663   PIXEL_ARRAY_TYPE,
664   FILLER_TYPE,
665   SMI_TYPE,
666 
667   ACCESSOR_INFO_TYPE,
668   ACCESS_CHECK_INFO_TYPE,
669   INTERCEPTOR_INFO_TYPE,
670   SHARED_FUNCTION_INFO_TYPE,
671   CALL_HANDLER_INFO_TYPE,
672   FUNCTION_TEMPLATE_INFO_TYPE,
673   OBJECT_TEMPLATE_INFO_TYPE,
674   SIGNATURE_INFO_TYPE,
675   TYPE_SWITCH_INFO_TYPE,
676   DEBUG_INFO_TYPE,
677   BREAK_POINT_INFO_TYPE,
678   SCRIPT_TYPE,
679 
680   JS_VALUE_TYPE,
681   JS_OBJECT_TYPE,
682   JS_CONTEXT_EXTENSION_OBJECT_TYPE,
683   JS_GLOBAL_OBJECT_TYPE,
684   JS_BUILTINS_OBJECT_TYPE,
685   JS_GLOBAL_PROXY_TYPE,
686   JS_ARRAY_TYPE,
687   JS_REGEXP_TYPE,
688 
689   JS_FUNCTION_TYPE,
690 
691   // Pseudo-types
692   FIRST_NONSTRING_TYPE = MAP_TYPE,
693   FIRST_TYPE = 0x0,
694   INVALID_TYPE = FIRST_TYPE - 1,
695   LAST_TYPE = JS_FUNCTION_TYPE,
696   // Boundaries for testing the type is a JavaScript "object".  Note that
697   // function objects are not counted as objects, even though they are
698   // implemented as such; only values whose typeof is "object" are included.
699   FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
700   LAST_JS_OBJECT_TYPE = JS_REGEXP_TYPE
701 };
702 
703 
704 enum CompareResult {
705   LESS      = -1,
706   EQUAL     =  0,
707   GREATER   =  1,
708 
709   NOT_EQUAL = GREATER
710 };
711 
712 
713 #define DECL_BOOLEAN_ACCESSORS(name)   \
714   inline bool name();                  \
715   inline void set_##name(bool value);  \
716 
717 
718 #define DECL_ACCESSORS(name, type)                                      \
719   inline type* name();                                                  \
720   inline void set_##name(type* value,                                   \
721                          WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
722 
723 
724 class StringStream;
725 class ObjectVisitor;
726 
727 struct ValueInfo : public Malloced {
ValueInfoValueInfo728   ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { }
729   InstanceType type;
730   Object* ptr;
731   const char* str;
732   double number;
733 };
734 
735 
736 // A template-ized version of the IsXXX functions.
737 template <class C> static inline bool Is(Object* obj);
738 
739 
740 // Object is the abstract superclass for all classes in the
741 // object hierarchy.
742 // Object does not use any virtual functions to avoid the
743 // allocation of the C++ vtable.
744 // Since Smi and Failure are subclasses of Object no
745 // data members can be present in Object.
746 class Object BASE_EMBEDDED {
747  public:
748   // Type testing.
749   inline bool IsSmi();
750   inline bool IsHeapObject();
751   inline bool IsHeapNumber();
752   inline bool IsString();
753   inline bool IsSymbol();
754   inline bool IsSeqString();
755   inline bool IsSlicedString();
756   inline bool IsExternalString();
757   inline bool IsConsString();
758   inline bool IsExternalTwoByteString();
759   inline bool IsExternalAsciiString();
760   inline bool IsSeqTwoByteString();
761   inline bool IsSeqAsciiString();
762 
763   inline bool IsNumber();
764   inline bool IsByteArray();
765   inline bool IsPixelArray();
766   inline bool IsFailure();
767   inline bool IsRetryAfterGC();
768   inline bool IsOutOfMemoryFailure();
769   inline bool IsException();
770   inline bool IsJSObject();
771   inline bool IsJSContextExtensionObject();
772   inline bool IsMap();
773   inline bool IsFixedArray();
774   inline bool IsDescriptorArray();
775   inline bool IsContext();
776   inline bool IsCatchContext();
777   inline bool IsGlobalContext();
778   inline bool IsJSFunction();
779   inline bool IsCode();
780   inline bool IsOddball();
781   inline bool IsSharedFunctionInfo();
782   inline bool IsJSValue();
783   inline bool IsStringWrapper();
784   inline bool IsProxy();
785   inline bool IsBoolean();
786   inline bool IsJSArray();
787   inline bool IsJSRegExp();
788   inline bool IsHashTable();
789   inline bool IsDictionary();
790   inline bool IsSymbolTable();
791   inline bool IsCompilationCacheTable();
792   inline bool IsMapCache();
793   inline bool IsPrimitive();
794   inline bool IsGlobalObject();
795   inline bool IsJSGlobalObject();
796   inline bool IsJSBuiltinsObject();
797   inline bool IsJSGlobalProxy();
798   inline bool IsUndetectableObject();
799   inline bool IsAccessCheckNeeded();
800   inline bool IsJSGlobalPropertyCell();
801 
802   // Returns true if this object is an instance of the specified
803   // function template.
804   inline bool IsInstanceOf(FunctionTemplateInfo* type);
805 
806   inline bool IsStruct();
807 #define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
808   STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
809 #undef DECLARE_STRUCT_PREDICATE
810 
811   // Oddball testing.
812   INLINE(bool IsUndefined());
813   INLINE(bool IsTheHole());
814   INLINE(bool IsNull());
815   INLINE(bool IsTrue());
816   INLINE(bool IsFalse());
817 
818   // Extract the number.
819   inline double Number();
820 
821   inline bool HasSpecificClassOf(String* name);
822 
823   Object* ToObject();             // ECMA-262 9.9.
824   Object* ToBoolean();            // ECMA-262 9.2.
825 
826   // Convert to a JSObject if needed.
827   // global_context is used when creating wrapper object.
828   Object* ToObject(Context* global_context);
829 
830   // Converts this to a Smi if possible.
831   // Failure is returned otherwise.
832   inline Object* ToSmi();
833 
834   void Lookup(String* name, LookupResult* result);
835 
836   // Property access.
837   inline Object* GetProperty(String* key);
838   inline Object* GetProperty(String* key, PropertyAttributes* attributes);
839   Object* GetPropertyWithReceiver(Object* receiver,
840                                   String* key,
841                                   PropertyAttributes* attributes);
842   Object* GetProperty(Object* receiver,
843                       LookupResult* result,
844                       String* key,
845                       PropertyAttributes* attributes);
846   Object* GetPropertyWithCallback(Object* receiver,
847                                   Object* structure,
848                                   String* name,
849                                   Object* holder);
850   Object* GetPropertyWithDefinedGetter(Object* receiver,
851                                        JSFunction* getter);
852 
853   inline Object* GetElement(uint32_t index);
854   Object* GetElementWithReceiver(Object* receiver, uint32_t index);
855 
856   // Return the object's prototype (might be Heap::null_value()).
857   Object* GetPrototype();
858 
859   // Returns true if this is a JSValue containing a string and the index is
860   // < the length of the string.  Used to implement [] on strings.
861   inline bool IsStringObjectWithCharacterAt(uint32_t index);
862 
863 #ifdef DEBUG
864   // Prints this object with details.
865   void Print();
866   void PrintLn();
867   // Verifies the object.
868   void Verify();
869 
870   // Verify a pointer is a valid object pointer.
871   static void VerifyPointer(Object* p);
872 #endif
873 
874   // Prints this object without details.
875   void ShortPrint();
876 
877   // Prints this object without details to a message accumulator.
878   void ShortPrint(StringStream* accumulator);
879 
880   // Casting: This cast is only needed to satisfy macros in objects-inl.h.
cast(Object * value)881   static Object* cast(Object* value) { return value; }
882 
883   // Layout description.
884   static const int kHeaderSize = 0;  // Object does not take up any space.
885 
886  private:
887   DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
888 };
889 
890 
891 // Smi represents integer Numbers that can be stored in 31 bits.
892 // TODO(X64) Increase to 53 bits?
893 // Smis are immediate which means they are NOT allocated in the heap.
894 // The this pointer has the following format: [31 bit signed int] 0
895 // TODO(X64): 31 bits signed int sign-extended to 63 bits.
896 // Smi stands for small integer.
897 class Smi: public Object {
898  public:
899   // Returns the integer value.
900   inline int value();
901 
902   // Convert a value to a Smi object.
903   static inline Smi* FromInt(int value);
904 
905   static inline Smi* FromIntptr(intptr_t value);
906 
907   // Returns whether value can be represented in a Smi.
908   static inline bool IsValid(intptr_t value);
909 
910   static inline bool IsIntptrValid(intptr_t);
911 
912   // Casting.
913   static inline Smi* cast(Object* object);
914 
915   // Dispatched behavior.
916   void SmiPrint();
917   void SmiPrint(StringStream* accumulator);
918 #ifdef DEBUG
919   void SmiVerify();
920 #endif
921 
922   static const int kSmiNumBits = 31;
923   // Min and max limits for Smi values.
924   static const int kMinValue = -(1 << (kSmiNumBits - 1));
925   static const int kMaxValue = (1 << (kSmiNumBits - 1)) - 1;
926 
927  private:
928   DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
929 };
930 
931 
932 // Failure is used for reporting out of memory situations and
933 // propagating exceptions through the runtime system.  Failure objects
934 // are transient and cannot occur as part of the object graph.
935 //
936 // Failures are a single word, encoded as follows:
937 // +-------------------------+---+--+--+
938 // |rrrrrrrrrrrrrrrrrrrrrrrrr|sss|tt|11|
939 // +-------------------------+---+--+--+
940 //  3                       7 6 4 32 10
941 //  1
942 //
943 // The low two bits, 0-1, are the failure tag, 11.  The next two bits,
944 // 2-3, are a failure type tag 'tt' with possible values:
945 //   00 RETRY_AFTER_GC
946 //   01 EXCEPTION
947 //   10 INTERNAL_ERROR
948 //   11 OUT_OF_MEMORY_EXCEPTION
949 //
950 // The next three bits, 4-6, are an allocation space tag 'sss'.  The
951 // allocation space tag is 000 for all failure types except
952 // RETRY_AFTER_GC.  For RETRY_AFTER_GC, the possible values are the
953 // allocation spaces (the encoding is found in globals.h).
954 //
955 // The remaining bits is the size of the allocation request in units
956 // of the pointer size, and is zeroed except for RETRY_AFTER_GC
957 // failures.  The 25 bits (on a 32 bit platform) gives a representable
958 // range of 2^27 bytes (128MB).
959 
960 // Failure type tag info.
961 const int kFailureTypeTagSize = 2;
962 const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
963 
964 class Failure: public Object {
965  public:
966   // RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
967   enum Type {
968     RETRY_AFTER_GC = 0,
969     EXCEPTION = 1,       // Returning this marker tells the real exception
970                          // is in Top::pending_exception.
971     INTERNAL_ERROR = 2,
972     OUT_OF_MEMORY_EXCEPTION = 3
973   };
974 
975   inline Type type() const;
976 
977   // Returns the space that needs to be collected for RetryAfterGC failures.
978   inline AllocationSpace allocation_space() const;
979 
980   // Returns the number of bytes requested (up to the representable maximum)
981   // for RetryAfterGC failures.
982   inline int requested() const;
983 
984   inline bool IsInternalError() const;
985   inline bool IsOutOfMemoryException() const;
986 
987   static Failure* RetryAfterGC(int requested_bytes, AllocationSpace space);
988   static inline Failure* RetryAfterGC(int requested_bytes);  // NEW_SPACE
989   static inline Failure* Exception();
990   static inline Failure* InternalError();
991   static inline Failure* OutOfMemoryException();
992   // Casting.
993   static inline Failure* cast(Object* object);
994 
995   // Dispatched behavior.
996   void FailurePrint();
997   void FailurePrint(StringStream* accumulator);
998 #ifdef DEBUG
999   void FailureVerify();
1000 #endif
1001 
1002  private:
1003   inline int value() const;
1004   static inline Failure* Construct(Type type, int value = 0);
1005 
1006   DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
1007 };
1008 
1009 
1010 // Heap objects typically have a map pointer in their first word.  However,
1011 // during GC other data (eg, mark bits, forwarding addresses) is sometimes
1012 // encoded in the first word.  The class MapWord is an abstraction of the
1013 // value in a heap object's first word.
1014 class MapWord BASE_EMBEDDED {
1015  public:
1016   // Normal state: the map word contains a map pointer.
1017 
1018   // Create a map word from a map pointer.
1019   static inline MapWord FromMap(Map* map);
1020 
1021   // View this map word as a map pointer.
1022   inline Map* ToMap();
1023 
1024 
1025   // Scavenge collection: the map word of live objects in the from space
1026   // contains a forwarding address (a heap object pointer in the to space).
1027 
1028   // True if this map word is a forwarding address for a scavenge
1029   // collection.  Only valid during a scavenge collection (specifically,
1030   // when all map words are heap object pointers, ie. not during a full GC).
1031   inline bool IsForwardingAddress();
1032 
1033   // Create a map word from a forwarding address.
1034   static inline MapWord FromForwardingAddress(HeapObject* object);
1035 
1036   // View this map word as a forwarding address.
1037   inline HeapObject* ToForwardingAddress();
1038 
1039 
1040   // Marking phase of full collection: the map word of live objects is
1041   // marked, and may be marked as overflowed (eg, the object is live, its
1042   // children have not been visited, and it does not fit in the marking
1043   // stack).
1044 
1045   // True if this map word's mark bit is set.
1046   inline bool IsMarked();
1047 
1048   // Return this map word but with its mark bit set.
1049   inline void SetMark();
1050 
1051   // Return this map word but with its mark bit cleared.
1052   inline void ClearMark();
1053 
1054   // True if this map word's overflow bit is set.
1055   inline bool IsOverflowed();
1056 
1057   // Return this map word but with its overflow bit set.
1058   inline void SetOverflow();
1059 
1060   // Return this map word but with its overflow bit cleared.
1061   inline void ClearOverflow();
1062 
1063 
1064   // Compacting phase of a full compacting collection: the map word of live
1065   // objects contains an encoding of the original map address along with the
1066   // forwarding address (represented as an offset from the first live object
1067   // in the same page as the (old) object address).
1068 
1069   // Create a map word from a map address and a forwarding address offset.
1070   static inline MapWord EncodeAddress(Address map_address, int offset);
1071 
1072   // Return the map address encoded in this map word.
1073   inline Address DecodeMapAddress(MapSpace* map_space);
1074 
1075   // Return the forwarding offset encoded in this map word.
1076   inline int DecodeOffset();
1077 
1078 
1079   // During serialization: the map word is used to hold an encoded
1080   // address, and possibly a mark bit (set and cleared with SetMark
1081   // and ClearMark).
1082 
1083   // Create a map word from an encoded address.
1084   static inline MapWord FromEncodedAddress(Address address);
1085 
1086   inline Address ToEncodedAddress();
1087 
1088   // Bits used by the marking phase of the garbage collector.
1089   //
1090   // The first word of a heap object is normally a map pointer. The last two
1091   // bits are tagged as '01' (kHeapObjectTag). We reuse the last two bits to
1092   // mark an object as live and/or overflowed:
1093   //   last bit = 0, marked as alive
1094   //   second bit = 1, overflowed
1095   // An object is only marked as overflowed when it is marked as live while
1096   // the marking stack is overflowed.
1097   static const int kMarkingBit = 0;  // marking bit
1098   static const int kMarkingMask = (1 << kMarkingBit);  // marking mask
1099   static const int kOverflowBit = 1;  // overflow bit
1100   static const int kOverflowMask = (1 << kOverflowBit);  // overflow mask
1101 
1102   // Forwarding pointers and map pointer encoding
1103   //  31             21 20              10 9               0
1104   // +-----------------+------------------+-----------------+
1105   // |forwarding offset|page offset of map|page index of map|
1106   // +-----------------+------------------+-----------------+
1107   //  11 bits           11 bits            10 bits
1108   static const int kMapPageIndexBits = 10;
1109   static const int kMapPageOffsetBits = 11;
1110   static const int kForwardingOffsetBits = 11;
1111 
1112   static const int kMapPageIndexShift = 0;
1113   static const int kMapPageOffsetShift =
1114       kMapPageIndexShift + kMapPageIndexBits;
1115   static const int kForwardingOffsetShift =
1116       kMapPageOffsetShift + kMapPageOffsetBits;
1117 
1118   // 0x000003FF
1119   static const uint32_t kMapPageIndexMask =
1120       (1 << kMapPageOffsetShift) - 1;
1121 
1122   // 0x001FFC00
1123   static const uint32_t kMapPageOffsetMask =
1124       ((1 << kForwardingOffsetShift) - 1) & ~kMapPageIndexMask;
1125 
1126   // 0xFFE00000
1127   static const uint32_t kForwardingOffsetMask =
1128       ~(kMapPageIndexMask | kMapPageOffsetMask);
1129 
1130  private:
1131   // HeapObject calls the private constructor and directly reads the value.
1132   friend class HeapObject;
1133 
MapWord(uintptr_t value)1134   explicit MapWord(uintptr_t value) : value_(value) {}
1135 
1136   uintptr_t value_;
1137 };
1138 
1139 
1140 // HeapObject is the superclass for all classes describing heap allocated
1141 // objects.
1142 class HeapObject: public Object {
1143  public:
1144   // [map]: Contains a map which contains the object's reflective
1145   // information.
1146   inline Map* map();
1147   inline void set_map(Map* value);
1148 
1149   // During garbage collection, the map word of a heap object does not
1150   // necessarily contain a map pointer.
1151   inline MapWord map_word();
1152   inline void set_map_word(MapWord map_word);
1153 
1154   // Converts an address to a HeapObject pointer.
1155   static inline HeapObject* FromAddress(Address address);
1156 
1157   // Returns the address of this HeapObject.
1158   inline Address address();
1159 
1160   // Iterates over pointers contained in the object (including the Map)
1161   void Iterate(ObjectVisitor* v);
1162 
1163   // Iterates over all pointers contained in the object except the
1164   // first map pointer.  The object type is given in the first
1165   // parameter. This function does not access the map pointer in the
1166   // object, and so is safe to call while the map pointer is modified.
1167   void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
1168 
1169   // This method only applies to struct objects.  Iterates over all the fields
1170   // of this struct.
1171   void IterateStructBody(int object_size, ObjectVisitor* v);
1172 
1173   // Returns the heap object's size in bytes
1174   inline int Size();
1175 
1176   // Given a heap object's map pointer, returns the heap size in bytes
1177   // Useful when the map pointer field is used for other purposes.
1178   // GC internal.
1179   inline int SizeFromMap(Map* map);
1180 
1181   // Support for the marking heap objects during the marking phase of GC.
1182   // True if the object is marked live.
1183   inline bool IsMarked();
1184 
1185   // Mutate this object's map pointer to indicate that the object is live.
1186   inline void SetMark();
1187 
1188   // Mutate this object's map pointer to remove the indication that the
1189   // object is live (ie, partially restore the map pointer).
1190   inline void ClearMark();
1191 
1192   // True if this object is marked as overflowed.  Overflowed objects have
1193   // been reached and marked during marking of the heap, but their children
1194   // have not necessarily been marked and they have not been pushed on the
1195   // marking stack.
1196   inline bool IsOverflowed();
1197 
1198   // Mutate this object's map pointer to indicate that the object is
1199   // overflowed.
1200   inline void SetOverflow();
1201 
1202   // Mutate this object's map pointer to remove the indication that the
1203   // object is overflowed (ie, partially restore the map pointer).
1204   inline void ClearOverflow();
1205 
1206   // Returns the field at offset in obj, as a read/write Object* reference.
1207   // Does no checking, and is safe to use during GC, while maps are invalid.
1208   // Does not update remembered sets, so should only be assigned to
1209   // during marking GC.
1210   static inline Object** RawField(HeapObject* obj, int offset);
1211 
1212   // Casting.
1213   static inline HeapObject* cast(Object* obj);
1214 
1215   // Return the write barrier mode for this.
1216   inline WriteBarrierMode GetWriteBarrierMode();
1217 
1218   // Dispatched behavior.
1219   void HeapObjectShortPrint(StringStream* accumulator);
1220 #ifdef DEBUG
1221   void HeapObjectPrint();
1222   void HeapObjectVerify();
1223   inline void VerifyObjectField(int offset);
1224 
1225   void PrintHeader(const char* id);
1226 
1227   // Verify a pointer is a valid HeapObject pointer that points to object
1228   // areas in the heap.
1229   static void VerifyHeapPointer(Object* p);
1230 #endif
1231 
1232   // Layout description.
1233   // First field in a heap object is map.
1234   static const int kMapOffset = Object::kHeaderSize;
1235   static const int kHeaderSize = kMapOffset + kPointerSize;
1236 
1237   STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset);
1238 
1239  protected:
1240   // helpers for calling an ObjectVisitor to iterate over pointers in the
1241   // half-open range [start, end) specified as integer offsets
1242   inline void IteratePointers(ObjectVisitor* v, int start, int end);
1243   // as above, for the single element at "offset"
1244   inline void IteratePointer(ObjectVisitor* v, int offset);
1245 
1246   // Computes the object size from the map.
1247   // Should only be used from SizeFromMap.
1248   int SlowSizeFromMap(Map* map);
1249 
1250  private:
1251   DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1252 };
1253 
1254 
1255 // The HeapNumber class describes heap allocated numbers that cannot be
1256 // represented in a Smi (small integer)
1257 class HeapNumber: public HeapObject {
1258  public:
1259   // [value]: number value.
1260   inline double value();
1261   inline void set_value(double value);
1262 
1263   // Casting.
1264   static inline HeapNumber* cast(Object* obj);
1265 
1266   // Dispatched behavior.
1267   Object* HeapNumberToBoolean();
1268   void HeapNumberPrint();
1269   void HeapNumberPrint(StringStream* accumulator);
1270 #ifdef DEBUG
1271   void HeapNumberVerify();
1272 #endif
1273 
1274   // Layout description.
1275   static const int kValueOffset = HeapObject::kHeaderSize;
1276   // IEEE doubles are two 32 bit words.  The first is just mantissa, the second
1277   // is a mixture of sign, exponent and mantissa.  Our current platforms are all
1278   // little endian apart from non-EABI arm which is little endian with big
1279   // endian floating point word ordering!
1280 #if !defined(V8_HOST_ARCH_ARM) || __ARM_EABI__
1281   static const int kMantissaOffset = kValueOffset;
1282   static const int kExponentOffset = kValueOffset + 4;
1283 #else
1284   static const int kMantissaOffset = kValueOffset + 4;
1285   static const int kExponentOffset = kValueOffset;
1286 # define BIG_ENDIAN_FLOATING_POINT 1
1287 #endif
1288   static const int kSize = kValueOffset + kDoubleSize;
1289 
1290   static const uint32_t kSignMask = 0x80000000u;
1291   static const uint32_t kExponentMask = 0x7ff00000u;
1292   static const uint32_t kMantissaMask = 0xfffffu;
1293   static const int kExponentBias = 1023;
1294   static const int kExponentShift = 20;
1295   static const int kMantissaBitsInTopWord = 20;
1296   static const int kNonMantissaBitsInTopWord = 12;
1297 
1298  private:
1299   DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1300 };
1301 
1302 
1303 // The JSObject describes real heap allocated JavaScript objects with
1304 // properties.
1305 // Note that the map of JSObject changes during execution to enable inline
1306 // caching.
1307 class JSObject: public HeapObject {
1308  public:
1309   enum DeleteMode { NORMAL_DELETION, FORCE_DELETION };
1310   enum ElementsKind {
1311     FAST_ELEMENTS,
1312     DICTIONARY_ELEMENTS,
1313     PIXEL_ELEMENTS
1314   };
1315 
1316   // [properties]: Backing storage for properties.
1317   // properties is a FixedArray in the fast case, and a Dictionary in the
1318   // slow case.
1319   DECL_ACCESSORS(properties, FixedArray)  // Get and set fast properties.
1320   inline void initialize_properties();
1321   inline bool HasFastProperties();
1322   inline StringDictionary* property_dictionary();  // Gets slow properties.
1323 
1324   // [elements]: The elements (properties with names that are integers).
1325   // elements is a FixedArray in the fast case, and a Dictionary in the slow
1326   // case or a PixelArray in a special case.
1327   DECL_ACCESSORS(elements, Array)  // Get and set fast elements.
1328   inline void initialize_elements();
1329   inline ElementsKind GetElementsKind();
1330   inline bool HasFastElements();
1331   inline bool HasDictionaryElements();
1332   inline bool HasPixelElements();
1333   inline NumberDictionary* element_dictionary();  // Gets slow elements.
1334 
1335   // Collects elements starting at index 0.
1336   // Undefined values are placed after non-undefined values.
1337   // Returns the number of non-undefined values.
1338   Object* PrepareElementsForSort(uint32_t limit);
1339   // As PrepareElementsForSort, but only on objects where elements is
1340   // a dictionary, and it will stay a dictionary.
1341   Object* PrepareSlowElementsForSort(uint32_t limit);
1342 
1343   Object* SetProperty(String* key,
1344                       Object* value,
1345                       PropertyAttributes attributes);
1346   Object* SetProperty(LookupResult* result,
1347                       String* key,
1348                       Object* value,
1349                       PropertyAttributes attributes);
1350   Object* SetPropertyWithFailedAccessCheck(LookupResult* result,
1351                                            String* name,
1352                                            Object* value);
1353   Object* SetPropertyWithCallback(Object* structure,
1354                                   String* name,
1355                                   Object* value,
1356                                   JSObject* holder);
1357   Object* SetPropertyWithDefinedSetter(JSFunction* setter,
1358                                        Object* value);
1359   Object* SetPropertyWithInterceptor(String* name,
1360                                      Object* value,
1361                                      PropertyAttributes attributes);
1362   Object* SetPropertyPostInterceptor(String* name,
1363                                      Object* value,
1364                                      PropertyAttributes attributes);
1365   Object* IgnoreAttributesAndSetLocalProperty(String* key,
1366                                               Object* value,
1367                                               PropertyAttributes attributes);
1368 
1369   // Retrieve a value in a normalized object given a lookup result.
1370   // Handles the special representation of JS global objects.
1371   Object* GetNormalizedProperty(LookupResult* result);
1372 
1373   // Sets the property value in a normalized object given a lookup result.
1374   // Handles the special representation of JS global objects.
1375   Object* SetNormalizedProperty(LookupResult* result, Object* value);
1376 
1377   // Sets the property value in a normalized object given (key, value, details).
1378   // Handles the special representation of JS global objects.
1379   Object* SetNormalizedProperty(String* name,
1380                                 Object* value,
1381                                 PropertyDetails details);
1382 
1383   // Deletes the named property in a normalized object.
1384   Object* DeleteNormalizedProperty(String* name, DeleteMode mode);
1385 
1386   // Sets a property that currently has lazy loading.
1387   Object* SetLazyProperty(LookupResult* result,
1388                           String* name,
1389                           Object* value,
1390                           PropertyAttributes attributes);
1391 
1392   // Returns the class name ([[Class]] property in the specification).
1393   String* class_name();
1394 
1395   // Retrieve interceptors.
1396   InterceptorInfo* GetNamedInterceptor();
1397   InterceptorInfo* GetIndexedInterceptor();
1398 
1399   inline PropertyAttributes GetPropertyAttribute(String* name);
1400   PropertyAttributes GetPropertyAttributeWithReceiver(JSObject* receiver,
1401                                                       String* name);
1402   PropertyAttributes GetLocalPropertyAttribute(String* name);
1403 
1404   Object* DefineAccessor(String* name, bool is_getter, JSFunction* fun,
1405                          PropertyAttributes attributes);
1406   Object* LookupAccessor(String* name, bool is_getter);
1407 
1408   // Used from Object::GetProperty().
1409   Object* GetPropertyWithFailedAccessCheck(Object* receiver,
1410                                            LookupResult* result,
1411                                            String* name,
1412                                            PropertyAttributes* attributes);
1413   Object* GetPropertyWithInterceptor(JSObject* receiver,
1414                                      String* name,
1415                                      PropertyAttributes* attributes);
1416   Object* GetPropertyPostInterceptor(JSObject* receiver,
1417                                      String* name,
1418                                      PropertyAttributes* attributes);
1419   Object* GetLazyProperty(Object* receiver,
1420                           LookupResult* result,
1421                           String* name,
1422                           PropertyAttributes* attributes);
1423 
1424   // Tells whether this object needs to be loaded.
1425   inline bool IsLoaded();
1426 
HasProperty(String * name)1427   bool HasProperty(String* name) {
1428     return GetPropertyAttribute(name) != ABSENT;
1429   }
1430 
1431   // Can cause a GC if it hits an interceptor.
HasLocalProperty(String * name)1432   bool HasLocalProperty(String* name) {
1433     return GetLocalPropertyAttribute(name) != ABSENT;
1434   }
1435 
1436   Object* DeleteProperty(String* name, DeleteMode mode);
1437   Object* DeleteElement(uint32_t index, DeleteMode mode);
1438   Object* DeleteLazyProperty(LookupResult* result,
1439                              String* name,
1440                              DeleteMode mode);
1441 
1442   // Tests for the fast common case for property enumeration.
1443   bool IsSimpleEnum();
1444 
1445   // Do we want to keep the elements in fast case when increasing the
1446   // capacity?
1447   bool ShouldConvertToSlowElements(int new_capacity);
1448   // Returns true if the backing storage for the slow-case elements of
1449   // this object takes up nearly as much space as a fast-case backing
1450   // storage would.  In that case the JSObject should have fast
1451   // elements.
1452   bool ShouldConvertToFastElements();
1453 
1454   // Return the object's prototype (might be Heap::null_value()).
1455   inline Object* GetPrototype();
1456 
1457   // Tells whether the index'th element is present.
1458   inline bool HasElement(uint32_t index);
1459   bool HasElementWithReceiver(JSObject* receiver, uint32_t index);
1460   bool HasLocalElement(uint32_t index);
1461 
1462   bool HasElementWithInterceptor(JSObject* receiver, uint32_t index);
1463   bool HasElementPostInterceptor(JSObject* receiver, uint32_t index);
1464 
1465   Object* SetFastElement(uint32_t index, Object* value);
1466 
1467   // Set the index'th array element.
1468   // A Failure object is returned if GC is needed.
1469   Object* SetElement(uint32_t index, Object* value);
1470 
1471   // Returns the index'th element.
1472   // The undefined object if index is out of bounds.
1473   Object* GetElementWithReceiver(JSObject* receiver, uint32_t index);
1474 
1475   void SetFastElements(FixedArray* elements);
1476   Object* SetSlowElements(Object* length);
1477 
1478   // Lookup interceptors are used for handling properties controlled by host
1479   // objects.
1480   inline bool HasNamedInterceptor();
1481   inline bool HasIndexedInterceptor();
1482 
1483   // Support functions for v8 api (needed for correct interceptor behavior).
1484   bool HasRealNamedProperty(String* key);
1485   bool HasRealElementProperty(uint32_t index);
1486   bool HasRealNamedCallbackProperty(String* key);
1487 
1488   // Initializes the array to a certain length
1489   Object* SetElementsLength(Object* length);
1490 
1491   // Get the header size for a JSObject.  Used to compute the index of
1492   // internal fields as well as the number of internal fields.
1493   inline int GetHeaderSize();
1494 
1495   inline int GetInternalFieldCount();
1496   inline Object* GetInternalField(int index);
1497   inline void SetInternalField(int index, Object* value);
1498 
1499   // Lookup a property.  If found, the result is valid and has
1500   // detailed information.
1501   void LocalLookup(String* name, LookupResult* result);
1502   void Lookup(String* name, LookupResult* result);
1503 
1504   // The following lookup functions skip interceptors.
1505   void LocalLookupRealNamedProperty(String* name, LookupResult* result);
1506   void LookupRealNamedProperty(String* name, LookupResult* result);
1507   void LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result);
1508   void LookupCallbackSetterInPrototypes(String* name, LookupResult* result);
1509   Object* LookupCallbackSetterInPrototypes(uint32_t index);
1510   void LookupCallback(String* name, LookupResult* result);
1511 
1512   // Returns the number of properties on this object filtering out properties
1513   // with the specified attributes (ignoring interceptors).
1514   int NumberOfLocalProperties(PropertyAttributes filter);
1515   // Returns the number of enumerable properties (ignoring interceptors).
1516   int NumberOfEnumProperties();
1517   // Fill in details for properties into storage starting at the specified
1518   // index.
1519   void GetLocalPropertyNames(FixedArray* storage, int index);
1520 
1521   // Returns the number of properties on this object filtering out properties
1522   // with the specified attributes (ignoring interceptors).
1523   int NumberOfLocalElements(PropertyAttributes filter);
1524   // Returns the number of enumerable elements (ignoring interceptors).
1525   int NumberOfEnumElements();
1526   // Returns the number of elements on this object filtering out elements
1527   // with the specified attributes (ignoring interceptors).
1528   int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
1529   // Count and fill in the enumerable elements into storage.
1530   // (storage->length() == NumberOfEnumElements()).
1531   // If storage is NULL, will count the elements without adding
1532   // them to any storage.
1533   // Returns the number of enumerable elements.
1534   int GetEnumElementKeys(FixedArray* storage);
1535 
1536   // Add a property to a fast-case object using a map transition to
1537   // new_map.
1538   Object* AddFastPropertyUsingMap(Map* new_map,
1539                                   String* name,
1540                                   Object* value);
1541 
1542   // Add a constant function property to a fast-case object.
1543   // This leaves a CONSTANT_TRANSITION in the old map, and
1544   // if it is called on a second object with this map, a
1545   // normal property is added instead, with a map transition.
1546   // This avoids the creation of many maps with the same constant
1547   // function, all orphaned.
1548   Object* AddConstantFunctionProperty(String* name,
1549                                       JSFunction* function,
1550                                       PropertyAttributes attributes);
1551 
1552   Object* ReplaceSlowProperty(String* name,
1553                               Object* value,
1554                               PropertyAttributes attributes);
1555 
1556   // Converts a descriptor of any other type to a real field,
1557   // backed by the properties array.  Descriptors of visible
1558   // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1559   // Converts the descriptor on the original object's map to a
1560   // map transition, and the the new field is on the object's new map.
1561   Object* ConvertDescriptorToFieldAndMapTransition(
1562       String* name,
1563       Object* new_value,
1564       PropertyAttributes attributes);
1565 
1566   // Converts a descriptor of any other type to a real field,
1567   // backed by the properties array.  Descriptors of visible
1568   // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1569   Object* ConvertDescriptorToField(String* name,
1570                                    Object* new_value,
1571                                    PropertyAttributes attributes);
1572 
1573   // Add a property to a fast-case object.
1574   Object* AddFastProperty(String* name,
1575                           Object* value,
1576                           PropertyAttributes attributes);
1577 
1578   // Add a property to a slow-case object.
1579   Object* AddSlowProperty(String* name,
1580                           Object* value,
1581                           PropertyAttributes attributes);
1582 
1583   // Add a property to an object.
1584   Object* AddProperty(String* name,
1585                       Object* value,
1586                       PropertyAttributes attributes);
1587 
1588   // Convert the object to use the canonical dictionary
1589   // representation. If the object is expected to have additional properties
1590   // added this number can be indicated to have the backing store allocated to
1591   // an initial capacity for holding these properties.
1592   Object* NormalizeProperties(PropertyNormalizationMode mode,
1593                               int expected_additional_properties);
1594   Object* NormalizeElements();
1595 
1596   // Transform slow named properties to fast variants.
1597   // Returns failure if allocation failed.
1598   Object* TransformToFastProperties(int unused_property_fields);
1599 
1600   // Access fast-case object properties at index.
1601   inline Object* FastPropertyAt(int index);
1602   inline Object* FastPropertyAtPut(int index, Object* value);
1603 
1604   // Access to in object properties.
1605   inline Object* InObjectPropertyAt(int index);
1606   inline Object* InObjectPropertyAtPut(int index,
1607                                        Object* value,
1608                                        WriteBarrierMode mode
1609                                        = UPDATE_WRITE_BARRIER);
1610 
1611   // initializes the body after properties slot, properties slot is
1612   // initialized by set_properties
1613   // Note: this call does not update write barrier, it is caller's
1614   // reponsibility to ensure that *v* can be collected without WB here.
1615   inline void InitializeBody(int object_size);
1616 
1617   // Check whether this object references another object
1618   bool ReferencesObject(Object* obj);
1619 
1620   // Casting.
1621   static inline JSObject* cast(Object* obj);
1622 
1623   // Dispatched behavior.
1624   void JSObjectIterateBody(int object_size, ObjectVisitor* v);
1625   void JSObjectShortPrint(StringStream* accumulator);
1626 #ifdef DEBUG
1627   void JSObjectPrint();
1628   void JSObjectVerify();
1629   void PrintProperties();
1630   void PrintElements();
1631 
1632   // Structure for collecting spill information about JSObjects.
1633   class SpillInformation {
1634    public:
1635     void Clear();
1636     void Print();
1637     int number_of_objects_;
1638     int number_of_objects_with_fast_properties_;
1639     int number_of_objects_with_fast_elements_;
1640     int number_of_fast_used_fields_;
1641     int number_of_fast_unused_fields_;
1642     int number_of_slow_used_properties_;
1643     int number_of_slow_unused_properties_;
1644     int number_of_fast_used_elements_;
1645     int number_of_fast_unused_elements_;
1646     int number_of_slow_used_elements_;
1647     int number_of_slow_unused_elements_;
1648   };
1649 
1650   void IncrementSpillStatistics(SpillInformation* info);
1651 #endif
1652   Object* SlowReverseLookup(Object* value);
1653 
1654   static const uint32_t kMaxGap = 1024;
1655   static const int kMaxFastElementsLength = 5000;
1656   static const int kInitialMaxFastElementArray = 100000;
1657   static const int kMaxFastProperties = 8;
1658   static const int kMaxInstanceSize = 255 * kPointerSize;
1659   // When extending the backing storage for property values, we increase
1660   // its size by more than the 1 entry necessary, so sequentially adding fields
1661   // to the same object requires fewer allocations and copies.
1662   static const int kFieldsAdded = 3;
1663 
1664   // Layout description.
1665   static const int kPropertiesOffset = HeapObject::kHeaderSize;
1666   static const int kElementsOffset = kPropertiesOffset + kPointerSize;
1667   static const int kHeaderSize = kElementsOffset + kPointerSize;
1668 
1669   STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize);
1670 
1671   Object* GetElementWithInterceptor(JSObject* receiver, uint32_t index);
1672 
1673  private:
1674   Object* SetElementWithInterceptor(uint32_t index, Object* value);
1675   Object* SetElementWithoutInterceptor(uint32_t index, Object* value);
1676 
1677   Object* GetElementPostInterceptor(JSObject* receiver, uint32_t index);
1678 
1679   Object* DeletePropertyPostInterceptor(String* name, DeleteMode mode);
1680   Object* DeletePropertyWithInterceptor(String* name);
1681 
1682   Object* DeleteElementPostInterceptor(uint32_t index, DeleteMode mode);
1683   Object* DeleteElementWithInterceptor(uint32_t index);
1684 
1685   PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver,
1686                                                          String* name,
1687                                                          bool continue_search);
1688   PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver,
1689                                                          String* name,
1690                                                          bool continue_search);
1691   PropertyAttributes GetPropertyAttributeWithFailedAccessCheck(
1692       Object* receiver,
1693       LookupResult* result,
1694       String* name,
1695       bool continue_search);
1696   PropertyAttributes GetPropertyAttribute(JSObject* receiver,
1697                                           LookupResult* result,
1698                                           String* name,
1699                                           bool continue_search);
1700 
1701   // Returns true if most of the elements backing storage is used.
1702   bool HasDenseElements();
1703 
1704   Object* DefineGetterSetter(String* name, PropertyAttributes attributes);
1705 
1706   void LookupInDescriptor(String* name, LookupResult* result);
1707 
1708   DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
1709 };
1710 
1711 
1712 // Abstract super class arrays. It provides length behavior.
1713 class Array: public HeapObject {
1714  public:
1715   // [length]: length of the array.
1716   inline int length();
1717   inline void set_length(int value);
1718 
1719   // Convert an object to an array index.
1720   // Returns true if the conversion succeeded.
1721   static inline bool IndexFromObject(Object* object, uint32_t* index);
1722 
1723   // Layout descriptor.
1724   static const int kLengthOffset = HeapObject::kHeaderSize;
1725 
1726  protected:
1727   // No code should use the Array class directly, only its subclasses.
1728   // Use the kHeaderSize of the appropriate subclass, which may be aligned.
1729   static const int kHeaderSize = kLengthOffset + kIntSize;
1730   static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
1731 
1732  private:
1733   DISALLOW_IMPLICIT_CONSTRUCTORS(Array);
1734 };
1735 
1736 
1737 // FixedArray describes fixed sized arrays where element
1738 // type is Object*.
1739 
1740 class FixedArray: public Array {
1741  public:
1742 
1743   // Setter and getter for elements.
1744   inline Object* get(int index);
1745   // Setter that uses write barrier.
1746   inline void set(int index, Object* value);
1747 
1748   // Setter that doesn't need write barrier).
1749   inline void set(int index, Smi* value);
1750   // Setter with explicit barrier mode.
1751   inline void set(int index, Object* value, WriteBarrierMode mode);
1752 
1753   // Setters for frequently used oddballs located in old space.
1754   inline void set_undefined(int index);
1755   inline void set_null(int index);
1756   inline void set_the_hole(int index);
1757 
1758   // Copy operations.
1759   inline Object* Copy();
1760   Object* CopySize(int new_length);
1761 
1762   // Add the elements of a JSArray to this FixedArray.
1763   Object* AddKeysFromJSArray(JSArray* array);
1764 
1765   // Compute the union of this and other.
1766   Object* UnionOfKeys(FixedArray* other);
1767 
1768   // Copy a sub array from the receiver to dest.
1769   void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
1770 
1771   // Garbage collection support.
SizeFor(int length)1772   static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
1773 
1774   // Code Generation support.
OffsetOfElementAt(int index)1775   static int OffsetOfElementAt(int index) { return SizeFor(index); }
1776 
1777   // Casting.
1778   static inline FixedArray* cast(Object* obj);
1779 
1780   // Align data at kPointerSize, even if Array.kHeaderSize isn't aligned.
1781   static const int kHeaderSize = POINTER_SIZE_ALIGN(Array::kHeaderSize);
1782 
1783   // Dispatched behavior.
FixedArraySize()1784   int FixedArraySize() { return SizeFor(length()); }
1785   void FixedArrayIterateBody(ObjectVisitor* v);
1786 #ifdef DEBUG
1787   void FixedArrayPrint();
1788   void FixedArrayVerify();
1789   // Checks if two FixedArrays have identical contents.
1790   bool IsEqualTo(FixedArray* other);
1791 #endif
1792 
1793   // Swap two elements in a pair of arrays.  If this array and the
1794   // numbers array are the same object, the elements are only swapped
1795   // once.
1796   void SwapPairs(FixedArray* numbers, int i, int j);
1797 
1798   // Sort prefix of this array and the numbers array as pairs wrt. the
1799   // numbers.  If the numbers array and the this array are the same
1800   // object, the prefix of this array is sorted.
1801   void SortPairs(FixedArray* numbers, uint32_t len);
1802 
1803  protected:
1804   // Set operation on FixedArray without using write barriers.
1805   static inline void fast_set(FixedArray* array, int index, Object* value);
1806 
1807  private:
1808   DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
1809 };
1810 
1811 
1812 // DescriptorArrays are fixed arrays used to hold instance descriptors.
1813 // The format of the these objects is:
1814 //   [0]: point to a fixed array with (value, detail) pairs.
1815 //   [1]: next enumeration index (Smi), or pointer to small fixed array:
1816 //          [0]: next enumeration index (Smi)
1817 //          [1]: pointer to fixed array with enum cache
1818 //   [2]: first key
1819 //   [length() - 1]: last key
1820 //
1821 class DescriptorArray: public FixedArray {
1822  public:
1823   // Is this the singleton empty_descriptor_array?
1824   inline bool IsEmpty();
1825   // Returns the number of descriptors in the array.
number_of_descriptors()1826   int number_of_descriptors() {
1827     return IsEmpty() ? 0 : length() - kFirstIndex;
1828   }
1829 
NextEnumerationIndex()1830   int NextEnumerationIndex() {
1831     if (IsEmpty()) return PropertyDetails::kInitialIndex;
1832     Object* obj = get(kEnumerationIndexIndex);
1833     if (obj->IsSmi()) {
1834       return Smi::cast(obj)->value();
1835     } else {
1836       Object* index = FixedArray::cast(obj)->get(kEnumCacheBridgeEnumIndex);
1837       return Smi::cast(index)->value();
1838     }
1839   }
1840 
1841   // Set next enumeration index and flush any enum cache.
SetNextEnumerationIndex(int value)1842   void SetNextEnumerationIndex(int value) {
1843     if (!IsEmpty()) {
1844       fast_set(this, kEnumerationIndexIndex, Smi::FromInt(value));
1845     }
1846   }
HasEnumCache()1847   bool HasEnumCache() {
1848     return !IsEmpty() && !get(kEnumerationIndexIndex)->IsSmi();
1849   }
1850 
GetEnumCache()1851   Object* GetEnumCache() {
1852     ASSERT(HasEnumCache());
1853     FixedArray* bridge = FixedArray::cast(get(kEnumerationIndexIndex));
1854     return bridge->get(kEnumCacheBridgeCacheIndex);
1855   }
1856 
1857   // Initialize or change the enum cache,
1858   // using the supplied storage for the small "bridge".
1859   void SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache);
1860 
1861   // Accessors for fetching instance descriptor at descriptor number.
1862   inline String* GetKey(int descriptor_number);
1863   inline Object* GetValue(int descriptor_number);
1864   inline Smi* GetDetails(int descriptor_number);
1865   inline PropertyType GetType(int descriptor_number);
1866   inline int GetFieldIndex(int descriptor_number);
1867   inline JSFunction* GetConstantFunction(int descriptor_number);
1868   inline Object* GetCallbacksObject(int descriptor_number);
1869   inline AccessorDescriptor* GetCallbacks(int descriptor_number);
1870   inline bool IsProperty(int descriptor_number);
1871   inline bool IsTransition(int descriptor_number);
1872   inline bool IsNullDescriptor(int descriptor_number);
1873   inline bool IsDontEnum(int descriptor_number);
1874 
1875   // Accessor for complete descriptor.
1876   inline void Get(int descriptor_number, Descriptor* desc);
1877   inline void Set(int descriptor_number, Descriptor* desc);
1878 
1879   // Transfer complete descriptor from another descriptor array to
1880   // this one.
1881   inline void CopyFrom(int index, DescriptorArray* src, int src_index);
1882 
1883   // Copy the descriptor array, insert a new descriptor and optionally
1884   // remove map transitions.  If the descriptor is already present, it is
1885   // replaced.  If a replaced descriptor is a real property (not a transition
1886   // or null), its enumeration index is kept as is.
1887   // If adding a real property, map transitions must be removed.  If adding
1888   // a transition, they must not be removed.  All null descriptors are removed.
1889   Object* CopyInsert(Descriptor* descriptor, TransitionFlag transition_flag);
1890 
1891   // Remove all transitions.  Return  a copy of the array with all transitions
1892   // removed, or a Failure object if the new array could not be allocated.
1893   Object* RemoveTransitions();
1894 
1895   // Sort the instance descriptors by the hash codes of their keys.
1896   void Sort();
1897 
1898   // Search the instance descriptors for given name.
1899   inline int Search(String* name);
1900 
1901   // Tells whether the name is present int the array.
Contains(String * name)1902   bool Contains(String* name) { return kNotFound != Search(name); }
1903 
1904   // Perform a binary search in the instance descriptors represented
1905   // by this fixed array.  low and high are descriptor indices.  If there
1906   // are three instance descriptors in this array it should be called
1907   // with low=0 and high=2.
1908   int BinarySearch(String* name, int low, int high);
1909 
1910   // Perform a linear search in the instance descriptors represented
1911   // by this fixed array.  len is the number of descriptor indices that are
1912   // valid.  Does not require the descriptors to be sorted.
1913   int LinearSearch(String* name, int len);
1914 
1915   // Allocates a DescriptorArray, but returns the singleton
1916   // empty descriptor array object if number_of_descriptors is 0.
1917   static Object* Allocate(int number_of_descriptors);
1918 
1919   // Casting.
1920   static inline DescriptorArray* cast(Object* obj);
1921 
1922   // Constant for denoting key was not found.
1923   static const int kNotFound = -1;
1924 
1925   static const int kContentArrayIndex = 0;
1926   static const int kEnumerationIndexIndex = 1;
1927   static const int kFirstIndex = 2;
1928 
1929   // The length of the "bridge" to the enum cache.
1930   static const int kEnumCacheBridgeLength = 2;
1931   static const int kEnumCacheBridgeEnumIndex = 0;
1932   static const int kEnumCacheBridgeCacheIndex = 1;
1933 
1934   // Layout description.
1935   static const int kContentArrayOffset = FixedArray::kHeaderSize;
1936   static const int kEnumerationIndexOffset = kContentArrayOffset + kPointerSize;
1937   static const int kFirstOffset = kEnumerationIndexOffset + kPointerSize;
1938 
1939   // Layout description for the bridge array.
1940   static const int kEnumCacheBridgeEnumOffset = FixedArray::kHeaderSize;
1941   static const int kEnumCacheBridgeCacheOffset =
1942     kEnumCacheBridgeEnumOffset + kPointerSize;
1943 
1944 #ifdef DEBUG
1945   // Print all the descriptors.
1946   void PrintDescriptors();
1947 
1948   // Is the descriptor array sorted and without duplicates?
1949   bool IsSortedNoDuplicates();
1950 
1951   // Are two DescriptorArrays equal?
1952   bool IsEqualTo(DescriptorArray* other);
1953 #endif
1954 
1955   // The maximum number of descriptors we want in a descriptor array (should
1956   // fit in a page).
1957   static const int kMaxNumberOfDescriptors = 1024 + 512;
1958 
1959  private:
1960   // Conversion from descriptor number to array indices.
ToKeyIndex(int descriptor_number)1961   static int ToKeyIndex(int descriptor_number) {
1962     return descriptor_number+kFirstIndex;
1963   }
ToValueIndex(int descriptor_number)1964   static int ToValueIndex(int descriptor_number) {
1965     return descriptor_number << 1;
1966   }
ToDetailsIndex(int descriptor_number)1967   static int ToDetailsIndex(int descriptor_number) {
1968     return( descriptor_number << 1) + 1;
1969   }
1970 
is_null_descriptor(int descriptor_number)1971   bool is_null_descriptor(int descriptor_number) {
1972     return PropertyDetails(GetDetails(descriptor_number)).type() ==
1973         NULL_DESCRIPTOR;
1974   }
1975   // Swap operation on FixedArray without using write barriers.
1976   static inline void fast_swap(FixedArray* array, int first, int second);
1977 
1978   // Swap descriptor first and second.
1979   inline void Swap(int first, int second);
1980 
GetContentArray()1981   FixedArray* GetContentArray() {
1982     return FixedArray::cast(get(kContentArrayIndex));
1983   }
1984   DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
1985 };
1986 
1987 
1988 // HashTable is a subclass of FixedArray that implements a hash table
1989 // that uses open addressing and quadratic probing.
1990 //
1991 // In order for the quadratic probing to work, elements that have not
1992 // yet been used and elements that have been deleted are
1993 // distinguished.  Probing continues when deleted elements are
1994 // encountered and stops when unused elements are encountered.
1995 //
1996 // - Elements with key == undefined have not been used yet.
1997 // - Elements with key == null have been deleted.
1998 //
1999 // The hash table class is parameterized with a Shape and a Key.
2000 // Shape must be a class with the following interface:
2001 //   class ExampleShape {
2002 //    public:
2003 //      // Tells whether key matches other.
2004 //     static bool IsMatch(Key key, Object* other);
2005 //     // Returns the hash value for key.
2006 //     static uint32_t Hash(Key key);
2007 //     // Returns the hash value for object.
2008 //     static uint32_t HashForObject(Key key, Object* object);
2009 //     // Convert key to an object.
2010 //     static inline Object* AsObject(Key key);
2011 //     // The prefix size indicates number of elements in the beginning
2012 //     // of the backing storage.
2013 //     static const int kPrefixSize = ..;
2014 //     // The Element size indicates number of elements per entry.
2015 //     static const int kEntrySize = ..;
2016 //   };
2017 // table.  The prefix size indicates an amount of memory in the
2018 // beginning of the backing storage that can be used for non-element
2019 // information by subclasses.
2020 
2021 template<typename Shape, typename Key>
2022 class HashTable: public FixedArray {
2023  public:
2024   // Returns the number of elements in the dictionary.
NumberOfElements()2025   int NumberOfElements() {
2026     return Smi::cast(get(kNumberOfElementsIndex))->value();
2027   }
2028 
2029   // Returns the capacity of the dictionary.
Capacity()2030   int Capacity() {
2031     return Smi::cast(get(kCapacityIndex))->value();
2032   }
2033 
2034   // ElementAdded should be called whenever an element is added to a
2035   // dictionary.
ElementAdded()2036   void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
2037 
2038   // ElementRemoved should be called whenever an element is removed from
2039   // a dictionary.
ElementRemoved()2040   void ElementRemoved() { SetNumberOfElements(NumberOfElements() - 1); }
ElementsRemoved(int n)2041   void ElementsRemoved(int n) { SetNumberOfElements(NumberOfElements() - n); }
2042 
2043   // Returns a new array for dictionary usage. Might return Failure.
2044   static Object* Allocate(int at_least_space_for);
2045 
2046   // Returns the key at entry.
KeyAt(int entry)2047   Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
2048 
2049   // Tells whether k is a real key.  Null and undefined are not allowed
2050   // as keys and can be used to indicate missing or deleted elements.
IsKey(Object * k)2051   bool IsKey(Object* k) {
2052     return !k->IsNull() && !k->IsUndefined();
2053   }
2054 
2055   // Garbage collection support.
2056   void IteratePrefix(ObjectVisitor* visitor);
2057   void IterateElements(ObjectVisitor* visitor);
2058 
2059   // Casting.
2060   static inline HashTable* cast(Object* obj);
2061 
2062   // Compute the probe offset (quadratic probing).
INLINE(static uint32_t GetProbeOffset (uint32_t n))2063   INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
2064     return (n + n * n) >> 1;
2065   }
2066 
2067   static const int kNumberOfElementsIndex = 0;
2068   static const int kCapacityIndex         = 1;
2069   static const int kPrefixStartIndex      = 2;
2070   static const int kElementsStartIndex    =
2071       kPrefixStartIndex + Shape::kPrefixSize;
2072   static const int kEntrySize             = Shape::kEntrySize;
2073   static const int kElementsStartOffset   =
2074       kHeaderSize + kElementsStartIndex * kPointerSize;
2075 
2076   // Constant used for denoting a absent entry.
2077   static const int kNotFound = -1;
2078 
2079   // Find entry for key otherwise return -1.
2080   int FindEntry(Key key);
2081 
2082  protected:
2083 
2084   // Find the entry at which to insert element with the given key that
2085   // has the given hash value.
2086   uint32_t FindInsertionEntry(uint32_t hash);
2087 
2088   // Returns the index for an entry (of the key)
EntryToIndex(int entry)2089   static inline int EntryToIndex(int entry) {
2090     return (entry * kEntrySize) + kElementsStartIndex;
2091   }
2092 
2093   // Update the number of elements in the dictionary.
SetNumberOfElements(int nof)2094   void SetNumberOfElements(int nof) {
2095     fast_set(this, kNumberOfElementsIndex, Smi::FromInt(nof));
2096   }
2097 
2098   // Sets the capacity of the hash table.
SetCapacity(int capacity)2099   void SetCapacity(int capacity) {
2100     // To scale a computed hash code to fit within the hash table, we
2101     // use bit-wise AND with a mask, so the capacity must be positive
2102     // and non-zero.
2103     ASSERT(capacity > 0);
2104     fast_set(this, kCapacityIndex, Smi::FromInt(capacity));
2105   }
2106 
2107 
2108   // Returns probe entry.
GetProbe(uint32_t hash,uint32_t number,uint32_t size)2109   static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
2110     ASSERT(IsPowerOf2(size));
2111     return (hash + GetProbeOffset(number)) & (size - 1);
2112   }
2113 
2114   // Ensure enough space for n additional elements.
2115   Object* EnsureCapacity(int n, Key key);
2116 };
2117 
2118 
2119 
2120 // HashTableKey is an abstract superclass for virtual key behavior.
2121 class HashTableKey {
2122  public:
2123   // Returns whether the other object matches this key.
2124   virtual bool IsMatch(Object* other) = 0;
2125   // Returns the hash value for this key.
2126   virtual uint32_t Hash() = 0;
2127   // Returns the hash value for object.
2128   virtual uint32_t HashForObject(Object* key) = 0;
2129   // Returns the key object for storing into the dictionary.
2130   // If allocations fails a failure object is returned.
2131   virtual Object* AsObject() = 0;
2132   // Required.
~HashTableKey()2133   virtual ~HashTableKey() {}
2134 };
2135 
2136 class SymbolTableShape {
2137  public:
IsMatch(HashTableKey * key,Object * value)2138   static bool IsMatch(HashTableKey* key, Object* value) {
2139     return key->IsMatch(value);
2140   }
Hash(HashTableKey * key)2141   static uint32_t Hash(HashTableKey* key) {
2142     return key->Hash();
2143   }
HashForObject(HashTableKey * key,Object * object)2144   static uint32_t HashForObject(HashTableKey* key, Object* object) {
2145     return key->HashForObject(object);
2146   }
AsObject(HashTableKey * key)2147   static Object* AsObject(HashTableKey* key) {
2148     return key->AsObject();
2149   }
2150 
2151   static const int kPrefixSize = 0;
2152   static const int kEntrySize = 1;
2153 };
2154 
2155 // SymbolTable.
2156 //
2157 // No special elements in the prefix and the element size is 1
2158 // because only the symbol itself (the key) needs to be stored.
2159 class SymbolTable: public HashTable<SymbolTableShape, HashTableKey*> {
2160  public:
2161   // Find symbol in the symbol table.  If it is not there yet, it is
2162   // added.  The return value is the symbol table which might have
2163   // been enlarged.  If the return value is not a failure, the symbol
2164   // pointer *s is set to the symbol found.
2165   Object* LookupSymbol(Vector<const char> str, Object** s);
2166   Object* LookupString(String* key, Object** s);
2167 
2168   // Looks up a symbol that is equal to the given string and returns
2169   // true if it is found, assigning the symbol to the given output
2170   // parameter.
2171   bool LookupSymbolIfExists(String* str, String** symbol);
2172 
2173   // Casting.
2174   static inline SymbolTable* cast(Object* obj);
2175 
2176  private:
2177   Object* LookupKey(HashTableKey* key, Object** s);
2178 
2179   DISALLOW_IMPLICIT_CONSTRUCTORS(SymbolTable);
2180 };
2181 
2182 
2183 class MapCacheShape {
2184  public:
IsMatch(HashTableKey * key,Object * value)2185   static bool IsMatch(HashTableKey* key, Object* value) {
2186     return key->IsMatch(value);
2187   }
Hash(HashTableKey * key)2188   static uint32_t Hash(HashTableKey* key) {
2189     return key->Hash();
2190   }
2191 
HashForObject(HashTableKey * key,Object * object)2192   static uint32_t HashForObject(HashTableKey* key, Object* object) {
2193     return key->HashForObject(object);
2194   }
2195 
AsObject(HashTableKey * key)2196   static Object* AsObject(HashTableKey* key) {
2197     return key->AsObject();
2198   }
2199 
2200   static const int kPrefixSize = 0;
2201   static const int kEntrySize = 2;
2202 };
2203 
2204 
2205 // MapCache.
2206 //
2207 // Maps keys that are a fixed array of symbols to a map.
2208 // Used for canonicalize maps for object literals.
2209 class MapCache: public HashTable<MapCacheShape, HashTableKey*> {
2210  public:
2211   // Find cached value for a string key, otherwise return null.
2212   Object* Lookup(FixedArray* key);
2213   Object* Put(FixedArray* key, Map* value);
2214   static inline MapCache* cast(Object* obj);
2215 
2216  private:
2217   DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache);
2218 };
2219 
2220 
2221 template <typename Shape, typename Key>
2222 class Dictionary: public HashTable<Shape, Key> {
2223  public:
2224 
cast(Object * obj)2225   static inline Dictionary<Shape, Key>* cast(Object* obj) {
2226     return reinterpret_cast<Dictionary<Shape, Key>*>(obj);
2227   }
2228 
2229   // Returns the value at entry.
ValueAt(int entry)2230   Object* ValueAt(int entry) {
2231     return get(HashTable<Shape, Key>::EntryToIndex(entry)+1);
2232   }
2233 
2234   // Set the value for entry.
ValueAtPut(int entry,Object * value)2235   void ValueAtPut(int entry, Object* value) {
2236     set(HashTable<Shape, Key>::EntryToIndex(entry)+1, value);
2237   }
2238 
2239   // Returns the property details for the property at entry.
DetailsAt(int entry)2240   PropertyDetails DetailsAt(int entry) {
2241     ASSERT(entry >= 0);  // Not found is -1, which is not caught by get().
2242     return PropertyDetails(
2243         Smi::cast(get(HashTable<Shape, Key>::EntryToIndex(entry) + 2)));
2244   }
2245 
2246   // Set the details for entry.
DetailsAtPut(int entry,PropertyDetails value)2247   void DetailsAtPut(int entry, PropertyDetails value) {
2248     set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi());
2249   }
2250 
2251   // Sorting support
2252   void CopyValuesTo(FixedArray* elements);
2253 
2254   // Delete a property from the dictionary.
2255   Object* DeleteProperty(int entry, JSObject::DeleteMode mode);
2256 
2257   // Returns the number of elements in the dictionary filtering out properties
2258   // with the specified attributes.
2259   int NumberOfElementsFilterAttributes(PropertyAttributes filter);
2260 
2261   // Returns the number of enumerable elements in the dictionary.
2262   int NumberOfEnumElements();
2263 
2264   // Copies keys to preallocated fixed array.
2265   void CopyKeysTo(FixedArray* storage, PropertyAttributes filter);
2266   // Fill in details for properties into storage.
2267   void CopyKeysTo(FixedArray* storage);
2268 
2269   // Accessors for next enumeration index.
SetNextEnumerationIndex(int index)2270   void SetNextEnumerationIndex(int index) {
2271     fast_set(this, kNextEnumerationIndexIndex, Smi::FromInt(index));
2272   }
2273 
NextEnumerationIndex()2274   int NextEnumerationIndex() {
2275     return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value();
2276   }
2277 
2278   // Returns a new array for dictionary usage. Might return Failure.
2279   static Object* Allocate(int at_least_space_for);
2280 
2281   // Ensure enough space for n additional elements.
2282   Object* EnsureCapacity(int n, Key key);
2283 
2284 #ifdef DEBUG
2285   void Print();
2286 #endif
2287   // Returns the key (slow).
2288   Object* SlowReverseLookup(Object* value);
2289 
2290   // Sets the entry to (key, value) pair.
2291   inline void SetEntry(int entry,
2292                        Object* key,
2293                        Object* value,
2294                        PropertyDetails details);
2295 
2296   Object* Add(Key key, Object* value, PropertyDetails details);
2297 
2298  protected:
2299   // Generic at put operation.
2300   Object* AtPut(Key key, Object* value);
2301 
2302   // Add entry to dictionary.
2303   Object* AddEntry(Key key,
2304                    Object* value,
2305                    PropertyDetails details,
2306                    uint32_t hash);
2307 
2308   // Generate new enumeration indices to avoid enumeration index overflow.
2309   Object* GenerateNewEnumerationIndices();
2310   static const int kMaxNumberKeyIndex =
2311       HashTable<Shape, Key>::kPrefixStartIndex;
2312   static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
2313 };
2314 
2315 
2316 class StringDictionaryShape {
2317  public:
2318   static inline bool IsMatch(String* key, Object* other);
2319   static inline uint32_t Hash(String* key);
2320   static inline uint32_t HashForObject(String* key, Object* object);
2321   static inline Object* AsObject(String* key);
2322   static const int kPrefixSize = 2;
2323   static const int kEntrySize = 3;
2324   static const bool kIsEnumerable = true;
2325 };
2326 
2327 
2328 class StringDictionary: public Dictionary<StringDictionaryShape, String*> {
2329  public:
cast(Object * obj)2330   static inline StringDictionary* cast(Object* obj) {
2331     ASSERT(obj->IsDictionary());
2332     return reinterpret_cast<StringDictionary*>(obj);
2333   }
2334 
2335   // Copies enumerable keys to preallocated fixed array.
2336   void CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array);
2337 
2338   // For transforming properties of a JSObject.
2339   Object* TransformPropertiesToFastFor(JSObject* obj,
2340                                        int unused_property_fields);
2341 };
2342 
2343 
2344 class NumberDictionaryShape {
2345  public:
2346   static inline bool IsMatch(uint32_t key, Object* other);
2347   static inline uint32_t Hash(uint32_t key);
2348   static inline uint32_t HashForObject(uint32_t key, Object* object);
2349   static inline Object* AsObject(uint32_t key);
2350   static const int kPrefixSize = 2;
2351   static const int kEntrySize = 3;
2352   static const bool kIsEnumerable = false;
2353 };
2354 
2355 
2356 class NumberDictionary: public Dictionary<NumberDictionaryShape, uint32_t> {
2357  public:
cast(Object * obj)2358   static NumberDictionary* cast(Object* obj) {
2359     ASSERT(obj->IsDictionary());
2360     return reinterpret_cast<NumberDictionary*>(obj);
2361   }
2362 
2363   // Type specific at put (default NONE attributes is used when adding).
2364   Object* AtNumberPut(uint32_t key, Object* value);
2365   Object* AddNumberEntry(uint32_t key,
2366                          Object* value,
2367                          PropertyDetails details);
2368 
2369   // Set an existing entry or add a new one if needed.
2370   Object* Set(uint32_t key, Object* value, PropertyDetails details);
2371 
2372   void UpdateMaxNumberKey(uint32_t key);
2373 
2374   // If slow elements are required we will never go back to fast-case
2375   // for the elements kept in this dictionary.  We require slow
2376   // elements if an element has been added at an index larger than
2377   // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
2378   // when defining a getter or setter with a number key.
2379   inline bool requires_slow_elements();
2380   inline void set_requires_slow_elements();
2381 
2382   // Get the value of the max number key that has been added to this
2383   // dictionary.  max_number_key can only be called if
2384   // requires_slow_elements returns false.
2385   inline uint32_t max_number_key();
2386 
2387   // Remove all entries were key is a number and (from <= key && key < to).
2388   void RemoveNumberEntries(uint32_t from, uint32_t to);
2389 
2390   // Bit masks.
2391   static const int kRequiresSlowElementsMask = 1;
2392   static const int kRequiresSlowElementsTagSize = 1;
2393   static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
2394 };
2395 
2396 
2397 // ByteArray represents fixed sized byte arrays.  Used by the outside world,
2398 // such as PCRE, and also by the memory allocator and garbage collector to
2399 // fill in free blocks in the heap.
2400 class ByteArray: public Array {
2401  public:
2402   // Setter and getter.
2403   inline byte get(int index);
2404   inline void set(int index, byte value);
2405 
2406   // Treat contents as an int array.
2407   inline int get_int(int index);
2408 
SizeFor(int length)2409   static int SizeFor(int length) {
2410     return OBJECT_SIZE_ALIGN(kHeaderSize + length);
2411   }
2412   // We use byte arrays for free blocks in the heap.  Given a desired size in
2413   // bytes that is a multiple of the word size and big enough to hold a byte
2414   // array, this function returns the number of elements a byte array should
2415   // have.
LengthFor(int size_in_bytes)2416   static int LengthFor(int size_in_bytes) {
2417     ASSERT(IsAligned(size_in_bytes, kPointerSize));
2418     ASSERT(size_in_bytes >= kHeaderSize);
2419     return size_in_bytes - kHeaderSize;
2420   }
2421 
2422   // Returns data start address.
2423   inline Address GetDataStartAddress();
2424 
2425   // Returns a pointer to the ByteArray object for a given data start address.
2426   static inline ByteArray* FromDataStartAddress(Address address);
2427 
2428   // Casting.
2429   static inline ByteArray* cast(Object* obj);
2430 
2431   // Dispatched behavior.
ByteArraySize()2432   int ByteArraySize() { return SizeFor(length()); }
2433 #ifdef DEBUG
2434   void ByteArrayPrint();
2435   void ByteArrayVerify();
2436 #endif
2437 
2438   // ByteArray headers are not quadword aligned.
2439   static const int kHeaderSize = Array::kHeaderSize;
2440   static const int kAlignedSize = Array::kAlignedSize;
2441 
2442  private:
2443   DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
2444 };
2445 
2446 
2447 // A PixelArray represents a fixed-size byte array with special semantics
2448 // used for implementing the CanvasPixelArray object. Please see the
2449 // specification at:
2450 // http://www.whatwg.org/specs/web-apps/current-work/
2451 //                      multipage/the-canvas-element.html#canvaspixelarray
2452 // In particular, write access clamps the value written to 0 or 255 if the
2453 // value written is outside this range.
2454 class PixelArray: public Array {
2455  public:
2456   // [external_pointer]: The pointer to the external memory area backing this
2457   // pixel array.
2458   DECL_ACCESSORS(external_pointer, uint8_t)  // Pointer to the data store.
2459 
2460   // Setter and getter.
2461   inline uint8_t get(int index);
2462   inline void set(int index, uint8_t value);
2463 
2464   // This accessor applies the correct conversion from Smi, HeapNumber and
2465   // undefined and clamps the converted value between 0 and 255.
2466   Object* SetValue(uint32_t index, Object* value);
2467 
2468   // Casting.
2469   static inline PixelArray* cast(Object* obj);
2470 
2471 #ifdef DEBUG
2472   void PixelArrayPrint();
2473   void PixelArrayVerify();
2474 #endif  // DEBUG
2475 
2476   // PixelArray headers are not quadword aligned.
2477   static const int kExternalPointerOffset = Array::kAlignedSize;
2478   static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2479   static const int kAlignedSize = OBJECT_SIZE_ALIGN(kHeaderSize);
2480 
2481  private:
2482   DISALLOW_IMPLICIT_CONSTRUCTORS(PixelArray);
2483 };
2484 
2485 
2486 // Code describes objects with on-the-fly generated machine code.
2487 class Code: public HeapObject {
2488  public:
2489   // Opaque data type for encapsulating code flags like kind, inline
2490   // cache state, and arguments count.
2491   enum Flags { };
2492 
2493   enum Kind {
2494     FUNCTION,
2495     STUB,
2496     BUILTIN,
2497     LOAD_IC,
2498     KEYED_LOAD_IC,
2499     CALL_IC,
2500     STORE_IC,
2501     KEYED_STORE_IC,
2502     // No more than eight kinds. The value currently encoded in three bits in
2503     // Flags.
2504 
2505     // Pseudo-kinds.
2506     REGEXP = BUILTIN,
2507     FIRST_IC_KIND = LOAD_IC,
2508     LAST_IC_KIND = KEYED_STORE_IC
2509   };
2510 
2511   enum {
2512     NUMBER_OF_KINDS = KEYED_STORE_IC + 1
2513   };
2514 
2515   // A state indicates that inline cache in this Code object contains
2516   // objects or relative instruction addresses.
2517   enum ICTargetState {
2518     IC_TARGET_IS_ADDRESS,
2519     IC_TARGET_IS_OBJECT
2520   };
2521 
2522 #ifdef ENABLE_DISASSEMBLER
2523   // Printing
2524   static const char* Kind2String(Kind kind);
2525   static const char* ICState2String(InlineCacheState state);
2526   static const char* PropertyType2String(PropertyType type);
2527   void Disassemble(const char* name);
2528 #endif  // ENABLE_DISASSEMBLER
2529 
2530   // [instruction_size]: Size of the native instructions
2531   inline int instruction_size();
2532   inline void set_instruction_size(int value);
2533 
2534   // [relocation_size]: Size of relocation information.
2535   inline int relocation_size();
2536   inline void set_relocation_size(int value);
2537 
2538   // [sinfo_size]: Size of scope information.
2539   inline int sinfo_size();
2540   inline void set_sinfo_size(int value);
2541 
2542   // [flags]: Various code flags.
2543   inline Flags flags();
2544   inline void set_flags(Flags flags);
2545 
2546   // [flags]: Access to specific code flags.
2547   inline Kind kind();
2548   inline InlineCacheState ic_state();  // Only valid for IC stubs.
2549   inline InLoopFlag ic_in_loop();  // Only valid for IC stubs.
2550   inline PropertyType type();  // Only valid for monomorphic IC stubs.
2551   inline int arguments_count();  // Only valid for call IC stubs.
2552 
2553   // Testers for IC stub kinds.
2554   inline bool is_inline_cache_stub();
is_load_stub()2555   inline bool is_load_stub() { return kind() == LOAD_IC; }
is_keyed_load_stub()2556   inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
is_store_stub()2557   inline bool is_store_stub() { return kind() == STORE_IC; }
is_keyed_store_stub()2558   inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
is_call_stub()2559   inline bool is_call_stub() { return kind() == CALL_IC; }
2560 
2561   // [ic_flag]: State of inline cache targets. The flag is set to the
2562   // object variant in ConvertICTargetsFromAddressToObject, and set to
2563   // the address variant in ConvertICTargetsFromObjectToAddress.
2564   inline ICTargetState ic_flag();
2565   inline void set_ic_flag(ICTargetState value);
2566 
2567   // [major_key]: For kind STUB, the major key.
2568   inline CodeStub::Major major_key();
2569   inline void set_major_key(CodeStub::Major major);
2570 
2571   // Flags operations.
2572   static inline Flags ComputeFlags(Kind kind,
2573                                    InLoopFlag in_loop = NOT_IN_LOOP,
2574                                    InlineCacheState ic_state = UNINITIALIZED,
2575                                    PropertyType type = NORMAL,
2576                                    int argc = -1);
2577 
2578   static inline Flags ComputeMonomorphicFlags(
2579       Kind kind,
2580       PropertyType type,
2581       InLoopFlag in_loop = NOT_IN_LOOP,
2582       int argc = -1);
2583 
2584   static inline Kind ExtractKindFromFlags(Flags flags);
2585   static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
2586   static inline InLoopFlag ExtractICInLoopFromFlags(Flags flags);
2587   static inline PropertyType ExtractTypeFromFlags(Flags flags);
2588   static inline int ExtractArgumentsCountFromFlags(Flags flags);
2589   static inline Flags RemoveTypeFromFlags(Flags flags);
2590 
2591   // Convert a target address into a code object.
2592   static inline Code* GetCodeFromTargetAddress(Address address);
2593 
2594   // Returns the address of the first instruction.
2595   inline byte* instruction_start();
2596 
2597   // Returns the size of the instructions, padding, and relocation information.
2598   inline int body_size();
2599 
2600   // Returns the address of the first relocation info (read backwards!).
2601   inline byte* relocation_start();
2602 
2603   // Code entry point.
2604   inline byte* entry();
2605 
2606   // Returns true if pc is inside this object's instructions.
2607   inline bool contains(byte* pc);
2608 
2609   // Returns the address of the scope information.
2610   inline byte* sinfo_start();
2611 
2612   // Convert inline cache target from address to code object before GC.
2613   void ConvertICTargetsFromAddressToObject();
2614 
2615   // Convert inline cache target from code object to address after GC
2616   void ConvertICTargetsFromObjectToAddress();
2617 
2618   // Relocate the code by delta bytes. Called to signal that this code
2619   // object has been moved by delta bytes.
2620   void Relocate(int delta);
2621 
2622   // Migrate code described by desc.
2623   void CopyFrom(const CodeDesc& desc);
2624 
2625   // Returns the object size for a given body and sinfo size (Used for
2626   // allocation).
SizeFor(int body_size,int sinfo_size)2627   static int SizeFor(int body_size, int sinfo_size) {
2628     ASSERT_SIZE_TAG_ALIGNED(body_size);
2629     ASSERT_SIZE_TAG_ALIGNED(sinfo_size);
2630     return RoundUp(kHeaderSize + body_size + sinfo_size, kCodeAlignment);
2631   }
2632 
2633   // Calculate the size of the code object to report for log events. This takes
2634   // the layout of the code object into account.
ExecutableSize()2635   int ExecutableSize() {
2636     // Check that the assumptions about the layout of the code object holds.
2637     ASSERT_EQ(static_cast<int>(instruction_start() - address()),
2638               Code::kHeaderSize);
2639     return instruction_size() + Code::kHeaderSize;
2640   }
2641 
2642   // Locating source position.
2643   int SourcePosition(Address pc);
2644   int SourceStatementPosition(Address pc);
2645 
2646   // Casting.
2647   static inline Code* cast(Object* obj);
2648 
2649   // Dispatched behavior.
CodeSize()2650   int CodeSize() { return SizeFor(body_size(), sinfo_size()); }
2651   void CodeIterateBody(ObjectVisitor* v);
2652 #ifdef DEBUG
2653   void CodePrint();
2654   void CodeVerify();
2655 #endif
2656   // Code entry points are aligned to 32 bytes.
2657   static const int kCodeAlignment = 32;
2658   static const int kCodeAlignmentMask = kCodeAlignment - 1;
2659 
2660   // Layout description.
2661   static const int kInstructionSizeOffset = HeapObject::kHeaderSize;
2662   static const int kRelocationSizeOffset = kInstructionSizeOffset + kIntSize;
2663   static const int kSInfoSizeOffset = kRelocationSizeOffset + kIntSize;
2664   static const int kFlagsOffset = kSInfoSizeOffset + kIntSize;
2665   static const int kKindSpecificFlagsOffset  = kFlagsOffset + kIntSize;
2666   // Add padding to align the instruction start following right after
2667   // the Code object header.
2668   static const int kHeaderSize =
2669       (kKindSpecificFlagsOffset + kIntSize + kCodeAlignmentMask) &
2670           ~kCodeAlignmentMask;
2671 
2672   // Byte offsets within kKindSpecificFlagsOffset.
2673   static const int kICFlagOffset = kKindSpecificFlagsOffset + 0;
2674   static const int kStubMajorKeyOffset = kKindSpecificFlagsOffset + 1;
2675 
2676   // Flags layout.
2677   static const int kFlagsICStateShift        = 0;
2678   static const int kFlagsICInLoopShift       = 3;
2679   static const int kFlagsKindShift           = 4;
2680   static const int kFlagsTypeShift           = 7;
2681   static const int kFlagsArgumentsCountShift = 10;
2682 
2683   static const int kFlagsICStateMask        = 0x00000007;  // 0000000111
2684   static const int kFlagsICInLoopMask       = 0x00000008;  // 0000001000
2685   static const int kFlagsKindMask           = 0x00000070;  // 0001110000
2686   static const int kFlagsTypeMask           = 0x00000380;  // 1110000000
2687   static const int kFlagsArgumentsCountMask = 0xFFFFFC00;
2688 
2689   static const int kFlagsNotUsedInLookup =
2690       (kFlagsICInLoopMask | kFlagsTypeMask);
2691 
2692  private:
2693   DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
2694 };
2695 
2696 
2697 // All heap objects have a Map that describes their structure.
2698 //  A Map contains information about:
2699 //  - Size information about the object
2700 //  - How to iterate over an object (for garbage collection)
2701 class Map: public HeapObject {
2702  public:
2703   // Instance size.
2704   inline int instance_size();
2705   inline void set_instance_size(int value);
2706 
2707   // Count of properties allocated in the object.
2708   inline int inobject_properties();
2709   inline void set_inobject_properties(int value);
2710 
2711   // Count of property fields pre-allocated in the object when first allocated.
2712   inline int pre_allocated_property_fields();
2713   inline void set_pre_allocated_property_fields(int value);
2714 
2715   // Instance type.
2716   inline InstanceType instance_type();
2717   inline void set_instance_type(InstanceType value);
2718 
2719   // Tells how many unused property fields are available in the
2720   // instance (only used for JSObject in fast mode).
2721   inline int unused_property_fields();
2722   inline void set_unused_property_fields(int value);
2723 
2724   // Bit field.
2725   inline byte bit_field();
2726   inline void set_bit_field(byte value);
2727 
2728   // Bit field 2.
2729   inline byte bit_field2();
2730   inline void set_bit_field2(byte value);
2731 
2732   // Tells whether the object in the prototype property will be used
2733   // for instances created from this function.  If the prototype
2734   // property is set to a value that is not a JSObject, the prototype
2735   // property will not be used to create instances of the function.
2736   // See ECMA-262, 13.2.2.
2737   inline void set_non_instance_prototype(bool value);
2738   inline bool has_non_instance_prototype();
2739 
2740   // Tells whether the instance with this map should be ignored by the
2741   // __proto__ accessor.
set_is_hidden_prototype()2742   inline void set_is_hidden_prototype() {
2743     set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
2744   }
2745 
is_hidden_prototype()2746   inline bool is_hidden_prototype() {
2747     return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
2748   }
2749 
2750   // Records and queries whether the instance has a named interceptor.
set_has_named_interceptor()2751   inline void set_has_named_interceptor() {
2752     set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
2753   }
2754 
has_named_interceptor()2755   inline bool has_named_interceptor() {
2756     return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
2757   }
2758 
2759   // Records and queries whether the instance has an indexed interceptor.
set_has_indexed_interceptor()2760   inline void set_has_indexed_interceptor() {
2761     set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
2762   }
2763 
has_indexed_interceptor()2764   inline bool has_indexed_interceptor() {
2765     return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
2766   }
2767 
2768   // Tells whether the instance is undetectable.
2769   // An undetectable object is a special class of JSObject: 'typeof' operator
2770   // returns undefined, ToBoolean returns false. Otherwise it behaves like
2771   // a normal JS object.  It is useful for implementing undetectable
2772   // document.all in Firefox & Safari.
2773   // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
set_is_undetectable()2774   inline void set_is_undetectable() {
2775     set_bit_field(bit_field() | (1 << kIsUndetectable));
2776   }
2777 
is_undetectable()2778   inline bool is_undetectable() {
2779     return ((1 << kIsUndetectable) & bit_field()) != 0;
2780   }
2781 
set_needs_loading(bool value)2782   inline void set_needs_loading(bool value) {
2783     if (value) {
2784       set_bit_field2(bit_field2() | (1 << kNeedsLoading));
2785     } else {
2786       set_bit_field2(bit_field2() & ~(1 << kNeedsLoading));
2787     }
2788   }
2789 
2790   // Does this object or function require a lazily loaded script to be
2791   // run before being used?
needs_loading()2792   inline bool needs_loading() {
2793     return ((1 << kNeedsLoading) & bit_field2()) != 0;
2794   }
2795 
2796   // Tells whether the instance has a call-as-function handler.
set_has_instance_call_handler()2797   inline void set_has_instance_call_handler() {
2798     set_bit_field(bit_field() | (1 << kHasInstanceCallHandler));
2799   }
2800 
has_instance_call_handler()2801   inline bool has_instance_call_handler() {
2802     return ((1 << kHasInstanceCallHandler) & bit_field()) != 0;
2803   }
2804 
2805   // Tells whether the instance needs security checks when accessing its
2806   // properties.
2807   inline void set_is_access_check_needed(bool access_check_needed);
2808   inline bool is_access_check_needed();
2809 
2810   // [prototype]: implicit prototype object.
2811   DECL_ACCESSORS(prototype, Object)
2812 
2813   // [constructor]: points back to the function responsible for this map.
2814   DECL_ACCESSORS(constructor, Object)
2815 
2816   // [instance descriptors]: describes the object.
2817   DECL_ACCESSORS(instance_descriptors, DescriptorArray)
2818 
2819   // [stub cache]: contains stubs compiled for this map.
2820   DECL_ACCESSORS(code_cache, FixedArray)
2821 
2822   // Returns a copy of the map.
2823   Object* CopyDropDescriptors();
2824 
2825   // Returns a copy of the map, with all transitions dropped from the
2826   // instance descriptors.
2827   Object* CopyDropTransitions();
2828 
2829   // Returns the property index for name (only valid for FAST MODE).
2830   int PropertyIndexFor(String* name);
2831 
2832   // Returns the next free property index (only valid for FAST MODE).
2833   int NextFreePropertyIndex();
2834 
2835   // Returns the number of properties described in instance_descriptors.
2836   int NumberOfDescribedProperties();
2837 
2838   // Casting.
2839   static inline Map* cast(Object* obj);
2840 
2841   // Locate an accessor in the instance descriptor.
2842   AccessorDescriptor* FindAccessor(String* name);
2843 
2844   // Code cache operations.
2845 
2846   // Clears the code cache.
2847   inline void ClearCodeCache();
2848 
2849   // Update code cache.
2850   Object* UpdateCodeCache(String* name, Code* code);
2851 
2852   // Returns the found code or undefined if absent.
2853   Object* FindInCodeCache(String* name, Code::Flags flags);
2854 
2855   // Returns the non-negative index of the code object if it is in the
2856   // cache and -1 otherwise.
2857   int IndexInCodeCache(Code* code);
2858 
2859   // Removes a code object from the code cache at the given index.
2860   void RemoveFromCodeCache(int index);
2861 
2862   // For every transition in this map, makes the transition's
2863   // target's prototype pointer point back to this map.
2864   // This is undone in MarkCompactCollector::ClearNonLiveTransitions().
2865   void CreateBackPointers();
2866 
2867   // Set all map transitions from this map to dead maps to null.
2868   // Also, restore the original prototype on the targets of these
2869   // transitions, so that we do not process this map again while
2870   // following back pointers.
2871   void ClearNonLiveTransitions(Object* real_prototype);
2872 
2873   // Dispatched behavior.
2874   void MapIterateBody(ObjectVisitor* v);
2875 #ifdef DEBUG
2876   void MapPrint();
2877   void MapVerify();
2878 #endif
2879 
2880   static const int kMaxPreAllocatedPropertyFields = 255;
2881 
2882   // Layout description.
2883   static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
2884   static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
2885   static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
2886   static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
2887   static const int kInstanceDescriptorsOffset =
2888       kConstructorOffset + kPointerSize;
2889   static const int kCodeCacheOffset = kInstanceDescriptorsOffset + kPointerSize;
2890   static const int kSize = kCodeCacheOffset + kPointerSize;
2891 
2892   // Byte offsets within kInstanceSizesOffset.
2893   static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
2894   static const int kInObjectPropertiesByte = 1;
2895   static const int kInObjectPropertiesOffset =
2896       kInstanceSizesOffset + kInObjectPropertiesByte;
2897   static const int kPreAllocatedPropertyFieldsByte = 2;
2898   static const int kPreAllocatedPropertyFieldsOffset =
2899       kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
2900   // The byte at position 3 is not in use at the moment.
2901 
2902   // Byte offsets within kInstanceAttributesOffset attributes.
2903   static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
2904   static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1;
2905   static const int kBitFieldOffset = kInstanceAttributesOffset + 2;
2906   static const int kBitField2Offset = kInstanceAttributesOffset + 3;
2907 
2908   STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset);
2909 
2910   // Bit positions for bit field.
2911   static const int kUnused = 0;  // To be used for marking recently used maps.
2912   static const int kHasNonInstancePrototype = 1;
2913   static const int kIsHiddenPrototype = 2;
2914   static const int kHasNamedInterceptor = 3;
2915   static const int kHasIndexedInterceptor = 4;
2916   static const int kIsUndetectable = 5;
2917   static const int kHasInstanceCallHandler = 6;
2918   static const int kIsAccessCheckNeeded = 7;
2919 
2920   // Bit positions for bit field 2
2921   static const int kNeedsLoading = 0;
2922 
2923  private:
2924   DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
2925 };
2926 
2927 
2928 // An abstract superclass, a marker class really, for simple structure classes.
2929 // It doesn't carry much functionality but allows struct classes to me
2930 // identified in the type system.
2931 class Struct: public HeapObject {
2932  public:
2933   inline void InitializeBody(int object_size);
2934   static inline Struct* cast(Object* that);
2935 };
2936 
2937 
2938 // Script describes a script which has been added to the VM.
2939 class Script: public Struct {
2940  public:
2941   // Script types.
2942   enum Type {
2943     TYPE_NATIVE = 0,
2944     TYPE_EXTENSION = 1,
2945     TYPE_NORMAL = 2
2946   };
2947 
2948   // Script compilation types.
2949   enum CompilationType {
2950     COMPILATION_TYPE_HOST = 0,
2951     COMPILATION_TYPE_EVAL = 1,
2952     COMPILATION_TYPE_JSON = 2
2953   };
2954 
2955   // [source]: the script source.
2956   DECL_ACCESSORS(source, Object)
2957 
2958   // [name]: the script name.
2959   DECL_ACCESSORS(name, Object)
2960 
2961   // [id]: the script id.
2962   DECL_ACCESSORS(id, Object)
2963 
2964   // [line_offset]: script line offset in resource from where it was extracted.
2965   DECL_ACCESSORS(line_offset, Smi)
2966 
2967   // [column_offset]: script column offset in resource from where it was
2968   // extracted.
2969   DECL_ACCESSORS(column_offset, Smi)
2970 
2971   // [data]: additional data associated with this script.
2972   DECL_ACCESSORS(data, Object)
2973 
2974   // [context_data]: context data for the context this script was compiled in.
2975   DECL_ACCESSORS(context_data, Object)
2976 
2977   // [wrapper]: the wrapper cache.
2978   DECL_ACCESSORS(wrapper, Proxy)
2979 
2980   // [type]: the script type.
2981   DECL_ACCESSORS(type, Smi)
2982 
2983   // [compilation]: how the the script was compiled.
2984   DECL_ACCESSORS(compilation_type, Smi)
2985 
2986   // [line_ends]: array of line ends positions.
2987   DECL_ACCESSORS(line_ends, Object)
2988 
2989   // [eval_from_function]: for eval scripts the funcion from which eval was
2990   // called.
2991   DECL_ACCESSORS(eval_from_function, Object)
2992 
2993   // [eval_from_instructions_offset]: the instruction offset in the code for the
2994   // function from which eval was called where eval was called.
2995   DECL_ACCESSORS(eval_from_instructions_offset, Smi)
2996 
2997   static inline Script* cast(Object* obj);
2998 
2999 #ifdef DEBUG
3000   void ScriptPrint();
3001   void ScriptVerify();
3002 #endif
3003 
3004   static const int kSourceOffset = HeapObject::kHeaderSize;
3005   static const int kNameOffset = kSourceOffset + kPointerSize;
3006   static const int kLineOffsetOffset = kNameOffset + kPointerSize;
3007   static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
3008   static const int kDataOffset = kColumnOffsetOffset + kPointerSize;
3009   static const int kContextOffset = kDataOffset + kPointerSize;
3010   static const int kWrapperOffset = kContextOffset + kPointerSize;
3011   static const int kTypeOffset = kWrapperOffset + kPointerSize;
3012   static const int kCompilationTypeOffset = kTypeOffset + kPointerSize;
3013   static const int kLineEndsOffset = kCompilationTypeOffset + kPointerSize;
3014   static const int kIdOffset = kLineEndsOffset + kPointerSize;
3015   static const int kEvalFromFunctionOffset = kIdOffset + kPointerSize;
3016   static const int kEvalFrominstructionsOffsetOffset =
3017       kEvalFromFunctionOffset + kPointerSize;
3018   static const int kSize = kEvalFrominstructionsOffsetOffset + kPointerSize;
3019 
3020  private:
3021   DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
3022 };
3023 
3024 
3025 // SharedFunctionInfo describes the JSFunction information that can be
3026 // shared by multiple instances of the function.
3027 class SharedFunctionInfo: public HeapObject {
3028  public:
3029   // [name]: Function name.
3030   DECL_ACCESSORS(name, Object)
3031 
3032   // [code]: Function code.
3033   DECL_ACCESSORS(code, Code)
3034 
3035   // [construct stub]: Code stub for constructing instances of this function.
3036   DECL_ACCESSORS(construct_stub, Code)
3037 
3038   // Returns if this function has been compiled to native code yet.
3039   inline bool is_compiled();
3040 
3041   // [length]: The function length - usually the number of declared parameters.
3042   // Use up to 2^30 parameters.
3043   inline int length();
3044   inline void set_length(int value);
3045 
3046   // [formal parameter count]: The declared number of parameters.
3047   inline int formal_parameter_count();
3048   inline void set_formal_parameter_count(int value);
3049 
3050   // Set the formal parameter count so the function code will be
3051   // called without using argument adaptor frames.
3052   inline void DontAdaptArguments();
3053 
3054   // [expected_nof_properties]: Expected number of properties for the function.
3055   inline int expected_nof_properties();
3056   inline void set_expected_nof_properties(int value);
3057 
3058   // [instance class name]: class name for instances.
3059   DECL_ACCESSORS(instance_class_name, Object)
3060 
3061   // [function data]: This field has been added for make benefit the API.
3062   // In the long run we don't want all functions to have this field but
3063   // we can fix that when we have a better model for storing hidden data
3064   // on objects.
3065   DECL_ACCESSORS(function_data, Object)
3066 
3067   // [script info]: Script from which the function originates.
3068   DECL_ACCESSORS(script, Object)
3069 
3070   // [start_position_and_type]: Field used to store both the source code
3071   // position, whether or not the function is a function expression,
3072   // and whether or not the function is a toplevel function. The two
3073   // least significants bit indicates whether the function is an
3074   // expression and the rest contains the source code position.
3075   inline int start_position_and_type();
3076   inline void set_start_position_and_type(int value);
3077 
3078   // [debug info]: Debug information.
3079   DECL_ACCESSORS(debug_info, Object)
3080 
3081   // [inferred name]: Name inferred from variable or property
3082   // assignment of this function. Used to facilitate debugging and
3083   // profiling of JavaScript code written in OO style, where almost
3084   // all functions are anonymous but are assigned to object
3085   // properties.
3086   DECL_ACCESSORS(inferred_name, String)
3087 
3088   // Position of the 'function' token in the script source.
3089   inline int function_token_position();
3090   inline void set_function_token_position(int function_token_position);
3091 
3092   // Position of this function in the script source.
3093   inline int start_position();
3094   inline void set_start_position(int start_position);
3095 
3096   // End position of this function in the script source.
3097   inline int end_position();
3098   inline void set_end_position(int end_position);
3099 
3100   // Is this function a function expression in the source code.
3101   inline bool is_expression();
3102   inline void set_is_expression(bool value);
3103 
3104   // Is this function a top-level function. Used for accessing the
3105   // caller of functions. Top-level functions (scripts, evals) are
3106   // returned as null; see JSFunction::GetCallerAccessor(...).
3107   inline bool is_toplevel();
3108   inline void set_is_toplevel(bool value);
3109 
3110   // Bit field containing various information collected by the compiler to
3111   // drive optimization.
3112   inline int compiler_hints();
3113   inline void set_compiler_hints(int value);
3114 
3115   // Add information on assignments of the form this.x = ...;
3116   void SetThisPropertyAssignmentsInfo(
3117       bool has_only_this_property_assignments,
3118       bool has_only_simple_this_property_assignments,
3119       FixedArray* this_property_assignments);
3120 
3121   // Clear information on assignments of the form this.x = ...;
3122   void ClearThisPropertyAssignmentsInfo();
3123 
3124   // Indicate that this function only consists of assignments of the form
3125   // this.x = ...;.
3126   inline bool has_only_this_property_assignments();
3127 
3128   // Indicate that this function only consists of assignments of the form
3129   // this.x = y; where y is either a constant or refers to an argument.
3130   inline bool has_only_simple_this_property_assignments();
3131 
3132   // For functions which only contains this property assignments this provides
3133   // access to the names for the properties assigned.
3134   DECL_ACCESSORS(this_property_assignments, Object)
3135   inline int this_property_assignments_count();
3136   inline void set_this_property_assignments_count(int value);
3137   String* GetThisPropertyAssignmentName(int index);
3138   bool IsThisPropertyAssignmentArgument(int index);
3139   int GetThisPropertyAssignmentArgument(int index);
3140   Object* GetThisPropertyAssignmentConstant(int index);
3141 
3142   // [source code]: Source code for the function.
3143   bool HasSourceCode();
3144   Object* GetSourceCode();
3145 
3146   // Calculate the instance size.
3147   int CalculateInstanceSize();
3148 
3149   // Calculate the number of in-object properties.
3150   int CalculateInObjectProperties();
3151 
3152   // Dispatched behavior.
3153   void SharedFunctionInfoIterateBody(ObjectVisitor* v);
3154   // Set max_length to -1 for unlimited length.
3155   void SourceCodePrint(StringStream* accumulator, int max_length);
3156 #ifdef DEBUG
3157   void SharedFunctionInfoPrint();
3158   void SharedFunctionInfoVerify();
3159 #endif
3160 
3161   // Casting.
3162   static inline SharedFunctionInfo* cast(Object* obj);
3163 
3164   // Constants.
3165   static const int kDontAdaptArgumentsSentinel = -1;
3166 
3167   // Layout description.
3168   // (An even number of integers has a size that is a multiple of a pointer.)
3169   static const int kNameOffset = HeapObject::kHeaderSize;
3170   static const int kCodeOffset = kNameOffset + kPointerSize;
3171   static const int kConstructStubOffset = kCodeOffset + kPointerSize;
3172   static const int kLengthOffset = kConstructStubOffset + kPointerSize;
3173   static const int kFormalParameterCountOffset = kLengthOffset + kIntSize;
3174   static const int kExpectedNofPropertiesOffset =
3175       kFormalParameterCountOffset + kIntSize;
3176   static const int kStartPositionAndTypeOffset =
3177       kExpectedNofPropertiesOffset + kIntSize;
3178   static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;
3179   static const int kFunctionTokenPositionOffset = kEndPositionOffset + kIntSize;
3180   static const int kInstanceClassNameOffset =
3181       kFunctionTokenPositionOffset + kIntSize;
3182   static const int kExternalReferenceDataOffset =
3183       kInstanceClassNameOffset + kPointerSize;
3184   static const int kScriptOffset = kExternalReferenceDataOffset + kPointerSize;
3185   static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
3186   static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
3187   static const int kCompilerHintsOffset = kInferredNameOffset + kPointerSize;
3188   static const int kThisPropertyAssignmentsOffset =
3189       kCompilerHintsOffset + kPointerSize;
3190   static const int kThisPropertyAssignmentsCountOffset =
3191       kThisPropertyAssignmentsOffset + kPointerSize;
3192   static const int kSize = kThisPropertyAssignmentsCountOffset + kPointerSize;
3193 
3194  private:
3195   // Bit positions in length_and_flg.
3196   // The least significant bit is used as the flag.
3197   static const int kFlagBit         = 0;
3198   static const int kLengthShift     = 1;
3199   static const int kLengthMask      = ~((1 << kLengthShift) - 1);
3200 
3201   // Bit positions in start_position_and_type.
3202   // The source code start position is in the 30 most significant bits of
3203   // the start_position_and_type field.
3204   static const int kIsExpressionBit = 0;
3205   static const int kIsTopLevelBit   = 1;
3206   static const int kStartPositionShift = 2;
3207   static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
3208 
3209   // Bit positions in compiler_hints.
3210   static const int kHasOnlyThisPropertyAssignments = 0;
3211   static const int kHasOnlySimpleThisPropertyAssignments = 1;
3212 
3213   DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
3214 };
3215 
3216 
3217 // JSFunction describes JavaScript functions.
3218 class JSFunction: public JSObject {
3219  public:
3220   // [prototype_or_initial_map]:
3221   DECL_ACCESSORS(prototype_or_initial_map, Object)
3222 
3223   // [shared_function_info]: The information about the function that
3224   // can be shared by instances.
3225   DECL_ACCESSORS(shared, SharedFunctionInfo)
3226 
3227   // [context]: The context for this function.
3228   inline Context* context();
3229   inline Object* unchecked_context();
3230   inline void set_context(Object* context);
3231 
3232   // [code]: The generated code object for this function.  Executed
3233   // when the function is invoked, e.g. foo() or new foo(). See
3234   // [[Call]] and [[Construct]] description in ECMA-262, section
3235   // 8.6.2, page 27.
3236   inline Code* code();
3237   inline void set_code(Code* value);
3238 
3239   // Tells whether this function is a context-independent boilerplate
3240   // function.
3241   inline bool IsBoilerplate();
3242 
3243   // Tells whether this function is builtin.
3244   inline bool IsBuiltin();
3245 
3246   // [literals]: Fixed array holding the materialized literals.
3247   //
3248   // If the function contains object, regexp or array literals, the
3249   // literals array prefix contains the object, regexp, and array
3250   // function to be used when creating these literals.  This is
3251   // necessary so that we do not dynamically lookup the object, regexp
3252   // or array functions.  Performing a dynamic lookup, we might end up
3253   // using the functions from a new context that we should not have
3254   // access to.
3255   DECL_ACCESSORS(literals, FixedArray)
3256 
3257   // The initial map for an object created by this constructor.
3258   inline Map* initial_map();
3259   inline void set_initial_map(Map* value);
3260   inline bool has_initial_map();
3261 
3262   // Get and set the prototype property on a JSFunction. If the
3263   // function has an initial map the prototype is set on the initial
3264   // map. Otherwise, the prototype is put in the initial map field
3265   // until an initial map is needed.
3266   inline bool has_prototype();
3267   inline bool has_instance_prototype();
3268   inline Object* prototype();
3269   inline Object* instance_prototype();
3270   Object* SetInstancePrototype(Object* value);
3271   Object* SetPrototype(Object* value);
3272 
3273   // Accessor for this function's initial map's [[class]]
3274   // property. This is primarily used by ECMA native functions.  This
3275   // method sets the class_name field of this function's initial map
3276   // to a given value. It creates an initial map if this function does
3277   // not have one. Note that this method does not copy the initial map
3278   // if it has one already, but simply replaces it with the new value.
3279   // Instances created afterwards will have a map whose [[class]] is
3280   // set to 'value', but there is no guarantees on instances created
3281   // before.
3282   Object* SetInstanceClassName(String* name);
3283 
3284   // Returns if this function has been compiled to native code yet.
3285   inline bool is_compiled();
3286 
3287   // Casting.
3288   static inline JSFunction* cast(Object* obj);
3289 
3290   // Dispatched behavior.
3291 #ifdef DEBUG
3292   void JSFunctionPrint();
3293   void JSFunctionVerify();
3294 #endif
3295 
3296   // Returns the number of allocated literals.
3297   inline int NumberOfLiterals();
3298 
3299   // Retrieve the global context from a function's literal array.
3300   static Context* GlobalContextFromLiterals(FixedArray* literals);
3301 
3302   // Layout descriptors.
3303   static const int kPrototypeOrInitialMapOffset = JSObject::kHeaderSize;
3304   static const int kSharedFunctionInfoOffset =
3305       kPrototypeOrInitialMapOffset + kPointerSize;
3306   static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
3307   static const int kLiteralsOffset = kContextOffset + kPointerSize;
3308   static const int kSize = kLiteralsOffset + kPointerSize;
3309 
3310   // Layout of the literals array.
3311   static const int kLiteralsPrefixSize = 1;
3312   static const int kLiteralGlobalContextIndex = 0;
3313  private:
3314   DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
3315 };
3316 
3317 
3318 // JSGlobalProxy's prototype must be a JSGlobalObject or null,
3319 // and the prototype is hidden. JSGlobalProxy always delegates
3320 // property accesses to its prototype if the prototype is not null.
3321 //
3322 // A JSGlobalProxy can be reinitialized which will preserve its identity.
3323 //
3324 // Accessing a JSGlobalProxy requires security check.
3325 
3326 class JSGlobalProxy : public JSObject {
3327  public:
3328   // [context]: the owner global context of this proxy object.
3329   // It is null value if this object is not used by any context.
3330   DECL_ACCESSORS(context, Object)
3331 
3332   // Casting.
3333   static inline JSGlobalProxy* cast(Object* obj);
3334 
3335   // Dispatched behavior.
3336 #ifdef DEBUG
3337   void JSGlobalProxyPrint();
3338   void JSGlobalProxyVerify();
3339 #endif
3340 
3341   // Layout description.
3342   static const int kContextOffset = JSObject::kHeaderSize;
3343   static const int kSize = kContextOffset + kPointerSize;
3344 
3345  private:
3346 
3347   DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
3348 };
3349 
3350 
3351 // Forward declaration.
3352 class JSBuiltinsObject;
3353 
3354 // Common super class for JavaScript global objects and the special
3355 // builtins global objects.
3356 class GlobalObject: public JSObject {
3357  public:
3358   // [builtins]: the object holding the runtime routines written in JS.
3359   DECL_ACCESSORS(builtins, JSBuiltinsObject)
3360 
3361   // [global context]: the global context corresponding to this global object.
3362   DECL_ACCESSORS(global_context, Context)
3363 
3364   // [global receiver]: the global receiver object of the context
3365   DECL_ACCESSORS(global_receiver, JSObject)
3366 
3367   // Retrieve the property cell used to store a property.
3368   Object* GetPropertyCell(LookupResult* result);
3369 
3370   // Ensure that the global object has a cell for the given property name.
3371   Object* EnsurePropertyCell(String* name);
3372 
3373   // Casting.
3374   static inline GlobalObject* cast(Object* obj);
3375 
3376   // Layout description.
3377   static const int kBuiltinsOffset = JSObject::kHeaderSize;
3378   static const int kGlobalContextOffset = kBuiltinsOffset + kPointerSize;
3379   static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize;
3380   static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize;
3381 
3382  private:
3383   friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
3384 
3385   DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
3386 };
3387 
3388 
3389 // JavaScript global object.
3390 class JSGlobalObject: public GlobalObject {
3391  public:
3392 
3393   // Casting.
3394   static inline JSGlobalObject* cast(Object* obj);
3395 
3396   // Dispatched behavior.
3397 #ifdef DEBUG
3398   void JSGlobalObjectPrint();
3399   void JSGlobalObjectVerify();
3400 #endif
3401 
3402   // Layout description.
3403   static const int kSize = GlobalObject::kHeaderSize;
3404 
3405  private:
3406   DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
3407 };
3408 
3409 
3410 // Builtins global object which holds the runtime routines written in
3411 // JavaScript.
3412 class JSBuiltinsObject: public GlobalObject {
3413  public:
3414   // Accessors for the runtime routines written in JavaScript.
3415   inline Object* javascript_builtin(Builtins::JavaScript id);
3416   inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
3417 
3418   // Casting.
3419   static inline JSBuiltinsObject* cast(Object* obj);
3420 
3421   // Dispatched behavior.
3422 #ifdef DEBUG
3423   void JSBuiltinsObjectPrint();
3424   void JSBuiltinsObjectVerify();
3425 #endif
3426 
3427   // Layout description.  The size of the builtins object includes
3428   // room for one pointer per runtime routine written in javascript.
3429   static const int kJSBuiltinsCount = Builtins::id_count;
3430   static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
3431   static const int kSize =
3432       kJSBuiltinsOffset + (kJSBuiltinsCount * kPointerSize);
3433  private:
3434   DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
3435 };
3436 
3437 
3438 // Representation for JS Wrapper objects, String, Number, Boolean, Date, etc.
3439 class JSValue: public JSObject {
3440  public:
3441   // [value]: the object being wrapped.
3442   DECL_ACCESSORS(value, Object)
3443 
3444   // Casting.
3445   static inline JSValue* cast(Object* obj);
3446 
3447   // Dispatched behavior.
3448 #ifdef DEBUG
3449   void JSValuePrint();
3450   void JSValueVerify();
3451 #endif
3452 
3453   // Layout description.
3454   static const int kValueOffset = JSObject::kHeaderSize;
3455   static const int kSize = kValueOffset + kPointerSize;
3456 
3457  private:
3458   DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
3459 };
3460 
3461 // Regular expressions
3462 // The regular expression holds a single reference to a FixedArray in
3463 // the kDataOffset field.
3464 // The FixedArray contains the following data:
3465 // - tag : type of regexp implementation (not compiled yet, atom or irregexp)
3466 // - reference to the original source string
3467 // - reference to the original flag string
3468 // If it is an atom regexp
3469 // - a reference to a literal string to search for
3470 // If it is an irregexp regexp:
3471 // - a reference to code for ASCII inputs (bytecode or compiled).
3472 // - a reference to code for UC16 inputs (bytecode or compiled).
3473 // - max number of registers used by irregexp implementations.
3474 // - number of capture registers (output values) of the regexp.
3475 class JSRegExp: public JSObject {
3476  public:
3477   // Meaning of Type:
3478   // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
3479   // ATOM: A simple string to match against using an indexOf operation.
3480   // IRREGEXP: Compiled with Irregexp.
3481   // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
3482   enum Type { NOT_COMPILED, ATOM, IRREGEXP };
3483   enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 };
3484 
3485   class Flags {
3486    public:
Flags(uint32_t value)3487     explicit Flags(uint32_t value) : value_(value) { }
is_global()3488     bool is_global() { return (value_ & GLOBAL) != 0; }
is_ignore_case()3489     bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
is_multiline()3490     bool is_multiline() { return (value_ & MULTILINE) != 0; }
value()3491     uint32_t value() { return value_; }
3492    private:
3493     uint32_t value_;
3494   };
3495 
3496   DECL_ACCESSORS(data, Object)
3497 
3498   inline Type TypeTag();
3499   inline int CaptureCount();
3500   inline Flags GetFlags();
3501   inline String* Pattern();
3502   inline Object* DataAt(int index);
3503   // Set implementation data after the object has been prepared.
3504   inline void SetDataAt(int index, Object* value);
code_index(bool is_ascii)3505   static int code_index(bool is_ascii) {
3506     if (is_ascii) {
3507       return kIrregexpASCIICodeIndex;
3508     } else {
3509       return kIrregexpUC16CodeIndex;
3510     }
3511   }
3512 
3513   static inline JSRegExp* cast(Object* obj);
3514 
3515   // Dispatched behavior.
3516 #ifdef DEBUG
3517   void JSRegExpVerify();
3518 #endif
3519 
3520   static const int kDataOffset = JSObject::kHeaderSize;
3521   static const int kSize = kDataOffset + kPointerSize;
3522 
3523   // Indices in the data array.
3524   static const int kTagIndex = 0;
3525   static const int kSourceIndex = kTagIndex + 1;
3526   static const int kFlagsIndex = kSourceIndex + 1;
3527   static const int kDataIndex = kFlagsIndex + 1;
3528   // The data fields are used in different ways depending on the
3529   // value of the tag.
3530   // Atom regexps (literal strings).
3531   static const int kAtomPatternIndex = kDataIndex;
3532 
3533   static const int kAtomDataSize = kAtomPatternIndex + 1;
3534 
3535   // Irregexp compiled code or bytecode for ASCII. If compilation
3536   // fails, this fields hold an exception object that should be
3537   // thrown if the regexp is used again.
3538   static const int kIrregexpASCIICodeIndex = kDataIndex;
3539   // Irregexp compiled code or bytecode for UC16.  If compilation
3540   // fails, this fields hold an exception object that should be
3541   // thrown if the regexp is used again.
3542   static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
3543   // Maximal number of registers used by either ASCII or UC16.
3544   // Only used to check that there is enough stack space
3545   static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 2;
3546   // Number of captures in the compiled regexp.
3547   static const int kIrregexpCaptureCountIndex = kDataIndex + 3;
3548 
3549   static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
3550 };
3551 
3552 
3553 class CompilationCacheShape {
3554  public:
IsMatch(HashTableKey * key,Object * value)3555   static inline bool IsMatch(HashTableKey* key, Object* value) {
3556     return key->IsMatch(value);
3557   }
3558 
Hash(HashTableKey * key)3559   static inline uint32_t Hash(HashTableKey* key) {
3560     return key->Hash();
3561   }
3562 
HashForObject(HashTableKey * key,Object * object)3563   static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3564     return key->HashForObject(object);
3565   }
3566 
AsObject(HashTableKey * key)3567   static Object* AsObject(HashTableKey* key) {
3568     return key->AsObject();
3569   }
3570 
3571   static const int kPrefixSize = 0;
3572   static const int kEntrySize = 2;
3573 };
3574 
3575 class CompilationCacheTable: public HashTable<CompilationCacheShape,
3576                                               HashTableKey*> {
3577  public:
3578   // Find cached value for a string key, otherwise return null.
3579   Object* Lookup(String* src);
3580   Object* LookupEval(String* src, Context* context);
3581   Object* LookupRegExp(String* source, JSRegExp::Flags flags);
3582   Object* Put(String* src, Object* value);
3583   Object* PutEval(String* src, Context* context, Object* value);
3584   Object* PutRegExp(String* src, JSRegExp::Flags flags, FixedArray* value);
3585 
3586   static inline CompilationCacheTable* cast(Object* obj);
3587 
3588  private:
3589   DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
3590 };
3591 
3592 
3593 enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
3594 enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
3595 
3596 
3597 class StringHasher {
3598  public:
3599   inline StringHasher(int length);
3600 
3601   // Returns true if the hash of this string can be computed without
3602   // looking at the contents.
3603   inline bool has_trivial_hash();
3604 
3605   // Add a character to the hash and update the array index calculation.
3606   inline void AddCharacter(uc32 c);
3607 
3608   // Adds a character to the hash but does not update the array index
3609   // calculation.  This can only be called when it has been verified
3610   // that the input is not an array index.
3611   inline void AddCharacterNoIndex(uc32 c);
3612 
3613   // Returns the value to store in the hash field of a string with
3614   // the given length and contents.
3615   uint32_t GetHashField();
3616 
3617   // Returns true if the characters seen so far make up a legal array
3618   // index.
is_array_index()3619   bool is_array_index() { return is_array_index_; }
3620 
is_valid()3621   bool is_valid() { return is_valid_; }
3622 
invalidate()3623   void invalidate() { is_valid_ = false; }
3624 
3625  private:
3626 
array_index()3627   uint32_t array_index() {
3628     ASSERT(is_array_index());
3629     return array_index_;
3630   }
3631 
3632   inline uint32_t GetHash();
3633 
3634   int length_;
3635   uint32_t raw_running_hash_;
3636   uint32_t array_index_;
3637   bool is_array_index_;
3638   bool is_first_char_;
3639   bool is_valid_;
3640 };
3641 
3642 
3643 // The characteristics of a string are stored in its map.  Retrieving these
3644 // few bits of information is moderately expensive, involving two memory
3645 // loads where the second is dependent on the first.  To improve efficiency
3646 // the shape of the string is given its own class so that it can be retrieved
3647 // once and used for several string operations.  A StringShape is small enough
3648 // to be passed by value and is immutable, but be aware that flattening a
3649 // string can potentially alter its shape.  Also be aware that a GC caused by
3650 // something else can alter the shape of a string due to ConsString
3651 // shortcutting.  Keeping these restrictions in mind has proven to be error-
3652 // prone and so we no longer put StringShapes in variables unless there is a
3653 // concrete performance benefit at that particular point in the code.
3654 class StringShape BASE_EMBEDDED {
3655  public:
3656   inline explicit StringShape(String* s);
3657   inline explicit StringShape(Map* s);
3658   inline explicit StringShape(InstanceType t);
3659   inline bool IsSequential();
3660   inline bool IsExternal();
3661   inline bool IsCons();
3662   inline bool IsSliced();
3663   inline bool IsExternalAscii();
3664   inline bool IsExternalTwoByte();
3665   inline bool IsSequentialAscii();
3666   inline bool IsSequentialTwoByte();
3667   inline bool IsSymbol();
3668   inline StringRepresentationTag representation_tag();
3669   inline uint32_t full_representation_tag();
3670   inline uint32_t size_tag();
3671 #ifdef DEBUG
type()3672   inline uint32_t type() { return type_; }
invalidate()3673   inline void invalidate() { valid_ = false; }
valid()3674   inline bool valid() { return valid_; }
3675 #else
invalidate()3676   inline void invalidate() { }
3677 #endif
3678  private:
3679   uint32_t type_;
3680 #ifdef DEBUG
set_valid()3681   inline void set_valid() { valid_ = true; }
3682   bool valid_;
3683 #else
set_valid()3684   inline void set_valid() { }
3685 #endif
3686 };
3687 
3688 
3689 // The String abstract class captures JavaScript string values:
3690 //
3691 // Ecma-262:
3692 //  4.3.16 String Value
3693 //    A string value is a member of the type String and is a finite
3694 //    ordered sequence of zero or more 16-bit unsigned integer values.
3695 //
3696 // All string values have a length field.
3697 class String: public HeapObject {
3698  public:
3699   // Get and set the length of the string.
3700   inline int length();
3701   inline void set_length(int value);
3702 
3703   // Get and set the uninterpreted length field of the string.  Notice
3704   // that the length field is also used to cache the hash value of
3705   // strings.  In order to get or set the actual length of the string
3706   // use the length() and set_length methods.
3707   inline uint32_t length_field();
3708   inline void set_length_field(uint32_t value);
3709 
3710   inline bool IsAsciiRepresentation();
3711   inline bool IsTwoByteRepresentation();
3712 
3713   // Get and set individual two byte chars in the string.
3714   inline void Set(int index, uint16_t value);
3715   // Get individual two byte char in the string.  Repeated calls
3716   // to this method are not efficient unless the string is flat.
3717   inline uint16_t Get(int index);
3718 
3719   // Try to flatten the top level ConsString that is hiding behind this
3720   // string.  This is a no-op unless the string is a ConsString or a
3721   // SlicedString.  Flatten mutates the ConsString and might return a
3722   // failure.
3723   Object* TryFlatten();
3724 
3725   // Try to flatten the string.  Checks first inline to see if it is necessary.
3726   // Do not handle allocation failures.  After calling TryFlattenIfNotFlat, the
3727   // string could still be a ConsString, in which case a failure is returned.
3728   // Use FlattenString from Handles.cc to be sure to flatten.
3729   inline Object* TryFlattenIfNotFlat();
3730 
3731   Vector<const char> ToAsciiVector();
3732   Vector<const uc16> ToUC16Vector();
3733 
3734   // Mark the string as an undetectable object. It only applies to
3735   // ascii and two byte string types.
3736   bool MarkAsUndetectable();
3737 
3738   // Slice the string and return a substring.
3739   Object* Slice(int from, int to);
3740 
3741   // String equality operations.
3742   inline bool Equals(String* other);
3743   bool IsEqualTo(Vector<const char> str);
3744 
3745   // Return a UTF8 representation of the string.  The string is null
3746   // terminated but may optionally contain nulls.  Length is returned
3747   // in length_output if length_output is not a null pointer  The string
3748   // should be nearly flat, otherwise the performance of this method may
3749   // be very slow (quadratic in the length).  Setting robustness_flag to
3750   // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
3751   // handles unexpected data without causing assert failures and it does not
3752   // do any heap allocations.  This is useful when printing stack traces.
3753   SmartPointer<char> ToCString(AllowNullsFlag allow_nulls,
3754                                RobustnessFlag robustness_flag,
3755                                int offset,
3756                                int length,
3757                                int* length_output = 0);
3758   SmartPointer<char> ToCString(
3759       AllowNullsFlag allow_nulls = DISALLOW_NULLS,
3760       RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
3761       int* length_output = 0);
3762 
3763   int Utf8Length();
3764 
3765   // Return a 16 bit Unicode representation of the string.
3766   // The string should be nearly flat, otherwise the performance of
3767   // of this method may be very bad.  Setting robustness_flag to
3768   // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
3769   // handles unexpected data without causing assert failures and it does not
3770   // do any heap allocations.  This is useful when printing stack traces.
3771   SmartPointer<uc16> ToWideCString(
3772       RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
3773 
3774   // Tells whether the hash code has been computed.
3775   inline bool HasHashCode();
3776 
3777   // Returns a hash value used for the property table
3778   inline uint32_t Hash();
3779 
3780   static uint32_t ComputeLengthAndHashField(unibrow::CharacterStream* buffer,
3781                                             int length);
3782 
3783   static bool ComputeArrayIndex(unibrow::CharacterStream* buffer,
3784                                 uint32_t* index,
3785                                 int length);
3786 
3787   // Externalization.
3788   bool MakeExternal(v8::String::ExternalStringResource* resource);
3789   bool MakeExternal(v8::String::ExternalAsciiStringResource* resource);
3790 
3791   // Conversion.
3792   inline bool AsArrayIndex(uint32_t* index);
3793 
3794   // Casting.
3795   static inline String* cast(Object* obj);
3796 
3797   void PrintOn(FILE* out);
3798 
3799   // For use during stack traces.  Performs rudimentary sanity check.
3800   bool LooksValid();
3801 
3802   // Dispatched behavior.
3803   void StringShortPrint(StringStream* accumulator);
3804 #ifdef DEBUG
3805   void StringPrint();
3806   void StringVerify();
3807 #endif
3808   inline bool IsFlat();
3809 
3810   // Layout description.
3811   static const int kLengthOffset = HeapObject::kHeaderSize;
3812   static const int kSize = kLengthOffset + kIntSize;
3813   // Notice: kSize is not pointer-size aligned if pointers are 64-bit.
3814 
3815   // Limits on sizes of different types of strings.
3816   static const int kMaxShortStringSize = 63;
3817   static const int kMaxMediumStringSize = 16383;
3818 
3819   static const int kMaxArrayIndexSize = 10;
3820 
3821   // Max ascii char code.
3822   static const int kMaxAsciiCharCode = unibrow::Utf8::kMaxOneByteChar;
3823   static const unsigned kMaxAsciiCharCodeU = unibrow::Utf8::kMaxOneByteChar;
3824   static const int kMaxUC16CharCode = 0xffff;
3825 
3826   // Minimum length for a cons or sliced string.
3827   static const int kMinNonFlatLength = 13;
3828 
3829   // Mask constant for checking if a string has a computed hash code
3830   // and if it is an array index.  The least significant bit indicates
3831   // whether a hash code has been computed.  If the hash code has been
3832   // computed the 2nd bit tells whether the string can be used as an
3833   // array index.
3834   static const int kHashComputedMask = 1;
3835   static const int kIsArrayIndexMask = 1 << 1;
3836   static const int kNofLengthBitFields = 2;
3837 
3838   // Array index strings this short can keep their index in the hash
3839   // field.
3840   static const int kMaxCachedArrayIndexLength = 7;
3841 
3842   // Shift constants for retriving length and hash code from
3843   // length/hash field.
3844   static const int kHashShift = kNofLengthBitFields;
3845   static const int kShortLengthShift = kHashShift + kShortStringTag;
3846   static const int kMediumLengthShift = kHashShift + kMediumStringTag;
3847   static const int kLongLengthShift = kHashShift + kLongStringTag;
3848 
3849   // Limit for truncation in short printing.
3850   static const int kMaxShortPrintLength = 1024;
3851 
3852   // Support for regular expressions.
3853   const uc16* GetTwoByteData();
3854   const uc16* GetTwoByteData(unsigned start);
3855 
3856   // Support for StringInputBuffer
3857   static const unibrow::byte* ReadBlock(String* input,
3858                                         unibrow::byte* util_buffer,
3859                                         unsigned capacity,
3860                                         unsigned* remaining,
3861                                         unsigned* offset);
3862   static const unibrow::byte* ReadBlock(String** input,
3863                                         unibrow::byte* util_buffer,
3864                                         unsigned capacity,
3865                                         unsigned* remaining,
3866                                         unsigned* offset);
3867 
3868   // Helper function for flattening strings.
3869   template <typename sinkchar>
3870   static void WriteToFlat(String* source,
3871                           sinkchar* sink,
3872                           int from,
3873                           int to);
3874 
3875  protected:
3876   class ReadBlockBuffer {
3877    public:
ReadBlockBuffer(unibrow::byte * util_buffer_,unsigned cursor_,unsigned capacity_,unsigned remaining_)3878     ReadBlockBuffer(unibrow::byte* util_buffer_,
3879                     unsigned cursor_,
3880                     unsigned capacity_,
3881                     unsigned remaining_) :
3882       util_buffer(util_buffer_),
3883       cursor(cursor_),
3884       capacity(capacity_),
3885       remaining(remaining_) {
3886     }
3887     unibrow::byte* util_buffer;
3888     unsigned       cursor;
3889     unsigned       capacity;
3890     unsigned       remaining;
3891   };
3892 
3893   // NOTE: If you call StringInputBuffer routines on strings that are
3894   // too deeply nested trees of cons and slice strings, then this
3895   // routine will overflow the stack. Strings that are merely deeply
3896   // nested trees of cons strings do not have a problem apart from
3897   // performance.
3898 
3899   static inline const unibrow::byte* ReadBlock(String* input,
3900                                                ReadBlockBuffer* buffer,
3901                                                unsigned* offset,
3902                                                unsigned max_chars);
3903   static void ReadBlockIntoBuffer(String* input,
3904                                   ReadBlockBuffer* buffer,
3905                                   unsigned* offset_ptr,
3906                                   unsigned max_chars);
3907 
3908  private:
3909   // Slow case of String::Equals.  This implementation works on any strings
3910   // but it is most efficient on strings that are almost flat.
3911   bool SlowEquals(String* other);
3912 
3913   // Slow case of AsArrayIndex.
3914   bool SlowAsArrayIndex(uint32_t* index);
3915 
3916   // Compute and set the hash code.
3917   uint32_t ComputeAndSetHash();
3918 
3919   DISALLOW_IMPLICIT_CONSTRUCTORS(String);
3920 };
3921 
3922 
3923 // The SeqString abstract class captures sequential string values.
3924 class SeqString: public String {
3925  public:
3926 
3927   // Casting.
3928   static inline SeqString* cast(Object* obj);
3929 
3930   // Dispatched behaviour.
3931   // For regexp code.
3932   uint16_t* SeqStringGetTwoByteAddress();
3933 
3934  private:
3935   DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
3936 };
3937 
3938 
3939 // The AsciiString class captures sequential ascii string objects.
3940 // Each character in the AsciiString is an ascii character.
3941 class SeqAsciiString: public SeqString {
3942  public:
3943   // Dispatched behavior.
3944   inline uint16_t SeqAsciiStringGet(int index);
3945   inline void SeqAsciiStringSet(int index, uint16_t value);
3946 
3947   // Get the address of the characters in this string.
3948   inline Address GetCharsAddress();
3949 
3950   inline char* GetChars();
3951 
3952   // Casting
3953   static inline SeqAsciiString* cast(Object* obj);
3954 
3955   // Garbage collection support.  This method is called by the
3956   // garbage collector to compute the actual size of an AsciiString
3957   // instance.
3958   inline int SeqAsciiStringSize(InstanceType instance_type);
3959 
3960   // Computes the size for an AsciiString instance of a given length.
SizeFor(int length)3961   static int SizeFor(int length) {
3962     return OBJECT_SIZE_ALIGN(kHeaderSize + length * kCharSize);
3963   }
3964 
3965   // Layout description.
3966   static const int kHeaderSize = String::kSize;
3967   static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
3968 
3969   // Support for StringInputBuffer.
3970   inline void SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
3971                                                 unsigned* offset,
3972                                                 unsigned chars);
3973   inline const unibrow::byte* SeqAsciiStringReadBlock(unsigned* remaining,
3974                                                       unsigned* offset,
3975                                                       unsigned chars);
3976 
3977  private:
3978   DISALLOW_IMPLICIT_CONSTRUCTORS(SeqAsciiString);
3979 };
3980 
3981 
3982 // The TwoByteString class captures sequential unicode string objects.
3983 // Each character in the TwoByteString is a two-byte uint16_t.
3984 class SeqTwoByteString: public SeqString {
3985  public:
3986   // Dispatched behavior.
3987   inline uint16_t SeqTwoByteStringGet(int index);
3988   inline void SeqTwoByteStringSet(int index, uint16_t value);
3989 
3990   // Get the address of the characters in this string.
3991   inline Address GetCharsAddress();
3992 
3993   inline uc16* GetChars();
3994 
3995   // For regexp code.
3996   const uint16_t* SeqTwoByteStringGetData(unsigned start);
3997 
3998   // Casting
3999   static inline SeqTwoByteString* cast(Object* obj);
4000 
4001   // Garbage collection support.  This method is called by the
4002   // garbage collector to compute the actual size of a TwoByteString
4003   // instance.
4004   inline int SeqTwoByteStringSize(InstanceType instance_type);
4005 
4006   // Computes the size for a TwoByteString instance of a given length.
SizeFor(int length)4007   static int SizeFor(int length) {
4008     return OBJECT_SIZE_ALIGN(kHeaderSize + length * kShortSize);
4009   }
4010 
4011   // Layout description.
4012   static const int kHeaderSize = String::kSize;
4013   static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4014 
4015   // Support for StringInputBuffer.
4016   inline void SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4017                                                   unsigned* offset_ptr,
4018                                                   unsigned chars);
4019 
4020  private:
4021   DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
4022 };
4023 
4024 
4025 // The ConsString class describes string values built by using the
4026 // addition operator on strings.  A ConsString is a pair where the
4027 // first and second components are pointers to other string values.
4028 // One or both components of a ConsString can be pointers to other
4029 // ConsStrings, creating a binary tree of ConsStrings where the leaves
4030 // are non-ConsString string values.  The string value represented by
4031 // a ConsString can be obtained by concatenating the leaf string
4032 // values in a left-to-right depth-first traversal of the tree.
4033 class ConsString: public String {
4034  public:
4035   // First string of the cons cell.
4036   inline String* first();
4037   // Doesn't check that the result is a string, even in debug mode.  This is
4038   // useful during GC where the mark bits confuse the checks.
4039   inline Object* unchecked_first();
4040   inline void set_first(String* first,
4041                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4042 
4043   // Second string of the cons cell.
4044   inline String* second();
4045   // Doesn't check that the result is a string, even in debug mode.  This is
4046   // useful during GC where the mark bits confuse the checks.
4047   inline Object* unchecked_second();
4048   inline void set_second(String* second,
4049                          WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4050 
4051   // Dispatched behavior.
4052   uint16_t ConsStringGet(int index);
4053 
4054   // Casting.
4055   static inline ConsString* cast(Object* obj);
4056 
4057   // Garbage collection support.  This method is called during garbage
4058   // collection to iterate through the heap pointers in the body of
4059   // the ConsString.
4060   void ConsStringIterateBody(ObjectVisitor* v);
4061 
4062   // Layout description.
4063   static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
4064   static const int kSecondOffset = kFirstOffset + kPointerSize;
4065   static const int kSize = kSecondOffset + kPointerSize;
4066 
4067   // Support for StringInputBuffer.
4068   inline const unibrow::byte* ConsStringReadBlock(ReadBlockBuffer* buffer,
4069                                                   unsigned* offset_ptr,
4070                                                   unsigned chars);
4071   inline void ConsStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4072                                             unsigned* offset_ptr,
4073                                             unsigned chars);
4074 
4075   // Minimum length for a cons string.
4076   static const int kMinLength = 13;
4077 
4078  private:
4079   DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
4080 };
4081 
4082 
4083 // The SlicedString class describes string values that are slices of
4084 // some other string.  SlicedStrings consist of a reference to an
4085 // underlying heap-allocated string value, a start index, and the
4086 // length field common to all strings.
4087 class SlicedString: public String {
4088  public:
4089   // The underlying string buffer.
4090   inline String* buffer();
4091   inline void set_buffer(String* buffer);
4092 
4093   // The start index of the slice.
4094   inline int start();
4095   inline void set_start(int start);
4096 
4097   // Dispatched behavior.
4098   uint16_t SlicedStringGet(int index);
4099 
4100   // Casting.
4101   static inline SlicedString* cast(Object* obj);
4102 
4103   // Garbage collection support.
4104   void SlicedStringIterateBody(ObjectVisitor* v);
4105 
4106   // Layout description
4107 #if V8_HOST_ARCH_64_BIT
4108   // Optimizations expect buffer to be located at same offset as a ConsString's
4109   // first substring. In 64 bit mode we have room for the start offset before
4110   // the buffer.
4111   static const int kStartOffset = String::kSize;
4112   static const int kBufferOffset = kStartOffset + kIntSize;
4113   static const int kSize = kBufferOffset + kPointerSize;
4114 #else
4115   static const int kBufferOffset = String::kSize;
4116   static const int kStartOffset = kBufferOffset + kPointerSize;
4117   static const int kSize = kStartOffset + kIntSize;
4118 #endif
4119 
4120   // Support for StringInputBuffer.
4121   inline const unibrow::byte* SlicedStringReadBlock(ReadBlockBuffer* buffer,
4122                                                     unsigned* offset_ptr,
4123                                                     unsigned chars);
4124   inline void SlicedStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4125                                               unsigned* offset_ptr,
4126                                               unsigned chars);
4127 
4128  private:
4129   DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString);
4130 };
4131 
4132 
4133 // The ExternalString class describes string values that are backed by
4134 // a string resource that lies outside the V8 heap.  ExternalStrings
4135 // consist of the length field common to all strings, a pointer to the
4136 // external resource.  It is important to ensure (externally) that the
4137 // resource is not deallocated while the ExternalString is live in the
4138 // V8 heap.
4139 //
4140 // The API expects that all ExternalStrings are created through the
4141 // API.  Therefore, ExternalStrings should not be used internally.
4142 class ExternalString: public String {
4143  public:
4144   // Casting
4145   static inline ExternalString* cast(Object* obj);
4146 
4147   // Layout description.
4148   static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
4149   static const int kSize = kResourceOffset + kPointerSize;
4150 
4151   STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset);
4152 
4153  private:
4154   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
4155 };
4156 
4157 
4158 // The ExternalAsciiString class is an external string backed by an
4159 // ASCII string.
4160 class ExternalAsciiString: public ExternalString {
4161  public:
4162   typedef v8::String::ExternalAsciiStringResource Resource;
4163 
4164   // The underlying resource.
4165   inline Resource* resource();
4166   inline void set_resource(Resource* buffer);
4167 
4168   // Dispatched behavior.
4169   uint16_t ExternalAsciiStringGet(int index);
4170 
4171   // Casting.
4172   static inline ExternalAsciiString* cast(Object* obj);
4173 
4174   // Support for StringInputBuffer.
4175   const unibrow::byte* ExternalAsciiStringReadBlock(unsigned* remaining,
4176                                                     unsigned* offset,
4177                                                     unsigned chars);
4178   inline void ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4179                                                      unsigned* offset,
4180                                                      unsigned chars);
4181 
4182   // Identify the map for the external string/symbol with a particular length.
4183   static inline Map* StringMap(int length);
4184   static inline Map* SymbolMap(int length);
4185  private:
4186   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
4187 };
4188 
4189 
4190 // The ExternalTwoByteString class is an external string backed by a UTF-16
4191 // encoded string.
4192 class ExternalTwoByteString: public ExternalString {
4193  public:
4194   typedef v8::String::ExternalStringResource Resource;
4195 
4196   // The underlying string resource.
4197   inline Resource* resource();
4198   inline void set_resource(Resource* buffer);
4199 
4200   // Dispatched behavior.
4201   uint16_t ExternalTwoByteStringGet(int index);
4202 
4203   // For regexp code.
4204   const uint16_t* ExternalTwoByteStringGetData(unsigned start);
4205 
4206   // Casting.
4207   static inline ExternalTwoByteString* cast(Object* obj);
4208 
4209   // Support for StringInputBuffer.
4210   void ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4211                                                 unsigned* offset_ptr,
4212                                                 unsigned chars);
4213 
4214   // Identify the map for the external string/symbol with a particular length.
4215   static inline Map* StringMap(int length);
4216   static inline Map* SymbolMap(int length);
4217  private:
4218   DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
4219 };
4220 
4221 
4222 // A flat string reader provides random access to the contents of a
4223 // string independent of the character width of the string.  The handle
4224 // must be valid as long as the reader is being used.
4225 class FlatStringReader BASE_EMBEDDED {
4226  public:
4227   explicit FlatStringReader(Handle<String> str);
4228   explicit FlatStringReader(Vector<const char> input);
4229   ~FlatStringReader();
4230   void RefreshState();
4231   inline uc32 Get(int index);
length()4232   int length() { return length_; }
4233   static void PostGarbageCollectionProcessing();
4234  private:
4235   String** str_;
4236   bool is_ascii_;
4237   int length_;
4238   const void* start_;
4239   FlatStringReader* prev_;
4240   static FlatStringReader* top_;
4241 };
4242 
4243 
4244 // Note that StringInputBuffers are not valid across a GC!  To fix this
4245 // it would have to store a String Handle instead of a String* and
4246 // AsciiStringReadBlock would have to be modified to use memcpy.
4247 //
4248 // StringInputBuffer is able to traverse any string regardless of how
4249 // deeply nested a sequence of ConsStrings it is made of.  However,
4250 // performance will be better if deep strings are flattened before they
4251 // are traversed.  Since flattening requires memory allocation this is
4252 // not always desirable, however (esp. in debugging situations).
4253 class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> {
4254  public:
4255   virtual void Seek(unsigned pos);
StringInputBuffer()4256   inline StringInputBuffer(): unibrow::InputBuffer<String, String*, 1024>() {}
StringInputBuffer(String * backing)4257   inline StringInputBuffer(String* backing):
4258       unibrow::InputBuffer<String, String*, 1024>(backing) {}
4259 };
4260 
4261 
4262 class SafeStringInputBuffer
4263   : public unibrow::InputBuffer<String, String**, 256> {
4264  public:
4265   virtual void Seek(unsigned pos);
SafeStringInputBuffer()4266   inline SafeStringInputBuffer()
4267       : unibrow::InputBuffer<String, String**, 256>() {}
SafeStringInputBuffer(String ** backing)4268   inline SafeStringInputBuffer(String** backing)
4269       : unibrow::InputBuffer<String, String**, 256>(backing) {}
4270 };
4271 
4272 
4273 template <typename T>
4274 class VectorIterator {
4275  public:
VectorIterator(T * d,int l)4276   VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
VectorIterator(Vector<const T> data)4277   explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
GetNext()4278   T GetNext() { return data_[index_++]; }
has_more()4279   bool has_more() { return index_ < data_.length(); }
4280  private:
4281   Vector<const T> data_;
4282   int index_;
4283 };
4284 
4285 
4286 // The Oddball describes objects null, undefined, true, and false.
4287 class Oddball: public HeapObject {
4288  public:
4289   // [to_string]: Cached to_string computed at startup.
4290   DECL_ACCESSORS(to_string, String)
4291 
4292   // [to_number]: Cached to_number computed at startup.
4293   DECL_ACCESSORS(to_number, Object)
4294 
4295   // Casting.
4296   static inline Oddball* cast(Object* obj);
4297 
4298   // Dispatched behavior.
4299   void OddballIterateBody(ObjectVisitor* v);
4300 #ifdef DEBUG
4301   void OddballVerify();
4302 #endif
4303 
4304   // Initialize the fields.
4305   Object* Initialize(const char* to_string, Object* to_number);
4306 
4307   // Layout description.
4308   static const int kToStringOffset = HeapObject::kHeaderSize;
4309   static const int kToNumberOffset = kToStringOffset + kPointerSize;
4310   static const int kSize = kToNumberOffset + kPointerSize;
4311 
4312  private:
4313   DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
4314 };
4315 
4316 
4317 class JSGlobalPropertyCell: public HeapObject {
4318  public:
4319   // [value]: value of the global property.
4320   DECL_ACCESSORS(value, Object)
4321 
4322   // Casting.
4323   static inline JSGlobalPropertyCell* cast(Object* obj);
4324 
4325   // Dispatched behavior.
4326   void JSGlobalPropertyCellIterateBody(ObjectVisitor* v);
4327 #ifdef DEBUG
4328   void JSGlobalPropertyCellVerify();
4329   void JSGlobalPropertyCellPrint();
4330 #endif
4331 
4332   // Layout description.
4333   static const int kValueOffset = HeapObject::kHeaderSize;
4334   static const int kSize = kValueOffset + kPointerSize;
4335 
4336  private:
4337   DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalPropertyCell);
4338 };
4339 
4340 
4341 
4342 // Proxy describes objects pointing from JavaScript to C structures.
4343 // Since they cannot contain references to JS HeapObjects they can be
4344 // placed in old_data_space.
4345 class Proxy: public HeapObject {
4346  public:
4347   // [proxy]: field containing the address.
4348   inline Address proxy();
4349   inline void set_proxy(Address value);
4350 
4351   // Casting.
4352   static inline Proxy* cast(Object* obj);
4353 
4354   // Dispatched behavior.
4355   inline void ProxyIterateBody(ObjectVisitor* v);
4356 #ifdef DEBUG
4357   void ProxyPrint();
4358   void ProxyVerify();
4359 #endif
4360 
4361   // Layout description.
4362 
4363   static const int kProxyOffset = HeapObject::kHeaderSize;
4364   static const int kSize = kProxyOffset + kPointerSize;
4365 
4366   STATIC_CHECK(kProxyOffset == Internals::kProxyProxyOffset);
4367 
4368  private:
4369   DISALLOW_IMPLICIT_CONSTRUCTORS(Proxy);
4370 };
4371 
4372 
4373 // The JSArray describes JavaScript Arrays
4374 //  Such an array can be in one of two modes:
4375 //    - fast, backing storage is a FixedArray and length <= elements.length();
4376 //       Please note: push and pop can be used to grow and shrink the array.
4377 //    - slow, backing storage is a HashTable with numbers as keys.
4378 class JSArray: public JSObject {
4379  public:
4380   // [length]: The length property.
4381   DECL_ACCESSORS(length, Object)
4382 
4383   Object* JSArrayUpdateLengthFromIndex(uint32_t index, Object* value);
4384 
4385   // Initialize the array with the given capacity. The function may
4386   // fail due to out-of-memory situations, but only if the requested
4387   // capacity is non-zero.
4388   Object* Initialize(int capacity);
4389 
4390   // Set the content of the array to the content of storage.
4391   inline void SetContent(FixedArray* storage);
4392 
4393   // Casting.
4394   static inline JSArray* cast(Object* obj);
4395 
4396   // Uses handles.  Ensures that the fixed array backing the JSArray has at
4397   // least the stated size.
4398   inline void EnsureSize(int minimum_size_of_backing_fixed_array);
4399 
4400   // Dispatched behavior.
4401 #ifdef DEBUG
4402   void JSArrayPrint();
4403   void JSArrayVerify();
4404 #endif
4405 
4406   // Layout description.
4407   static const int kLengthOffset = JSObject::kHeaderSize;
4408   static const int kSize = kLengthOffset + kPointerSize;
4409 
4410  private:
4411   // Expand the fixed array backing of a fast-case JSArray to at least
4412   // the requested size.
4413   void Expand(int minimum_size_of_backing_fixed_array);
4414 
4415   DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
4416 };
4417 
4418 
4419 // An accessor must have a getter, but can have no setter.
4420 //
4421 // When setting a property, V8 searches accessors in prototypes.
4422 // If an accessor was found and it does not have a setter,
4423 // the request is ignored.
4424 //
4425 // If the accessor in the prototype has the READ_ONLY property attribute, then
4426 // a new value is added to the local object when the property is set.
4427 // This shadows the accessor in the prototype.
4428 class AccessorInfo: public Struct {
4429  public:
4430   DECL_ACCESSORS(getter, Object)
4431   DECL_ACCESSORS(setter, Object)
4432   DECL_ACCESSORS(data, Object)
4433   DECL_ACCESSORS(name, Object)
4434   DECL_ACCESSORS(flag, Smi)
4435 
4436   inline bool all_can_read();
4437   inline void set_all_can_read(bool value);
4438 
4439   inline bool all_can_write();
4440   inline void set_all_can_write(bool value);
4441 
4442   inline bool prohibits_overwriting();
4443   inline void set_prohibits_overwriting(bool value);
4444 
4445   inline PropertyAttributes property_attributes();
4446   inline void set_property_attributes(PropertyAttributes attributes);
4447 
4448   static inline AccessorInfo* cast(Object* obj);
4449 
4450 #ifdef DEBUG
4451   void AccessorInfoPrint();
4452   void AccessorInfoVerify();
4453 #endif
4454 
4455   static const int kGetterOffset = HeapObject::kHeaderSize;
4456   static const int kSetterOffset = kGetterOffset + kPointerSize;
4457   static const int kDataOffset = kSetterOffset + kPointerSize;
4458   static const int kNameOffset = kDataOffset + kPointerSize;
4459   static const int kFlagOffset = kNameOffset + kPointerSize;
4460   static const int kSize = kFlagOffset + kPointerSize;
4461 
4462  private:
4463   // Bit positions in flag.
4464   static const int kAllCanReadBit = 0;
4465   static const int kAllCanWriteBit = 1;
4466   static const int kProhibitsOverwritingBit = 2;
4467   class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
4468 
4469   DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
4470 };
4471 
4472 
4473 class AccessCheckInfo: public Struct {
4474  public:
4475   DECL_ACCESSORS(named_callback, Object)
4476   DECL_ACCESSORS(indexed_callback, Object)
4477   DECL_ACCESSORS(data, Object)
4478 
4479   static inline AccessCheckInfo* cast(Object* obj);
4480 
4481 #ifdef DEBUG
4482   void AccessCheckInfoPrint();
4483   void AccessCheckInfoVerify();
4484 #endif
4485 
4486   static const int kNamedCallbackOffset   = HeapObject::kHeaderSize;
4487   static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
4488   static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
4489   static const int kSize = kDataOffset + kPointerSize;
4490 
4491  private:
4492   DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
4493 };
4494 
4495 
4496 class InterceptorInfo: public Struct {
4497  public:
4498   DECL_ACCESSORS(getter, Object)
4499   DECL_ACCESSORS(setter, Object)
4500   DECL_ACCESSORS(query, Object)
4501   DECL_ACCESSORS(deleter, Object)
4502   DECL_ACCESSORS(enumerator, Object)
4503   DECL_ACCESSORS(data, Object)
4504 
4505   static inline InterceptorInfo* cast(Object* obj);
4506 
4507 #ifdef DEBUG
4508   void InterceptorInfoPrint();
4509   void InterceptorInfoVerify();
4510 #endif
4511 
4512   static const int kGetterOffset = HeapObject::kHeaderSize;
4513   static const int kSetterOffset = kGetterOffset + kPointerSize;
4514   static const int kQueryOffset = kSetterOffset + kPointerSize;
4515   static const int kDeleterOffset = kQueryOffset + kPointerSize;
4516   static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
4517   static const int kDataOffset = kEnumeratorOffset + kPointerSize;
4518   static const int kSize = kDataOffset + kPointerSize;
4519 
4520  private:
4521   DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
4522 };
4523 
4524 
4525 class CallHandlerInfo: public Struct {
4526  public:
4527   DECL_ACCESSORS(callback, Object)
4528   DECL_ACCESSORS(data, Object)
4529 
4530   static inline CallHandlerInfo* cast(Object* obj);
4531 
4532 #ifdef DEBUG
4533   void CallHandlerInfoPrint();
4534   void CallHandlerInfoVerify();
4535 #endif
4536 
4537   static const int kCallbackOffset = HeapObject::kHeaderSize;
4538   static const int kDataOffset = kCallbackOffset + kPointerSize;
4539   static const int kSize = kDataOffset + kPointerSize;
4540 
4541  private:
4542   DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
4543 };
4544 
4545 
4546 class TemplateInfo: public Struct {
4547  public:
4548   DECL_ACCESSORS(tag, Object)
4549   DECL_ACCESSORS(property_list, Object)
4550 
4551 #ifdef DEBUG
4552   void TemplateInfoVerify();
4553 #endif
4554 
4555   static const int kTagOffset          = HeapObject::kHeaderSize;
4556   static const int kPropertyListOffset = kTagOffset + kPointerSize;
4557   static const int kHeaderSize         = kPropertyListOffset + kPointerSize;
4558  protected:
4559   friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
4560   DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
4561 };
4562 
4563 
4564 class FunctionTemplateInfo: public TemplateInfo {
4565  public:
4566   DECL_ACCESSORS(serial_number, Object)
4567   DECL_ACCESSORS(call_code, Object)
4568   DECL_ACCESSORS(property_accessors, Object)
4569   DECL_ACCESSORS(prototype_template, Object)
4570   DECL_ACCESSORS(parent_template, Object)
4571   DECL_ACCESSORS(named_property_handler, Object)
4572   DECL_ACCESSORS(indexed_property_handler, Object)
4573   DECL_ACCESSORS(instance_template, Object)
4574   DECL_ACCESSORS(class_name, Object)
4575   DECL_ACCESSORS(signature, Object)
4576   DECL_ACCESSORS(instance_call_handler, Object)
4577   DECL_ACCESSORS(access_check_info, Object)
4578   DECL_ACCESSORS(flag, Smi)
4579 
4580   // Following properties use flag bits.
4581   DECL_BOOLEAN_ACCESSORS(hidden_prototype)
4582   DECL_BOOLEAN_ACCESSORS(undetectable)
4583   // If the bit is set, object instances created by this function
4584   // requires access check.
4585   DECL_BOOLEAN_ACCESSORS(needs_access_check)
4586 
4587   static inline FunctionTemplateInfo* cast(Object* obj);
4588 
4589 #ifdef DEBUG
4590   void FunctionTemplateInfoPrint();
4591   void FunctionTemplateInfoVerify();
4592 #endif
4593 
4594   static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
4595   static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
4596   static const int kPropertyAccessorsOffset = kCallCodeOffset + kPointerSize;
4597   static const int kPrototypeTemplateOffset =
4598       kPropertyAccessorsOffset + kPointerSize;
4599   static const int kParentTemplateOffset =
4600       kPrototypeTemplateOffset + kPointerSize;
4601   static const int kNamedPropertyHandlerOffset =
4602       kParentTemplateOffset + kPointerSize;
4603   static const int kIndexedPropertyHandlerOffset =
4604       kNamedPropertyHandlerOffset + kPointerSize;
4605   static const int kInstanceTemplateOffset =
4606       kIndexedPropertyHandlerOffset + kPointerSize;
4607   static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
4608   static const int kSignatureOffset = kClassNameOffset + kPointerSize;
4609   static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
4610   static const int kAccessCheckInfoOffset =
4611       kInstanceCallHandlerOffset + kPointerSize;
4612   static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
4613   static const int kSize = kFlagOffset + kPointerSize;
4614 
4615  private:
4616   // Bit position in the flag, from least significant bit position.
4617   static const int kHiddenPrototypeBit   = 0;
4618   static const int kUndetectableBit      = 1;
4619   static const int kNeedsAccessCheckBit  = 2;
4620 
4621   DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
4622 };
4623 
4624 
4625 class ObjectTemplateInfo: public TemplateInfo {
4626  public:
4627   DECL_ACCESSORS(constructor, Object)
4628   DECL_ACCESSORS(internal_field_count, Object)
4629 
4630   static inline ObjectTemplateInfo* cast(Object* obj);
4631 
4632 #ifdef DEBUG
4633   void ObjectTemplateInfoPrint();
4634   void ObjectTemplateInfoVerify();
4635 #endif
4636 
4637   static const int kConstructorOffset = TemplateInfo::kHeaderSize;
4638   static const int kInternalFieldCountOffset =
4639       kConstructorOffset + kPointerSize;
4640   static const int kSize = kInternalFieldCountOffset + kPointerSize;
4641 };
4642 
4643 
4644 class SignatureInfo: public Struct {
4645  public:
4646   DECL_ACCESSORS(receiver, Object)
4647   DECL_ACCESSORS(args, Object)
4648 
4649   static inline SignatureInfo* cast(Object* obj);
4650 
4651 #ifdef DEBUG
4652   void SignatureInfoPrint();
4653   void SignatureInfoVerify();
4654 #endif
4655 
4656   static const int kReceiverOffset = Struct::kHeaderSize;
4657   static const int kArgsOffset     = kReceiverOffset + kPointerSize;
4658   static const int kSize           = kArgsOffset + kPointerSize;
4659 
4660  private:
4661   DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo);
4662 };
4663 
4664 
4665 class TypeSwitchInfo: public Struct {
4666  public:
4667   DECL_ACCESSORS(types, Object)
4668 
4669   static inline TypeSwitchInfo* cast(Object* obj);
4670 
4671 #ifdef DEBUG
4672   void TypeSwitchInfoPrint();
4673   void TypeSwitchInfoVerify();
4674 #endif
4675 
4676   static const int kTypesOffset = Struct::kHeaderSize;
4677   static const int kSize        = kTypesOffset + kPointerSize;
4678 };
4679 
4680 
4681 #ifdef ENABLE_DEBUGGER_SUPPORT
4682 // The DebugInfo class holds additional information for a function being
4683 // debugged.
4684 class DebugInfo: public Struct {
4685  public:
4686   // The shared function info for the source being debugged.
4687   DECL_ACCESSORS(shared, SharedFunctionInfo)
4688   // Code object for the original code.
4689   DECL_ACCESSORS(original_code, Code)
4690   // Code object for the patched code. This code object is the code object
4691   // currently active for the function.
4692   DECL_ACCESSORS(code, Code)
4693   // Fixed array holding status information for each active break point.
4694   DECL_ACCESSORS(break_points, FixedArray)
4695 
4696   // Check if there is a break point at a code position.
4697   bool HasBreakPoint(int code_position);
4698   // Get the break point info object for a code position.
4699   Object* GetBreakPointInfo(int code_position);
4700   // Clear a break point.
4701   static void ClearBreakPoint(Handle<DebugInfo> debug_info,
4702                               int code_position,
4703                               Handle<Object> break_point_object);
4704   // Set a break point.
4705   static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
4706                             int source_position, int statement_position,
4707                             Handle<Object> break_point_object);
4708   // Get the break point objects for a code position.
4709   Object* GetBreakPointObjects(int code_position);
4710   // Find the break point info holding this break point object.
4711   static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
4712                                     Handle<Object> break_point_object);
4713   // Get the number of break points for this function.
4714   int GetBreakPointCount();
4715 
4716   static inline DebugInfo* cast(Object* obj);
4717 
4718 #ifdef DEBUG
4719   void DebugInfoPrint();
4720   void DebugInfoVerify();
4721 #endif
4722 
4723   static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
4724   static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
4725   static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
4726   static const int kActiveBreakPointsCountIndex =
4727       kPatchedCodeIndex + kPointerSize;
4728   static const int kBreakPointsStateIndex =
4729       kActiveBreakPointsCountIndex + kPointerSize;
4730   static const int kSize = kBreakPointsStateIndex + kPointerSize;
4731 
4732  private:
4733   static const int kNoBreakPointInfo = -1;
4734 
4735   // Lookup the index in the break_points array for a code position.
4736   int GetBreakPointInfoIndex(int code_position);
4737 
4738   DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
4739 };
4740 
4741 
4742 // The BreakPointInfo class holds information for break points set in a
4743 // function. The DebugInfo object holds a BreakPointInfo object for each code
4744 // position with one or more break points.
4745 class BreakPointInfo: public Struct {
4746  public:
4747   // The position in the code for the break point.
4748   DECL_ACCESSORS(code_position, Smi)
4749   // The position in the source for the break position.
4750   DECL_ACCESSORS(source_position, Smi)
4751   // The position in the source for the last statement before this break
4752   // position.
4753   DECL_ACCESSORS(statement_position, Smi)
4754   // List of related JavaScript break points.
4755   DECL_ACCESSORS(break_point_objects, Object)
4756 
4757   // Removes a break point.
4758   static void ClearBreakPoint(Handle<BreakPointInfo> info,
4759                               Handle<Object> break_point_object);
4760   // Set a break point.
4761   static void SetBreakPoint(Handle<BreakPointInfo> info,
4762                             Handle<Object> break_point_object);
4763   // Check if break point info has this break point object.
4764   static bool HasBreakPointObject(Handle<BreakPointInfo> info,
4765                                   Handle<Object> break_point_object);
4766   // Get the number of break points for this code position.
4767   int GetBreakPointCount();
4768 
4769   static inline BreakPointInfo* cast(Object* obj);
4770 
4771 #ifdef DEBUG
4772   void BreakPointInfoPrint();
4773   void BreakPointInfoVerify();
4774 #endif
4775 
4776   static const int kCodePositionIndex = Struct::kHeaderSize;
4777   static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
4778   static const int kStatementPositionIndex =
4779       kSourcePositionIndex + kPointerSize;
4780   static const int kBreakPointObjectsIndex =
4781       kStatementPositionIndex + kPointerSize;
4782   static const int kSize = kBreakPointObjectsIndex + kPointerSize;
4783 
4784  private:
4785   DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
4786 };
4787 #endif  // ENABLE_DEBUGGER_SUPPORT
4788 
4789 
4790 #undef DECL_BOOLEAN_ACCESSORS
4791 #undef DECL_ACCESSORS
4792 
4793 
4794 // Abstract base class for visiting, and optionally modifying, the
4795 // pointers contained in Objects. Used in GC and serialization/deserialization.
4796 class ObjectVisitor BASE_EMBEDDED {
4797  public:
~ObjectVisitor()4798   virtual ~ObjectVisitor() {}
4799 
4800   // Visits a contiguous arrays of pointers in the half-open range
4801   // [start, end). Any or all of the values may be modified on return.
4802   virtual void VisitPointers(Object** start, Object** end) = 0;
4803 
4804   // To allow lazy clearing of inline caches the visitor has
4805   // a rich interface for iterating over Code objects..
4806 
4807   // Called prior to visiting the body of a Code object.
4808   virtual void BeginCodeIteration(Code* code);
4809 
4810   // Visits a code target in the instruction stream.
4811   virtual void VisitCodeTarget(RelocInfo* rinfo);
4812 
4813   // Visits a runtime entry in the instruction stream.
VisitRuntimeEntry(RelocInfo * rinfo)4814   virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
4815 
4816   // Visits a debug call target in the instruction stream.
4817   virtual void VisitDebugTarget(RelocInfo* rinfo);
4818 
4819   // Called after completing  visiting the body of a Code object.
EndCodeIteration(Code * code)4820   virtual void EndCodeIteration(Code* code) {}
4821 
4822   // Handy shorthand for visiting a single pointer.
VisitPointer(Object ** p)4823   virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
4824 
4825   // Visits a contiguous arrays of external references (references to the C++
4826   // heap) in the half-open range [start, end). Any or all of the values
4827   // may be modified on return.
VisitExternalReferences(Address * start,Address * end)4828   virtual void VisitExternalReferences(Address* start, Address* end) {}
4829 
VisitExternalReference(Address * p)4830   inline void VisitExternalReference(Address* p) {
4831     VisitExternalReferences(p, p + 1);
4832   }
4833 
4834 #ifdef DEBUG
4835   // Intended for serialization/deserialization checking: insert, or
4836   // check for the presence of, a tag at this position in the stream.
Synchronize(const char * tag)4837   virtual void Synchronize(const char* tag) {}
4838 #endif
4839 };
4840 
4841 
4842 // BooleanBit is a helper class for setting and getting a bit in an
4843 // integer or Smi.
4844 class BooleanBit : public AllStatic {
4845  public:
get(Smi * smi,int bit_position)4846   static inline bool get(Smi* smi, int bit_position) {
4847     return get(smi->value(), bit_position);
4848   }
4849 
get(int value,int bit_position)4850   static inline bool get(int value, int bit_position) {
4851     return (value & (1 << bit_position)) != 0;
4852   }
4853 
set(Smi * smi,int bit_position,bool v)4854   static inline Smi* set(Smi* smi, int bit_position, bool v) {
4855     return Smi::FromInt(set(smi->value(), bit_position, v));
4856   }
4857 
set(int value,int bit_position,bool v)4858   static inline int set(int value, int bit_position, bool v) {
4859     if (v) {
4860       value |= (1 << bit_position);
4861     } else {
4862       value &= ~(1 << bit_position);
4863     }
4864     return value;
4865   }
4866 };
4867 
4868 } }  // namespace v8::internal
4869 
4870 #endif  // V8_OBJECTS_H_
4871