1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "prettyprinter.h"
31 #include "scopeinfo.h"
32 #include "scopes.h"
33
34 namespace v8 {
35 namespace internal {
36
37 // ----------------------------------------------------------------------------
38 // A Zone allocator for use with LocalsMap.
39
40 class ZoneAllocator: public Allocator {
41 public:
42 /* nothing to do */
~ZoneAllocator()43 virtual ~ZoneAllocator() {}
44
New(size_t size)45 virtual void* New(size_t size) { return Zone::New(size); }
46
47 /* ignored - Zone is freed in one fell swoop */
Delete(void * p)48 virtual void Delete(void* p) {}
49 };
50
51
52 static ZoneAllocator LocalsMapAllocator;
53
54
55 // ----------------------------------------------------------------------------
56 // Implementation of LocalsMap
57 //
58 // Note: We are storing the handle locations as key values in the hash map.
59 // When inserting a new variable via Declare(), we rely on the fact that
60 // the handle location remains alive for the duration of that variable
61 // use. Because a Variable holding a handle with the same location exists
62 // this is ensured.
63
Match(void * key1,void * key2)64 static bool Match(void* key1, void* key2) {
65 String* name1 = *reinterpret_cast<String**>(key1);
66 String* name2 = *reinterpret_cast<String**>(key2);
67 ASSERT(name1->IsSymbol());
68 ASSERT(name2->IsSymbol());
69 return name1 == name2;
70 }
71
72
73 // Dummy constructor
VariableMap(bool gotta_love_static_overloading)74 VariableMap::VariableMap(bool gotta_love_static_overloading) : HashMap() {}
75
VariableMap()76 VariableMap::VariableMap() : HashMap(Match, &LocalsMapAllocator, 8) {}
~VariableMap()77 VariableMap::~VariableMap() {}
78
79
Declare(Scope * scope,Handle<String> name,Variable::Mode mode,bool is_valid_lhs,Variable::Kind kind)80 Variable* VariableMap::Declare(Scope* scope,
81 Handle<String> name,
82 Variable::Mode mode,
83 bool is_valid_lhs,
84 Variable::Kind kind) {
85 HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), true);
86 if (p->value == NULL) {
87 // The variable has not been declared yet -> insert it.
88 ASSERT(p->key == name.location());
89 p->value = new Variable(scope, name, mode, is_valid_lhs, kind);
90 }
91 return reinterpret_cast<Variable*>(p->value);
92 }
93
94
Lookup(Handle<String> name)95 Variable* VariableMap::Lookup(Handle<String> name) {
96 HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), false);
97 if (p != NULL) {
98 ASSERT(*reinterpret_cast<String**>(p->key) == *name);
99 ASSERT(p->value != NULL);
100 return reinterpret_cast<Variable*>(p->value);
101 }
102 return NULL;
103 }
104
105
106 // ----------------------------------------------------------------------------
107 // Implementation of Scope
108
109
110 // Dummy constructor
Scope(Type type)111 Scope::Scope(Type type)
112 : outer_scope_(NULL),
113 inner_scopes_(0),
114 type_(type),
115 scope_name_(Factory::empty_symbol()),
116 variables_(false),
117 temps_(0),
118 params_(0),
119 dynamics_(NULL),
120 unresolved_(0),
121 decls_(0),
122 receiver_(NULL),
123 function_(NULL),
124 arguments_(NULL),
125 arguments_shadow_(NULL),
126 illegal_redecl_(NULL),
127 scope_inside_with_(false),
128 scope_contains_with_(false),
129 scope_calls_eval_(false),
130 outer_scope_calls_eval_(false),
131 inner_scope_calls_eval_(false),
132 outer_scope_is_eval_scope_(false),
133 force_eager_compilation_(false),
134 num_stack_slots_(0),
135 num_heap_slots_(0) {
136 }
137
138
Scope(Scope * outer_scope,Type type)139 Scope::Scope(Scope* outer_scope, Type type)
140 : outer_scope_(outer_scope),
141 inner_scopes_(4),
142 type_(type),
143 scope_name_(Factory::empty_symbol()),
144 temps_(4),
145 params_(4),
146 dynamics_(NULL),
147 unresolved_(16),
148 decls_(4),
149 receiver_(NULL),
150 function_(NULL),
151 arguments_(NULL),
152 arguments_shadow_(NULL),
153 illegal_redecl_(NULL),
154 scope_inside_with_(false),
155 scope_contains_with_(false),
156 scope_calls_eval_(false),
157 outer_scope_calls_eval_(false),
158 inner_scope_calls_eval_(false),
159 outer_scope_is_eval_scope_(false),
160 force_eager_compilation_(false),
161 num_stack_slots_(0),
162 num_heap_slots_(0) {
163 // At some point we might want to provide outer scopes to
164 // eval scopes (by walking the stack and reading the scope info).
165 // In that case, the ASSERT below needs to be adjusted.
166 ASSERT((type == GLOBAL_SCOPE || type == EVAL_SCOPE) == (outer_scope == NULL));
167 ASSERT(!HasIllegalRedeclaration());
168 }
169
170
Initialize(bool inside_with)171 void Scope::Initialize(bool inside_with) {
172 // Add this scope as a new inner scope of the outer scope.
173 if (outer_scope_ != NULL) {
174 outer_scope_->inner_scopes_.Add(this);
175 scope_inside_with_ = outer_scope_->scope_inside_with_ || inside_with;
176 } else {
177 scope_inside_with_ = inside_with;
178 }
179
180 // Declare convenience variables.
181 // Declare and allocate receiver (even for the global scope, and even
182 // if naccesses_ == 0).
183 // NOTE: When loading parameters in the global scope, we must take
184 // care not to access them as properties of the global object, but
185 // instead load them directly from the stack. Currently, the only
186 // such parameter is 'this' which is passed on the stack when
187 // invoking scripts
188 Variable* var =
189 variables_.Declare(this, Factory::this_symbol(), Variable::VAR,
190 false, Variable::THIS);
191 var->rewrite_ = new Slot(var, Slot::PARAMETER, -1);
192 receiver_ = new VariableProxy(Factory::this_symbol(), true, false);
193 receiver_->BindTo(var);
194
195 if (is_function_scope()) {
196 // Declare 'arguments' variable which exists in all functions.
197 // Note that it might never be accessed, in which case it won't be
198 // allocated during variable allocation.
199 variables_.Declare(this, Factory::arguments_symbol(), Variable::VAR,
200 true, Variable::ARGUMENTS);
201 }
202 }
203
204
205
LocalLookup(Handle<String> name)206 Variable* Scope::LocalLookup(Handle<String> name) {
207 return variables_.Lookup(name);
208 }
209
210
Lookup(Handle<String> name)211 Variable* Scope::Lookup(Handle<String> name) {
212 for (Scope* scope = this;
213 scope != NULL;
214 scope = scope->outer_scope()) {
215 Variable* var = scope->LocalLookup(name);
216 if (var != NULL) return var;
217 }
218 return NULL;
219 }
220
221
DeclareFunctionVar(Handle<String> name)222 Variable* Scope::DeclareFunctionVar(Handle<String> name) {
223 ASSERT(is_function_scope() && function_ == NULL);
224 function_ = new Variable(this, name, Variable::CONST, true, Variable::NORMAL);
225 return function_;
226 }
227
228
DeclareLocal(Handle<String> name,Variable::Mode mode)229 Variable* Scope::DeclareLocal(Handle<String> name, Variable::Mode mode) {
230 // DYNAMIC variables are introduces during variable allocation,
231 // INTERNAL variables are allocated explicitly, and TEMPORARY
232 // variables are allocated via NewTemporary().
233 ASSERT(mode == Variable::VAR || mode == Variable::CONST);
234 return variables_.Declare(this, name, mode, true, Variable::NORMAL);
235 }
236
237
DeclareGlobal(Handle<String> name)238 Variable* Scope::DeclareGlobal(Handle<String> name) {
239 ASSERT(is_global_scope());
240 return variables_.Declare(this, name, Variable::DYNAMIC, true,
241 Variable::NORMAL);
242 }
243
244
AddParameter(Variable * var)245 void Scope::AddParameter(Variable* var) {
246 ASSERT(is_function_scope());
247 ASSERT(LocalLookup(var->name()) == var);
248 params_.Add(var);
249 }
250
251
NewUnresolved(Handle<String> name,bool inside_with)252 VariableProxy* Scope::NewUnresolved(Handle<String> name, bool inside_with) {
253 // Note that we must not share the unresolved variables with
254 // the same name because they may be removed selectively via
255 // RemoveUnresolved().
256 VariableProxy* proxy = new VariableProxy(name, false, inside_with);
257 unresolved_.Add(proxy);
258 return proxy;
259 }
260
261
RemoveUnresolved(VariableProxy * var)262 void Scope::RemoveUnresolved(VariableProxy* var) {
263 // Most likely (always?) any variable we want to remove
264 // was just added before, so we search backwards.
265 for (int i = unresolved_.length(); i-- > 0;) {
266 if (unresolved_[i] == var) {
267 unresolved_.Remove(i);
268 return;
269 }
270 }
271 }
272
273
NewTemporary(Handle<String> name)274 VariableProxy* Scope::NewTemporary(Handle<String> name) {
275 Variable* var = new Variable(this, name, Variable::TEMPORARY, true,
276 Variable::NORMAL);
277 VariableProxy* tmp = new VariableProxy(name, false, false);
278 tmp->BindTo(var);
279 temps_.Add(var);
280 return tmp;
281 }
282
283
AddDeclaration(Declaration * declaration)284 void Scope::AddDeclaration(Declaration* declaration) {
285 decls_.Add(declaration);
286 }
287
288
SetIllegalRedeclaration(Expression * expression)289 void Scope::SetIllegalRedeclaration(Expression* expression) {
290 // Only set the illegal redeclaration expression the
291 // first time the function is called.
292 if (!HasIllegalRedeclaration()) {
293 illegal_redecl_ = expression;
294 }
295 ASSERT(HasIllegalRedeclaration());
296 }
297
298
VisitIllegalRedeclaration(AstVisitor * visitor)299 void Scope::VisitIllegalRedeclaration(AstVisitor* visitor) {
300 ASSERT(HasIllegalRedeclaration());
301 illegal_redecl_->Accept(visitor);
302 }
303
304
305 template<class Allocator>
CollectUsedVariables(List<Variable *,Allocator> * locals)306 void Scope::CollectUsedVariables(List<Variable*, Allocator>* locals) {
307 // Collect variables in this scope.
308 // Note that the function_ variable - if present - is not
309 // collected here but handled separately in ScopeInfo
310 // which is the current user of this function).
311 for (int i = 0; i < temps_.length(); i++) {
312 Variable* var = temps_[i];
313 if (var->var_uses()->is_used()) {
314 locals->Add(var);
315 }
316 }
317 for (VariableMap::Entry* p = variables_.Start();
318 p != NULL;
319 p = variables_.Next(p)) {
320 Variable* var = reinterpret_cast<Variable*>(p->value);
321 if (var->var_uses()->is_used()) {
322 locals->Add(var);
323 }
324 }
325 }
326
327
328 // Make sure the method gets instantiated by the template system.
329 template void Scope::CollectUsedVariables(
330 List<Variable*, FreeStoreAllocationPolicy>* locals);
331 template void Scope::CollectUsedVariables(
332 List<Variable*, PreallocatedStorage>* locals);
333 template void Scope::CollectUsedVariables(
334 List<Variable*, ZoneListAllocationPolicy>* locals);
335
336
AllocateVariables(Handle<Context> context)337 void Scope::AllocateVariables(Handle<Context> context) {
338 ASSERT(outer_scope_ == NULL); // eval or global scopes only
339
340 // 1) Propagate scope information.
341 // If we are in an eval scope, we may have other outer scopes about
342 // which we don't know anything at this point. Thus we must be conservative
343 // and assume they may invoke eval themselves. Eventually we could capture
344 // this information in the ScopeInfo and then use it here (by traversing
345 // the call chain stack, at compile time).
346 bool eval_scope = is_eval_scope();
347 PropagateScopeInfo(eval_scope, eval_scope);
348
349 // 2) Resolve variables.
350 Scope* global_scope = NULL;
351 if (is_global_scope()) global_scope = this;
352 ResolveVariablesRecursively(global_scope, context);
353
354 // 3) Allocate variables.
355 AllocateVariablesRecursively();
356 }
357
358
AllowsLazyCompilation() const359 bool Scope::AllowsLazyCompilation() const {
360 return !force_eager_compilation_ && HasTrivialOuterContext();
361 }
362
363
HasTrivialContext() const364 bool Scope::HasTrivialContext() const {
365 // A function scope has a trivial context if it always is the global
366 // context. We iteratively scan out the context chain to see if
367 // there is anything that makes this scope non-trivial; otherwise we
368 // return true.
369 for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
370 if (scope->is_eval_scope()) return false;
371 if (scope->scope_inside_with_) return false;
372 if (scope->num_heap_slots_ > 0) return false;
373 }
374 return true;
375 }
376
377
HasTrivialOuterContext() const378 bool Scope::HasTrivialOuterContext() const {
379 Scope* outer = outer_scope_;
380 if (outer == NULL) return true;
381 // Note that the outer context may be trivial in general, but the current
382 // scope may be inside a 'with' statement in which case the outer context
383 // for this scope is not trivial.
384 return !scope_inside_with_ && outer->HasTrivialContext();
385 }
386
387
ContextChainLength(Scope * scope)388 int Scope::ContextChainLength(Scope* scope) {
389 int n = 0;
390 for (Scope* s = this; s != scope; s = s->outer_scope_) {
391 ASSERT(s != NULL); // scope must be in the scope chain
392 if (s->num_heap_slots() > 0) n++;
393 }
394 return n;
395 }
396
397
398 #ifdef DEBUG
Header(Scope::Type type)399 static const char* Header(Scope::Type type) {
400 switch (type) {
401 case Scope::EVAL_SCOPE: return "eval";
402 case Scope::FUNCTION_SCOPE: return "function";
403 case Scope::GLOBAL_SCOPE: return "global";
404 }
405 UNREACHABLE();
406 return NULL;
407 }
408
409
Indent(int n,const char * str)410 static void Indent(int n, const char* str) {
411 PrintF("%*s%s", n, "", str);
412 }
413
414
PrintName(Handle<String> name)415 static void PrintName(Handle<String> name) {
416 SmartPointer<char> s = name->ToCString(DISALLOW_NULLS);
417 PrintF("%s", *s);
418 }
419
420
PrintVar(PrettyPrinter * printer,int indent,Variable * var)421 static void PrintVar(PrettyPrinter* printer, int indent, Variable* var) {
422 if (var->var_uses()->is_used() || var->rewrite() != NULL) {
423 Indent(indent, Variable::Mode2String(var->mode()));
424 PrintF(" ");
425 PrintName(var->name());
426 PrintF("; // ");
427 if (var->rewrite() != NULL) PrintF("%s, ", printer->Print(var->rewrite()));
428 if (var->is_accessed_from_inner_scope()) PrintF("inner scope access, ");
429 PrintF("var ");
430 var->var_uses()->Print();
431 PrintF(", obj ");
432 var->obj_uses()->Print();
433 PrintF("\n");
434 }
435 }
436
437
PrintMap(PrettyPrinter * printer,int indent,VariableMap * map)438 static void PrintMap(PrettyPrinter* printer, int indent, VariableMap* map) {
439 for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
440 Variable* var = reinterpret_cast<Variable*>(p->value);
441 PrintVar(printer, indent, var);
442 }
443 }
444
445
Print(int n)446 void Scope::Print(int n) {
447 int n0 = (n > 0 ? n : 0);
448 int n1 = n0 + 2; // indentation
449
450 // Print header.
451 Indent(n0, Header(type_));
452 if (scope_name_->length() > 0) {
453 PrintF(" ");
454 PrintName(scope_name_);
455 }
456
457 // Print parameters, if any.
458 if (is_function_scope()) {
459 PrintF(" (");
460 for (int i = 0; i < params_.length(); i++) {
461 if (i > 0) PrintF(", ");
462 PrintName(params_[i]->name());
463 }
464 PrintF(")");
465 }
466
467 PrintF(" {\n");
468
469 // Function name, if any (named function literals, only).
470 if (function_ != NULL) {
471 Indent(n1, "// (local) function name: ");
472 PrintName(function_->name());
473 PrintF("\n");
474 }
475
476 // Scope info.
477 if (HasTrivialOuterContext()) {
478 Indent(n1, "// scope has trivial outer context\n");
479 }
480 if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
481 if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n");
482 if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
483 if (outer_scope_calls_eval_) Indent(n1, "// outer scope calls 'eval'\n");
484 if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
485 if (outer_scope_is_eval_scope_) {
486 Indent(n1, "// outer scope is 'eval' scope\n");
487 }
488 if (num_stack_slots_ > 0) { Indent(n1, "// ");
489 PrintF("%d stack slots\n", num_stack_slots_); }
490 if (num_heap_slots_ > 0) { Indent(n1, "// ");
491 PrintF("%d heap slots\n", num_heap_slots_); }
492
493 // Print locals.
494 PrettyPrinter printer;
495 Indent(n1, "// function var\n");
496 if (function_ != NULL) {
497 PrintVar(&printer, n1, function_);
498 }
499
500 Indent(n1, "// temporary vars\n");
501 for (int i = 0; i < temps_.length(); i++) {
502 PrintVar(&printer, n1, temps_[i]);
503 }
504
505 Indent(n1, "// local vars\n");
506 PrintMap(&printer, n1, &variables_);
507
508 Indent(n1, "// dynamic vars\n");
509 if (dynamics_ != NULL) {
510 PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC));
511 PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC_LOCAL));
512 PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC_GLOBAL));
513 }
514
515 // Print inner scopes (disable by providing negative n).
516 if (n >= 0) {
517 for (int i = 0; i < inner_scopes_.length(); i++) {
518 PrintF("\n");
519 inner_scopes_[i]->Print(n1);
520 }
521 }
522
523 Indent(n0, "}\n");
524 }
525 #endif // DEBUG
526
527
NonLocal(Handle<String> name,Variable::Mode mode)528 Variable* Scope::NonLocal(Handle<String> name, Variable::Mode mode) {
529 if (dynamics_ == NULL) dynamics_ = new DynamicScopePart();
530 VariableMap* map = dynamics_->GetMap(mode);
531 Variable* var = map->Lookup(name);
532 if (var == NULL) {
533 // Declare a new non-local.
534 var = map->Declare(NULL, name, mode, true, Variable::NORMAL);
535 // Allocate it by giving it a dynamic lookup.
536 var->rewrite_ = new Slot(var, Slot::LOOKUP, -1);
537 }
538 return var;
539 }
540
541
542 // Lookup a variable starting with this scope. The result is either
543 // the statically resolved (local!) variable belonging to an outer scope,
544 // or NULL. It may be NULL because a) we couldn't find a variable, or b)
545 // because the variable is just a guess (and may be shadowed by another
546 // variable that is introduced dynamically via an 'eval' call or a 'with'
547 // statement).
LookupRecursive(Handle<String> name,bool inner_lookup,Variable ** invalidated_local)548 Variable* Scope::LookupRecursive(Handle<String> name,
549 bool inner_lookup,
550 Variable** invalidated_local) {
551 // If we find a variable, but the current scope calls 'eval', the found
552 // variable may not be the correct one (the 'eval' may introduce a
553 // property with the same name). In that case, remember that the variable
554 // found is just a guess.
555 bool guess = scope_calls_eval_;
556
557 // Try to find the variable in this scope.
558 Variable* var = LocalLookup(name);
559
560 if (var != NULL) {
561 // We found a variable. If this is not an inner lookup, we are done.
562 // (Even if there is an 'eval' in this scope which introduces the
563 // same variable again, the resulting variable remains the same.
564 // Note that enclosing 'with' statements are handled at the call site.)
565 if (!inner_lookup)
566 return var;
567
568 } else {
569 // We did not find a variable locally. Check against the function variable,
570 // if any. We can do this for all scopes, since the function variable is
571 // only present - if at all - for function scopes.
572 //
573 // This lookup corresponds to a lookup in the "intermediate" scope sitting
574 // between this scope and the outer scope. (ECMA-262, 3rd., requires that
575 // the name of named function literal is kept in an intermediate scope
576 // in between this scope and the next outer scope.)
577 if (function_ != NULL && function_->name().is_identical_to(name)) {
578 var = function_;
579
580 } else if (outer_scope_ != NULL) {
581 var = outer_scope_->LookupRecursive(name, true, invalidated_local);
582 // We may have found a variable in an outer scope. However, if
583 // the current scope is inside a 'with', the actual variable may
584 // be a property introduced via the 'with' statement. Then, the
585 // variable we may have found is just a guess.
586 if (scope_inside_with_)
587 guess = true;
588 }
589
590 // If we did not find a variable, we are done.
591 if (var == NULL)
592 return NULL;
593 }
594
595 ASSERT(var != NULL);
596
597 // If this is a lookup from an inner scope, mark the variable.
598 if (inner_lookup)
599 var->is_accessed_from_inner_scope_ = true;
600
601 // If the variable we have found is just a guess, invalidate the result.
602 if (guess) {
603 *invalidated_local = var;
604 var = NULL;
605 }
606
607 return var;
608 }
609
610
ResolveVariable(Scope * global_scope,Handle<Context> context,VariableProxy * proxy)611 void Scope::ResolveVariable(Scope* global_scope,
612 Handle<Context> context,
613 VariableProxy* proxy) {
614 ASSERT(global_scope == NULL || global_scope->is_global_scope());
615
616 // If the proxy is already resolved there's nothing to do
617 // (functions and consts may be resolved by the parser).
618 if (proxy->var() != NULL) return;
619
620 // Otherwise, try to resolve the variable.
621 Variable* invalidated_local = NULL;
622 Variable* var = LookupRecursive(proxy->name(), false, &invalidated_local);
623
624 if (proxy->inside_with()) {
625 // If we are inside a local 'with' statement, all bets are off
626 // and we cannot resolve the proxy to a local variable even if
627 // we found an outer matching variable.
628 // Note that we must do a lookup anyway, because if we find one,
629 // we must mark that variable as potentially accessed from this
630 // inner scope (the property may not be in the 'with' object).
631 var = NonLocal(proxy->name(), Variable::DYNAMIC);
632
633 } else {
634 // We are not inside a local 'with' statement.
635
636 if (var == NULL) {
637 // We did not find the variable. We have a global variable
638 // if we are in the global scope (we know already that we
639 // are outside a 'with' statement) or if there is no way
640 // that the variable might be introduced dynamically (through
641 // a local or outer eval() call, or an outer 'with' statement),
642 // or we don't know about the outer scope (because we are
643 // in an eval scope).
644 if (is_global_scope() ||
645 !(scope_inside_with_ || outer_scope_is_eval_scope_ ||
646 scope_calls_eval_ || outer_scope_calls_eval_)) {
647 // We must have a global variable.
648 ASSERT(global_scope != NULL);
649 var = global_scope->DeclareGlobal(proxy->name());
650
651 } else if (scope_inside_with_) {
652 // If we are inside a with statement we give up and look up
653 // the variable at runtime.
654 var = NonLocal(proxy->name(), Variable::DYNAMIC);
655
656 } else if (invalidated_local != NULL) {
657 // No with statements are involved and we found a local
658 // variable that might be shadowed by eval introduced
659 // variables.
660 var = NonLocal(proxy->name(), Variable::DYNAMIC_LOCAL);
661 var->set_local_if_not_shadowed(invalidated_local);
662
663 } else if (outer_scope_is_eval_scope_) {
664 // No with statements and we did not find a local and the code
665 // is executed with a call to eval. The context contains
666 // scope information that we can use to determine if the
667 // variable is global if it is not shadowed by eval-introduced
668 // variables.
669 if (context->GlobalIfNotShadowedByEval(proxy->name())) {
670 var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL);
671
672 } else {
673 var = NonLocal(proxy->name(), Variable::DYNAMIC);
674 }
675
676 } else {
677 // No with statements and we did not find a local and the code
678 // is not executed with a call to eval. We know that this
679 // variable is global unless it is shadowed by eval-introduced
680 // variables.
681 var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL);
682 }
683 }
684 }
685
686 proxy->BindTo(var);
687 }
688
689
ResolveVariablesRecursively(Scope * global_scope,Handle<Context> context)690 void Scope::ResolveVariablesRecursively(Scope* global_scope,
691 Handle<Context> context) {
692 ASSERT(global_scope == NULL || global_scope->is_global_scope());
693
694 // Resolve unresolved variables for this scope.
695 for (int i = 0; i < unresolved_.length(); i++) {
696 ResolveVariable(global_scope, context, unresolved_[i]);
697 }
698
699 // Resolve unresolved variables for inner scopes.
700 for (int i = 0; i < inner_scopes_.length(); i++) {
701 inner_scopes_[i]->ResolveVariablesRecursively(global_scope, context);
702 }
703 }
704
705
PropagateScopeInfo(bool outer_scope_calls_eval,bool outer_scope_is_eval_scope)706 bool Scope::PropagateScopeInfo(bool outer_scope_calls_eval,
707 bool outer_scope_is_eval_scope) {
708 if (outer_scope_calls_eval) {
709 outer_scope_calls_eval_ = true;
710 }
711
712 if (outer_scope_is_eval_scope) {
713 outer_scope_is_eval_scope_ = true;
714 }
715
716 bool calls_eval = scope_calls_eval_ || outer_scope_calls_eval_;
717 bool is_eval = is_eval_scope() || outer_scope_is_eval_scope_;
718 for (int i = 0; i < inner_scopes_.length(); i++) {
719 Scope* inner_scope = inner_scopes_[i];
720 if (inner_scope->PropagateScopeInfo(calls_eval, is_eval)) {
721 inner_scope_calls_eval_ = true;
722 }
723 if (inner_scope->force_eager_compilation_) {
724 force_eager_compilation_ = true;
725 }
726 }
727
728 return scope_calls_eval_ || inner_scope_calls_eval_;
729 }
730
731
MustAllocate(Variable * var)732 bool Scope::MustAllocate(Variable* var) {
733 // Give var a read/write use if there is a chance it might be accessed
734 // via an eval() call. This is only possible if the variable has a
735 // visible name.
736 if ((var->is_this() || var->name()->length() > 0) &&
737 (var->is_accessed_from_inner_scope_ ||
738 scope_calls_eval_ || inner_scope_calls_eval_ ||
739 scope_contains_with_)) {
740 var->var_uses()->RecordAccess(1);
741 }
742 // Global variables do not need to be allocated.
743 return !var->is_global() && var->var_uses()->is_used();
744 }
745
746
MustAllocateInContext(Variable * var)747 bool Scope::MustAllocateInContext(Variable* var) {
748 // If var is accessed from an inner scope, or if there is a
749 // possibility that it might be accessed from the current or an inner
750 // scope (through an eval() call), it must be allocated in the
751 // context. Exception: temporary variables are not allocated in the
752 // context.
753 return
754 var->mode() != Variable::TEMPORARY &&
755 (var->is_accessed_from_inner_scope_ ||
756 scope_calls_eval_ || inner_scope_calls_eval_ ||
757 scope_contains_with_ || var->is_global());
758 }
759
760
HasArgumentsParameter()761 bool Scope::HasArgumentsParameter() {
762 for (int i = 0; i < params_.length(); i++) {
763 if (params_[i]->name().is_identical_to(Factory::arguments_symbol()))
764 return true;
765 }
766 return false;
767 }
768
769
AllocateStackSlot(Variable * var)770 void Scope::AllocateStackSlot(Variable* var) {
771 var->rewrite_ = new Slot(var, Slot::LOCAL, num_stack_slots_++);
772 }
773
774
AllocateHeapSlot(Variable * var)775 void Scope::AllocateHeapSlot(Variable* var) {
776 var->rewrite_ = new Slot(var, Slot::CONTEXT, num_heap_slots_++);
777 }
778
779
AllocateParameterLocals()780 void Scope::AllocateParameterLocals() {
781 ASSERT(is_function_scope());
782 Variable* arguments = LocalLookup(Factory::arguments_symbol());
783 ASSERT(arguments != NULL); // functions have 'arguments' declared implicitly
784 if (MustAllocate(arguments) && !HasArgumentsParameter()) {
785 // 'arguments' is used. Unless there is also a parameter called
786 // 'arguments', we must be conservative and access all parameters via
787 // the arguments object: The i'th parameter is rewritten into
788 // '.arguments[i]' (*). If we have a parameter named 'arguments', a
789 // (new) value is always assigned to it via the function
790 // invocation. Then 'arguments' denotes that specific parameter value
791 // and cannot be used to access the parameters, which is why we don't
792 // need to rewrite in that case.
793 //
794 // (*) Instead of having a parameter called 'arguments', we may have an
795 // assignment to 'arguments' in the function body, at some arbitrary
796 // point in time (possibly through an 'eval()' call!). After that
797 // assignment any re-write of parameters would be invalid (was bug
798 // 881452). Thus, we introduce a shadow '.arguments'
799 // variable which also points to the arguments object. For rewrites we
800 // use '.arguments' which remains valid even if we assign to
801 // 'arguments'. To summarize: If we need to rewrite, we allocate an
802 // 'arguments' object dynamically upon function invocation. The compiler
803 // introduces 2 local variables 'arguments' and '.arguments', both of
804 // which originally point to the arguments object that was
805 // allocated. All parameters are rewritten into property accesses via
806 // the '.arguments' variable. Thus, any changes to properties of
807 // 'arguments' are reflected in the variables and vice versa. If the
808 // 'arguments' variable is changed, '.arguments' still points to the
809 // correct arguments object and the rewrites still work.
810
811 // We are using 'arguments'. Tell the code generator that is needs to
812 // allocate the arguments object by setting 'arguments_'.
813 arguments_ = new VariableProxy(Factory::arguments_symbol(), false, false);
814 arguments_->BindTo(arguments);
815
816 // We also need the '.arguments' shadow variable. Declare it and create
817 // and bind the corresponding proxy. It's ok to declare it only now
818 // because it's a local variable that is allocated after the parameters
819 // have been allocated.
820 //
821 // Note: This is "almost" at temporary variable but we cannot use
822 // NewTemporary() because the mode needs to be INTERNAL since this
823 // variable may be allocated in the heap-allocated context (temporaries
824 // are never allocated in the context).
825 Variable* arguments_shadow =
826 new Variable(this, Factory::arguments_shadow_symbol(),
827 Variable::INTERNAL, true, Variable::ARGUMENTS);
828 arguments_shadow_ =
829 new VariableProxy(Factory::arguments_shadow_symbol(), false, false);
830 arguments_shadow_->BindTo(arguments_shadow);
831 temps_.Add(arguments_shadow);
832
833 // Allocate the parameters by rewriting them into '.arguments[i]' accesses.
834 for (int i = 0; i < params_.length(); i++) {
835 Variable* var = params_[i];
836 ASSERT(var->scope() == this);
837 if (MustAllocate(var)) {
838 if (MustAllocateInContext(var)) {
839 // It is ok to set this only now, because arguments is a local
840 // variable that is allocated after the parameters have been
841 // allocated.
842 arguments_shadow->is_accessed_from_inner_scope_ = true;
843 }
844 var->rewrite_ =
845 new Property(arguments_shadow_,
846 new Literal(Handle<Object>(Smi::FromInt(i))),
847 RelocInfo::kNoPosition,
848 Property::SYNTHETIC);
849 arguments_shadow->var_uses()->RecordUses(var->var_uses());
850 }
851 }
852
853 } else {
854 // The arguments object is not used, so we can access parameters directly.
855 // The same parameter may occur multiple times in the parameters_ list.
856 // If it does, and if it is not copied into the context object, it must
857 // receive the highest parameter index for that parameter; thus iteration
858 // order is relevant!
859 for (int i = 0; i < params_.length(); i++) {
860 Variable* var = params_[i];
861 ASSERT(var->scope() == this);
862 if (MustAllocate(var)) {
863 if (MustAllocateInContext(var)) {
864 ASSERT(var->rewrite_ == NULL ||
865 (var->slot() != NULL && var->slot()->type() == Slot::CONTEXT));
866 if (var->rewrite_ == NULL) {
867 // Only set the heap allocation if the parameter has not
868 // been allocated yet.
869 AllocateHeapSlot(var);
870 }
871 } else {
872 ASSERT(var->rewrite_ == NULL ||
873 (var->slot() != NULL &&
874 var->slot()->type() == Slot::PARAMETER));
875 // Set the parameter index always, even if the parameter
876 // was seen before! (We need to access the actual parameter
877 // supplied for the last occurrence of a multiply declared
878 // parameter.)
879 var->rewrite_ = new Slot(var, Slot::PARAMETER, i);
880 }
881 }
882 }
883 }
884 }
885
886
AllocateNonParameterLocal(Variable * var)887 void Scope::AllocateNonParameterLocal(Variable* var) {
888 ASSERT(var->scope() == this);
889 ASSERT(var->rewrite_ == NULL ||
890 (!var->IsVariable(Factory::result_symbol())) ||
891 (var->slot() == NULL || var->slot()->type() != Slot::LOCAL));
892 if (var->rewrite_ == NULL && MustAllocate(var)) {
893 if (MustAllocateInContext(var)) {
894 AllocateHeapSlot(var);
895 } else {
896 AllocateStackSlot(var);
897 }
898 }
899 }
900
901
AllocateNonParameterLocals()902 void Scope::AllocateNonParameterLocals() {
903 // All variables that have no rewrite yet are non-parameter locals.
904 for (int i = 0; i < temps_.length(); i++) {
905 AllocateNonParameterLocal(temps_[i]);
906 }
907
908 for (VariableMap::Entry* p = variables_.Start();
909 p != NULL;
910 p = variables_.Next(p)) {
911 Variable* var = reinterpret_cast<Variable*>(p->value);
912 AllocateNonParameterLocal(var);
913 }
914
915 // For now, function_ must be allocated at the very end. If it gets
916 // allocated in the context, it must be the last slot in the context,
917 // because of the current ScopeInfo implementation (see
918 // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
919 if (function_ != NULL) {
920 AllocateNonParameterLocal(function_);
921 }
922 }
923
924
AllocateVariablesRecursively()925 void Scope::AllocateVariablesRecursively() {
926 // The number of slots required for variables.
927 num_stack_slots_ = 0;
928 num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
929
930 // Allocate variables for inner scopes.
931 for (int i = 0; i < inner_scopes_.length(); i++) {
932 inner_scopes_[i]->AllocateVariablesRecursively();
933 }
934
935 // Allocate variables for this scope.
936 // Parameters must be allocated first, if any.
937 if (is_function_scope()) AllocateParameterLocals();
938 AllocateNonParameterLocals();
939
940 // Allocate context if necessary.
941 bool must_have_local_context = false;
942 if (scope_calls_eval_ || scope_contains_with_) {
943 // The context for the eval() call or 'with' statement in this scope.
944 // Unless we are in the global or an eval scope, we need a local
945 // context even if we didn't statically allocate any locals in it,
946 // and the compiler will access the context variable. If we are
947 // not in an inner scope, the scope is provided from the outside.
948 must_have_local_context = is_function_scope();
949 }
950
951 // If we didn't allocate any locals in the local context, then we only
952 // need the minimal number of slots if we must have a local context.
953 if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS &&
954 !must_have_local_context) {
955 num_heap_slots_ = 0;
956 }
957
958 // Allocation done.
959 ASSERT(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
960 }
961
962 } } // namespace v8::internal
963