• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2009 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "api.h"
31 #include "bootstrapper.h"
32 #include "debug.h"
33 #include "execution.h"
34 #include "objects-inl.h"
35 #include "macro-assembler.h"
36 #include "scanner.h"
37 #include "scopeinfo.h"
38 #include "string-stream.h"
39 
40 #ifdef ENABLE_DISASSEMBLER
41 #include "disassembler.h"
42 #endif
43 
44 
45 namespace v8 {
46 namespace internal {
47 
48 // Getters and setters are stored in a fixed array property.  These are
49 // constants for their indices.
50 const int kGetterIndex = 0;
51 const int kSetterIndex = 1;
52 
53 
CreateJSValue(JSFunction * constructor,Object * value)54 static Object* CreateJSValue(JSFunction* constructor, Object* value) {
55   Object* result = Heap::AllocateJSObject(constructor);
56   if (result->IsFailure()) return result;
57   JSValue::cast(result)->set_value(value);
58   return result;
59 }
60 
61 
ToObject(Context * global_context)62 Object* Object::ToObject(Context* global_context) {
63   if (IsNumber()) {
64     return CreateJSValue(global_context->number_function(), this);
65   } else if (IsBoolean()) {
66     return CreateJSValue(global_context->boolean_function(), this);
67   } else if (IsString()) {
68     return CreateJSValue(global_context->string_function(), this);
69   }
70   ASSERT(IsJSObject());
71   return this;
72 }
73 
74 
ToObject()75 Object* Object::ToObject() {
76   Context* global_context = Top::context()->global_context();
77   if (IsJSObject()) {
78     return this;
79   } else if (IsNumber()) {
80     return CreateJSValue(global_context->number_function(), this);
81   } else if (IsBoolean()) {
82     return CreateJSValue(global_context->boolean_function(), this);
83   } else if (IsString()) {
84     return CreateJSValue(global_context->string_function(), this);
85   }
86 
87   // Throw a type error.
88   return Failure::InternalError();
89 }
90 
91 
ToBoolean()92 Object* Object::ToBoolean() {
93   if (IsTrue()) return Heap::true_value();
94   if (IsFalse()) return Heap::false_value();
95   if (IsSmi()) {
96     return Heap::ToBoolean(Smi::cast(this)->value() != 0);
97   }
98   if (IsUndefined() || IsNull()) return Heap::false_value();
99   // Undetectable object is false
100   if (IsUndetectableObject()) {
101     return Heap::false_value();
102   }
103   if (IsString()) {
104     return Heap::ToBoolean(String::cast(this)->length() != 0);
105   }
106   if (IsHeapNumber()) {
107     return HeapNumber::cast(this)->HeapNumberToBoolean();
108   }
109   return Heap::true_value();
110 }
111 
112 
Lookup(String * name,LookupResult * result)113 void Object::Lookup(String* name, LookupResult* result) {
114   if (IsJSObject()) return JSObject::cast(this)->Lookup(name, result);
115   Object* holder = NULL;
116   Context* global_context = Top::context()->global_context();
117   if (IsString()) {
118     holder = global_context->string_function()->instance_prototype();
119   } else if (IsNumber()) {
120     holder = global_context->number_function()->instance_prototype();
121   } else if (IsBoolean()) {
122     holder = global_context->boolean_function()->instance_prototype();
123   }
124   ASSERT(holder != NULL);  // Cannot handle null or undefined.
125   JSObject::cast(holder)->Lookup(name, result);
126 }
127 
128 
GetPropertyWithReceiver(Object * receiver,String * name,PropertyAttributes * attributes)129 Object* Object::GetPropertyWithReceiver(Object* receiver,
130                                         String* name,
131                                         PropertyAttributes* attributes) {
132   LookupResult result;
133   Lookup(name, &result);
134   Object* value = GetProperty(receiver, &result, name, attributes);
135   ASSERT(*attributes <= ABSENT);
136   return value;
137 }
138 
139 
GetPropertyWithCallback(Object * receiver,Object * structure,String * name,Object * holder)140 Object* Object::GetPropertyWithCallback(Object* receiver,
141                                         Object* structure,
142                                         String* name,
143                                         Object* holder) {
144   // To accommodate both the old and the new api we switch on the
145   // data structure used to store the callbacks.  Eventually proxy
146   // callbacks should be phased out.
147   if (structure->IsProxy()) {
148     AccessorDescriptor* callback =
149         reinterpret_cast<AccessorDescriptor*>(Proxy::cast(structure)->proxy());
150     Object* value = (callback->getter)(receiver, callback->data);
151     RETURN_IF_SCHEDULED_EXCEPTION();
152     return value;
153   }
154 
155   // api style callbacks.
156   if (structure->IsAccessorInfo()) {
157     AccessorInfo* data = AccessorInfo::cast(structure);
158     Object* fun_obj = data->getter();
159     v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj);
160     HandleScope scope;
161     Handle<JSObject> self(JSObject::cast(receiver));
162     Handle<JSObject> holder_handle(JSObject::cast(holder));
163     Handle<String> key(name);
164     Handle<Object> fun_data(data->data());
165     LOG(ApiNamedPropertyAccess("load", *self, name));
166     v8::AccessorInfo info(v8::Utils::ToLocal(self),
167                           v8::Utils::ToLocal(fun_data),
168                           v8::Utils::ToLocal(holder_handle));
169     v8::Handle<v8::Value> result;
170     {
171       // Leaving JavaScript.
172       VMState state(EXTERNAL);
173       result = call_fun(v8::Utils::ToLocal(key), info);
174     }
175     RETURN_IF_SCHEDULED_EXCEPTION();
176     if (result.IsEmpty()) return Heap::undefined_value();
177     return *v8::Utils::OpenHandle(*result);
178   }
179 
180   // __defineGetter__ callback
181   if (structure->IsFixedArray()) {
182     Object* getter = FixedArray::cast(structure)->get(kGetterIndex);
183     if (getter->IsJSFunction()) {
184       return Object::GetPropertyWithDefinedGetter(receiver,
185                                                   JSFunction::cast(getter));
186     }
187     // Getter is not a function.
188     return Heap::undefined_value();
189   }
190 
191   UNREACHABLE();
192   return 0;
193 }
194 
195 
GetPropertyWithDefinedGetter(Object * receiver,JSFunction * getter)196 Object* Object::GetPropertyWithDefinedGetter(Object* receiver,
197                                              JSFunction* getter) {
198   HandleScope scope;
199   Handle<JSFunction> fun(JSFunction::cast(getter));
200   Handle<Object> self(receiver);
201 #ifdef ENABLE_DEBUGGER_SUPPORT
202   // Handle stepping into a getter if step into is active.
203   if (Debug::StepInActive()) {
204     Debug::HandleStepIn(fun, Handle<Object>::null(), 0, false);
205   }
206 #endif
207   bool has_pending_exception;
208   Handle<Object> result =
209       Execution::Call(fun, self, 0, NULL, &has_pending_exception);
210   // Check for pending exception and return the result.
211   if (has_pending_exception) return Failure::Exception();
212   return *result;
213 }
214 
215 
216 // Only deal with CALLBACKS and INTERCEPTOR
GetPropertyWithFailedAccessCheck(Object * receiver,LookupResult * result,String * name,PropertyAttributes * attributes)217 Object* JSObject::GetPropertyWithFailedAccessCheck(
218     Object* receiver,
219     LookupResult* result,
220     String* name,
221     PropertyAttributes* attributes) {
222   if (result->IsValid()) {
223     switch (result->type()) {
224       case CALLBACKS: {
225         // Only allow API accessors.
226         Object* obj = result->GetCallbackObject();
227         if (obj->IsAccessorInfo()) {
228           AccessorInfo* info = AccessorInfo::cast(obj);
229           if (info->all_can_read()) {
230             *attributes = result->GetAttributes();
231             return GetPropertyWithCallback(receiver,
232                                            result->GetCallbackObject(),
233                                            name,
234                                            result->holder());
235           }
236         }
237         break;
238       }
239       case NORMAL:
240       case FIELD:
241       case CONSTANT_FUNCTION: {
242         // Search ALL_CAN_READ accessors in prototype chain.
243         LookupResult r;
244         result->holder()->LookupRealNamedPropertyInPrototypes(name, &r);
245         if (r.IsValid()) {
246           return GetPropertyWithFailedAccessCheck(receiver,
247                                                   &r,
248                                                   name,
249                                                   attributes);
250         }
251         break;
252       }
253       case INTERCEPTOR: {
254         // If the object has an interceptor, try real named properties.
255         // No access check in GetPropertyAttributeWithInterceptor.
256         LookupResult r;
257         result->holder()->LookupRealNamedProperty(name, &r);
258         if (r.IsValid()) {
259           return GetPropertyWithFailedAccessCheck(receiver,
260                                                   &r,
261                                                   name,
262                                                   attributes);
263         }
264       }
265       default: {
266         break;
267       }
268     }
269   }
270 
271   // No accessible property found.
272   *attributes = ABSENT;
273   Top::ReportFailedAccessCheck(this, v8::ACCESS_GET);
274   return Heap::undefined_value();
275 }
276 
277 
GetPropertyAttributeWithFailedAccessCheck(Object * receiver,LookupResult * result,String * name,bool continue_search)278 PropertyAttributes JSObject::GetPropertyAttributeWithFailedAccessCheck(
279     Object* receiver,
280     LookupResult* result,
281     String* name,
282     bool continue_search) {
283   if (result->IsValid()) {
284     switch (result->type()) {
285       case CALLBACKS: {
286         // Only allow API accessors.
287         Object* obj = result->GetCallbackObject();
288         if (obj->IsAccessorInfo()) {
289           AccessorInfo* info = AccessorInfo::cast(obj);
290           if (info->all_can_read()) {
291             return result->GetAttributes();
292           }
293         }
294         break;
295       }
296 
297       case NORMAL:
298       case FIELD:
299       case CONSTANT_FUNCTION: {
300         if (!continue_search) break;
301         // Search ALL_CAN_READ accessors in prototype chain.
302         LookupResult r;
303         result->holder()->LookupRealNamedPropertyInPrototypes(name, &r);
304         if (r.IsValid()) {
305           return GetPropertyAttributeWithFailedAccessCheck(receiver,
306                                                            &r,
307                                                            name,
308                                                            continue_search);
309         }
310         break;
311       }
312 
313       case INTERCEPTOR: {
314         // If the object has an interceptor, try real named properties.
315         // No access check in GetPropertyAttributeWithInterceptor.
316         LookupResult r;
317         if (continue_search) {
318           result->holder()->LookupRealNamedProperty(name, &r);
319         } else {
320           result->holder()->LocalLookupRealNamedProperty(name, &r);
321         }
322         if (r.IsValid()) {
323           return GetPropertyAttributeWithFailedAccessCheck(receiver,
324                                                            &r,
325                                                            name,
326                                                            continue_search);
327         }
328         break;
329       }
330 
331       default: {
332         break;
333       }
334     }
335   }
336 
337   Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
338   return ABSENT;
339 }
340 
341 
GetLazyProperty(Object * receiver,LookupResult * result,String * name,PropertyAttributes * attributes)342 Object* JSObject::GetLazyProperty(Object* receiver,
343                                   LookupResult* result,
344                                   String* name,
345                                   PropertyAttributes* attributes) {
346   HandleScope scope;
347   Handle<Object> this_handle(this);
348   Handle<Object> receiver_handle(receiver);
349   Handle<String> name_handle(name);
350   bool pending_exception;
351   LoadLazy(Handle<JSObject>(JSObject::cast(result->GetLazyValue())),
352            &pending_exception);
353   if (pending_exception) return Failure::Exception();
354   return this_handle->GetPropertyWithReceiver(*receiver_handle,
355                                               *name_handle,
356                                               attributes);
357 }
358 
359 
SetLazyProperty(LookupResult * result,String * name,Object * value,PropertyAttributes attributes)360 Object* JSObject::SetLazyProperty(LookupResult* result,
361                                   String* name,
362                                   Object* value,
363                                   PropertyAttributes attributes) {
364   ASSERT(!IsJSGlobalProxy());
365   HandleScope scope;
366   Handle<JSObject> this_handle(this);
367   Handle<String> name_handle(name);
368   Handle<Object> value_handle(value);
369   bool pending_exception;
370   LoadLazy(Handle<JSObject>(JSObject::cast(result->GetLazyValue())),
371            &pending_exception);
372   if (pending_exception) return Failure::Exception();
373   return this_handle->SetProperty(*name_handle, *value_handle, attributes);
374 }
375 
376 
DeleteLazyProperty(LookupResult * result,String * name,DeleteMode mode)377 Object* JSObject::DeleteLazyProperty(LookupResult* result,
378                                      String* name,
379                                      DeleteMode mode) {
380   HandleScope scope;
381   Handle<JSObject> this_handle(this);
382   Handle<String> name_handle(name);
383   bool pending_exception;
384   LoadLazy(Handle<JSObject>(JSObject::cast(result->GetLazyValue())),
385            &pending_exception);
386   if (pending_exception) return Failure::Exception();
387   return this_handle->DeleteProperty(*name_handle, mode);
388 }
389 
390 
GetNormalizedProperty(LookupResult * result)391 Object* JSObject::GetNormalizedProperty(LookupResult* result) {
392   ASSERT(!HasFastProperties());
393   Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry());
394   if (IsGlobalObject()) {
395     value = JSGlobalPropertyCell::cast(value)->value();
396   }
397   ASSERT(!value->IsJSGlobalPropertyCell());
398   return value;
399 }
400 
401 
SetNormalizedProperty(LookupResult * result,Object * value)402 Object* JSObject::SetNormalizedProperty(LookupResult* result, Object* value) {
403   ASSERT(!HasFastProperties());
404   if (IsGlobalObject()) {
405     JSGlobalPropertyCell* cell =
406         JSGlobalPropertyCell::cast(
407             property_dictionary()->ValueAt(result->GetDictionaryEntry()));
408     cell->set_value(value);
409   } else {
410     property_dictionary()->ValueAtPut(result->GetDictionaryEntry(), value);
411   }
412   return value;
413 }
414 
415 
SetNormalizedProperty(String * name,Object * value,PropertyDetails details)416 Object* JSObject::SetNormalizedProperty(String* name,
417                                         Object* value,
418                                         PropertyDetails details) {
419   ASSERT(!HasFastProperties());
420   int entry = property_dictionary()->FindEntry(name);
421   if (entry == StringDictionary::kNotFound) {
422     Object* store_value = value;
423     if (IsGlobalObject()) {
424       store_value = Heap::AllocateJSGlobalPropertyCell(value);
425       if (store_value->IsFailure()) return store_value;
426     }
427     Object* dict = property_dictionary()->Add(name, store_value, details);
428     if (dict->IsFailure()) return dict;
429     set_properties(StringDictionary::cast(dict));
430     return value;
431   }
432   // Preserve enumeration index.
433   details = PropertyDetails(details.attributes(),
434                             details.type(),
435                             property_dictionary()->DetailsAt(entry).index());
436   if (IsGlobalObject()) {
437     JSGlobalPropertyCell* cell =
438         JSGlobalPropertyCell::cast(property_dictionary()->ValueAt(entry));
439     cell->set_value(value);
440     // Please note we have to update the property details.
441     property_dictionary()->DetailsAtPut(entry, details);
442   } else {
443     property_dictionary()->SetEntry(entry, name, value, details);
444   }
445   return value;
446 }
447 
448 
DeleteNormalizedProperty(String * name,DeleteMode mode)449 Object* JSObject::DeleteNormalizedProperty(String* name, DeleteMode mode) {
450   ASSERT(!HasFastProperties());
451   StringDictionary* dictionary = property_dictionary();
452   int entry = dictionary->FindEntry(name);
453   if (entry != StringDictionary::kNotFound) {
454     // If we have a global object set the cell to the hole.
455     if (IsGlobalObject()) {
456       PropertyDetails details = dictionary->DetailsAt(entry);
457       if (details.IsDontDelete()) {
458         if (mode != FORCE_DELETION) return Heap::false_value();
459         // When forced to delete global properties, we have to make a
460         // map change to invalidate any ICs that think they can load
461         // from the DontDelete cell without checking if it contains
462         // the hole value.
463         Object* new_map = map()->CopyDropDescriptors();
464         if (new_map->IsFailure()) return new_map;
465         set_map(Map::cast(new_map));
466       }
467       JSGlobalPropertyCell* cell =
468           JSGlobalPropertyCell::cast(dictionary->ValueAt(entry));
469       cell->set_value(Heap::the_hole_value());
470       dictionary->DetailsAtPut(entry, details.AsDeleted());
471     } else {
472       return dictionary->DeleteProperty(entry, mode);
473     }
474   }
475   return Heap::true_value();
476 }
477 
478 
GetProperty(Object * receiver,LookupResult * result,String * name,PropertyAttributes * attributes)479 Object* Object::GetProperty(Object* receiver,
480                             LookupResult* result,
481                             String* name,
482                             PropertyAttributes* attributes) {
483   // Make sure that the top context does not change when doing
484   // callbacks or interceptor calls.
485   AssertNoContextChange ncc;
486 
487   // Traverse the prototype chain from the current object (this) to
488   // the holder and check for access rights. This avoid traversing the
489   // objects more than once in case of interceptors, because the
490   // holder will always be the interceptor holder and the search may
491   // only continue with a current object just after the interceptor
492   // holder in the prototype chain.
493   Object* last = result->IsValid() ? result->holder() : Heap::null_value();
494   for (Object* current = this; true; current = current->GetPrototype()) {
495     if (current->IsAccessCheckNeeded()) {
496       // Check if we're allowed to read from the current object. Note
497       // that even though we may not actually end up loading the named
498       // property from the current object, we still check that we have
499       // access to it.
500       JSObject* checked = JSObject::cast(current);
501       if (!Top::MayNamedAccess(checked, name, v8::ACCESS_GET)) {
502         return checked->GetPropertyWithFailedAccessCheck(receiver,
503                                                          result,
504                                                          name,
505                                                          attributes);
506       }
507     }
508     // Stop traversing the chain once we reach the last object in the
509     // chain; either the holder of the result or null in case of an
510     // absent property.
511     if (current == last) break;
512   }
513 
514   if (!result->IsProperty()) {
515     *attributes = ABSENT;
516     return Heap::undefined_value();
517   }
518   *attributes = result->GetAttributes();
519   if (!result->IsLoaded()) {
520     return JSObject::cast(this)->GetLazyProperty(receiver,
521                                                  result,
522                                                  name,
523                                                  attributes);
524   }
525   Object* value;
526   JSObject* holder = result->holder();
527   switch (result->type()) {
528     case NORMAL:
529       value = holder->GetNormalizedProperty(result);
530       ASSERT(!value->IsTheHole() || result->IsReadOnly());
531       return value->IsTheHole() ? Heap::undefined_value() : value;
532     case FIELD:
533       value = holder->FastPropertyAt(result->GetFieldIndex());
534       ASSERT(!value->IsTheHole() || result->IsReadOnly());
535       return value->IsTheHole() ? Heap::undefined_value() : value;
536     case CONSTANT_FUNCTION:
537       return result->GetConstantFunction();
538     case CALLBACKS:
539       return GetPropertyWithCallback(receiver,
540                                      result->GetCallbackObject(),
541                                      name,
542                                      holder);
543     case INTERCEPTOR: {
544       JSObject* recvr = JSObject::cast(receiver);
545       return holder->GetPropertyWithInterceptor(recvr, name, attributes);
546     }
547     default:
548       UNREACHABLE();
549       return NULL;
550   }
551 }
552 
553 
GetElementWithReceiver(Object * receiver,uint32_t index)554 Object* Object::GetElementWithReceiver(Object* receiver, uint32_t index) {
555   // Non-JS objects do not have integer indexed properties.
556   if (!IsJSObject()) return Heap::undefined_value();
557   return JSObject::cast(this)->GetElementWithReceiver(JSObject::cast(receiver),
558                                                       index);
559 }
560 
561 
GetPrototype()562 Object* Object::GetPrototype() {
563   // The object is either a number, a string, a boolean, or a real JS object.
564   if (IsJSObject()) return JSObject::cast(this)->map()->prototype();
565   Context* context = Top::context()->global_context();
566 
567   if (IsNumber()) return context->number_function()->instance_prototype();
568   if (IsString()) return context->string_function()->instance_prototype();
569   if (IsBoolean()) {
570     return context->boolean_function()->instance_prototype();
571   } else {
572     return Heap::null_value();
573   }
574 }
575 
576 
ShortPrint()577 void Object::ShortPrint() {
578   HeapStringAllocator allocator;
579   StringStream accumulator(&allocator);
580   ShortPrint(&accumulator);
581   accumulator.OutputToStdOut();
582 }
583 
584 
ShortPrint(StringStream * accumulator)585 void Object::ShortPrint(StringStream* accumulator) {
586   if (IsSmi()) {
587     Smi::cast(this)->SmiPrint(accumulator);
588   } else if (IsFailure()) {
589     Failure::cast(this)->FailurePrint(accumulator);
590   } else {
591     HeapObject::cast(this)->HeapObjectShortPrint(accumulator);
592   }
593 }
594 
595 
SmiPrint()596 void Smi::SmiPrint() {
597   PrintF("%d", value());
598 }
599 
600 
SmiPrint(StringStream * accumulator)601 void Smi::SmiPrint(StringStream* accumulator) {
602   accumulator->Add("%d", value());
603 }
604 
605 
FailurePrint(StringStream * accumulator)606 void Failure::FailurePrint(StringStream* accumulator) {
607   accumulator->Add("Failure(%d)", value());
608 }
609 
610 
FailurePrint()611 void Failure::FailurePrint() {
612   PrintF("Failure(%d)", value());
613 }
614 
615 
RetryAfterGC(int requested_bytes,AllocationSpace space)616 Failure* Failure::RetryAfterGC(int requested_bytes, AllocationSpace space) {
617   ASSERT((space & ~kSpaceTagMask) == 0);
618   // TODO(X64): Stop using Smi validation for non-smi checks, even if they
619   // happen to be identical at the moment.
620 
621   int requested = requested_bytes >> kObjectAlignmentBits;
622   int value = (requested << kSpaceTagSize) | space;
623   // We can't very well allocate a heap number in this situation, and if the
624   // requested memory is so large it seems reasonable to say that this is an
625   // out of memory situation.  This fixes a crash in
626   // js1_5/Regress/regress-303213.js.
627   if (value >> kSpaceTagSize != requested ||
628       !Smi::IsValid(value) ||
629       value != ((value << kFailureTypeTagSize) >> kFailureTypeTagSize) ||
630       !Smi::IsValid(value << kFailureTypeTagSize)) {
631     Top::context()->mark_out_of_memory();
632     return Failure::OutOfMemoryException();
633   }
634   return Construct(RETRY_AFTER_GC, value);
635 }
636 
637 
638 // Should a word be prefixed by 'a' or 'an' in order to read naturally in
639 // English?  Returns false for non-ASCII or words that don't start with
640 // a capital letter.  The a/an rule follows pronunciation in English.
641 // We don't use the BBC's overcorrect "an historic occasion" though if
642 // you speak a dialect you may well say "an 'istoric occasion".
AnWord(String * str)643 static bool AnWord(String* str) {
644   if (str->length() == 0) return false;  // A nothing.
645   int c0 = str->Get(0);
646   int c1 = str->length() > 1 ? str->Get(1) : 0;
647   if (c0 == 'U') {
648     if (c1 > 'Z') {
649       return true;  // An Umpire, but a UTF8String, a U.
650     }
651   } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') {
652     return true;    // An Ape, an ABCBook.
653   } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) &&
654            (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' ||
655             c0 == 'S' || c0 == 'X')) {
656     return true;    // An MP3File, an M.
657   }
658   return false;
659 }
660 
661 
TryFlatten()662 Object* String::TryFlatten() {
663 #ifdef DEBUG
664   // Do not attempt to flatten in debug mode when allocation is not
665   // allowed.  This is to avoid an assertion failure when allocating.
666   // Flattening strings is the only case where we always allow
667   // allocation because no GC is performed if the allocation fails.
668   if (!Heap::IsAllocationAllowed()) return this;
669 #endif
670 
671   switch (StringShape(this).representation_tag()) {
672     case kSlicedStringTag: {
673       SlicedString* ss = SlicedString::cast(this);
674       // The SlicedString constructor should ensure that there are no
675       // SlicedStrings that are constructed directly on top of other
676       // SlicedStrings.
677       String* buf = ss->buffer();
678       ASSERT(!buf->IsSlicedString());
679       Object* ok = buf->TryFlatten();
680       if (ok->IsFailure()) return ok;
681       // Under certain circumstances (TryFlattenIfNotFlat fails in
682       // String::Slice) we can have a cons string under a slice.
683       // In this case we need to get the flat string out of the cons!
684       if (StringShape(String::cast(ok)).IsCons()) {
685         ss->set_buffer(ConsString::cast(ok)->first());
686       }
687       return this;
688     }
689     case kConsStringTag: {
690       ConsString* cs = ConsString::cast(this);
691       if (cs->second()->length() == 0) {
692         return this;
693       }
694       // There's little point in putting the flat string in new space if the
695       // cons string is in old space.  It can never get GCed until there is
696       // an old space GC.
697       PretenureFlag tenure = Heap::InNewSpace(this) ? NOT_TENURED : TENURED;
698       int len = length();
699       Object* object;
700       String* result;
701       if (IsAsciiRepresentation()) {
702         object = Heap::AllocateRawAsciiString(len, tenure);
703         if (object->IsFailure()) return object;
704         result = String::cast(object);
705         String* first = cs->first();
706         int first_length = first->length();
707         char* dest = SeqAsciiString::cast(result)->GetChars();
708         WriteToFlat(first, dest, 0, first_length);
709         String* second = cs->second();
710         WriteToFlat(second,
711                     dest + first_length,
712                     0,
713                     len - first_length);
714       } else {
715         object = Heap::AllocateRawTwoByteString(len, tenure);
716         if (object->IsFailure()) return object;
717         result = String::cast(object);
718         uc16* dest = SeqTwoByteString::cast(result)->GetChars();
719         String* first = cs->first();
720         int first_length = first->length();
721         WriteToFlat(first, dest, 0, first_length);
722         String* second = cs->second();
723         WriteToFlat(second,
724                     dest + first_length,
725                     0,
726                     len - first_length);
727       }
728       cs->set_first(result);
729       cs->set_second(Heap::empty_string());
730       return this;
731     }
732     default:
733       return this;
734   }
735 }
736 
737 
MakeExternal(v8::String::ExternalStringResource * resource)738 bool String::MakeExternal(v8::String::ExternalStringResource* resource) {
739 #ifdef DEBUG
740   {  // NOLINT (presubmit.py gets confused about if and braces)
741     // Assert that the resource and the string are equivalent.
742     ASSERT(static_cast<size_t>(this->length()) == resource->length());
743     SmartPointer<uc16> smart_chars = this->ToWideCString();
744     ASSERT(memcmp(*smart_chars,
745                   resource->data(),
746                   resource->length() * sizeof(**smart_chars)) == 0);
747   }
748 #endif  // DEBUG
749 
750   int size = this->Size();  // Byte size of the original string.
751   if (size < ExternalString::kSize) {
752     // The string is too small to fit an external String in its place. This can
753     // only happen for zero length strings.
754     return false;
755   }
756   ASSERT(size >= ExternalString::kSize);
757   bool is_symbol = this->IsSymbol();
758   int length = this->length();
759 
760   // Morph the object to an external string by adjusting the map and
761   // reinitializing the fields.
762   this->set_map(ExternalTwoByteString::StringMap(length));
763   ExternalTwoByteString* self = ExternalTwoByteString::cast(this);
764   self->set_length(length);
765   self->set_resource(resource);
766   // Additionally make the object into an external symbol if the original string
767   // was a symbol to start with.
768   if (is_symbol) {
769     self->Hash();  // Force regeneration of the hash value.
770     // Now morph this external string into a external symbol.
771     self->set_map(ExternalTwoByteString::SymbolMap(length));
772   }
773 
774   // Fill the remainder of the string with dead wood.
775   int new_size = this->Size();  // Byte size of the external String object.
776   Heap::CreateFillerObjectAt(this->address() + new_size, size - new_size);
777   return true;
778 }
779 
780 
MakeExternal(v8::String::ExternalAsciiStringResource * resource)781 bool String::MakeExternal(v8::String::ExternalAsciiStringResource* resource) {
782 #ifdef DEBUG
783   {  // NOLINT (presubmit.py gets confused about if and braces)
784     // Assert that the resource and the string are equivalent.
785     ASSERT(static_cast<size_t>(this->length()) == resource->length());
786     SmartPointer<char> smart_chars = this->ToCString();
787     ASSERT(memcmp(*smart_chars,
788                   resource->data(),
789                   resource->length()*sizeof(**smart_chars)) == 0);
790   }
791 #endif  // DEBUG
792 
793   int size = this->Size();  // Byte size of the original string.
794   if (size < ExternalString::kSize) {
795     // The string is too small to fit an external String in its place. This can
796     // only happen for zero length strings.
797     return false;
798   }
799   ASSERT(size >= ExternalString::kSize);
800   bool is_symbol = this->IsSymbol();
801   int length = this->length();
802 
803   // Morph the object to an external string by adjusting the map and
804   // reinitializing the fields.
805   this->set_map(ExternalAsciiString::StringMap(length));
806   ExternalAsciiString* self = ExternalAsciiString::cast(this);
807   self->set_length(length);
808   self->set_resource(resource);
809   // Additionally make the object into an external symbol if the original string
810   // was a symbol to start with.
811   if (is_symbol) {
812     self->Hash();  // Force regeneration of the hash value.
813     // Now morph this external string into a external symbol.
814     self->set_map(ExternalAsciiString::SymbolMap(length));
815   }
816 
817   // Fill the remainder of the string with dead wood.
818   int new_size = this->Size();  // Byte size of the external String object.
819   Heap::CreateFillerObjectAt(this->address() + new_size, size - new_size);
820   return true;
821 }
822 
823 
StringShortPrint(StringStream * accumulator)824 void String::StringShortPrint(StringStream* accumulator) {
825   int len = length();
826   if (len > kMaxMediumStringSize) {
827     accumulator->Add("<Very long string[%u]>", len);
828     return;
829   }
830 
831   if (!LooksValid()) {
832     accumulator->Add("<Invalid String>");
833     return;
834   }
835 
836   StringInputBuffer buf(this);
837 
838   bool truncated = false;
839   if (len > kMaxShortPrintLength) {
840     len = kMaxShortPrintLength;
841     truncated = true;
842   }
843   bool ascii = true;
844   for (int i = 0; i < len; i++) {
845     int c = buf.GetNext();
846 
847     if (c < 32 || c >= 127) {
848       ascii = false;
849     }
850   }
851   buf.Reset(this);
852   if (ascii) {
853     accumulator->Add("<String[%u]: ", length());
854     for (int i = 0; i < len; i++) {
855       accumulator->Put(buf.GetNext());
856     }
857     accumulator->Put('>');
858   } else {
859     // Backslash indicates that the string contains control
860     // characters and that backslashes are therefore escaped.
861     accumulator->Add("<String[%u]\\: ", length());
862     for (int i = 0; i < len; i++) {
863       int c = buf.GetNext();
864       if (c == '\n') {
865         accumulator->Add("\\n");
866       } else if (c == '\r') {
867         accumulator->Add("\\r");
868       } else if (c == '\\') {
869         accumulator->Add("\\\\");
870       } else if (c < 32 || c > 126) {
871         accumulator->Add("\\x%02x", c);
872       } else {
873         accumulator->Put(c);
874       }
875     }
876     if (truncated) {
877       accumulator->Put('.');
878       accumulator->Put('.');
879       accumulator->Put('.');
880     }
881     accumulator->Put('>');
882   }
883   return;
884 }
885 
886 
JSObjectShortPrint(StringStream * accumulator)887 void JSObject::JSObjectShortPrint(StringStream* accumulator) {
888   switch (map()->instance_type()) {
889     case JS_ARRAY_TYPE: {
890       double length = JSArray::cast(this)->length()->Number();
891       accumulator->Add("<JS array[%u]>", static_cast<uint32_t>(length));
892       break;
893     }
894     case JS_REGEXP_TYPE: {
895       accumulator->Add("<JS RegExp>");
896       break;
897     }
898     case JS_FUNCTION_TYPE: {
899       Object* fun_name = JSFunction::cast(this)->shared()->name();
900       bool printed = false;
901       if (fun_name->IsString()) {
902         String* str = String::cast(fun_name);
903         if (str->length() > 0) {
904           accumulator->Add("<JS Function ");
905           accumulator->Put(str);
906           accumulator->Put('>');
907           printed = true;
908         }
909       }
910       if (!printed) {
911         accumulator->Add("<JS Function>");
912       }
913       break;
914     }
915     // All other JSObjects are rather similar to each other (JSObject,
916     // JSGlobalProxy, JSGlobalObject, JSUndetectableObject, JSValue).
917     default: {
918       Object* constructor = map()->constructor();
919       bool printed = false;
920       if (constructor->IsHeapObject() &&
921           !Heap::Contains(HeapObject::cast(constructor))) {
922         accumulator->Add("!!!INVALID CONSTRUCTOR!!!");
923       } else {
924         bool global_object = IsJSGlobalProxy();
925         if (constructor->IsJSFunction()) {
926           if (!Heap::Contains(JSFunction::cast(constructor)->shared())) {
927             accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!");
928           } else {
929             Object* constructor_name =
930                 JSFunction::cast(constructor)->shared()->name();
931             if (constructor_name->IsString()) {
932               String* str = String::cast(constructor_name);
933               if (str->length() > 0) {
934                 bool vowel = AnWord(str);
935                 accumulator->Add("<%sa%s ",
936                        global_object ? "Global Object: " : "",
937                        vowel ? "n" : "");
938                 accumulator->Put(str);
939                 accumulator->Put('>');
940                 printed = true;
941               }
942             }
943           }
944         }
945         if (!printed) {
946           accumulator->Add("<JS %sObject", global_object ? "Global " : "");
947         }
948       }
949       if (IsJSValue()) {
950         accumulator->Add(" value = ");
951         JSValue::cast(this)->value()->ShortPrint(accumulator);
952       }
953       accumulator->Put('>');
954       break;
955     }
956   }
957 }
958 
959 
HeapObjectShortPrint(StringStream * accumulator)960 void HeapObject::HeapObjectShortPrint(StringStream* accumulator) {
961   // if (!Heap::InNewSpace(this)) PrintF("*", this);
962   if (!Heap::Contains(this)) {
963     accumulator->Add("!!!INVALID POINTER!!!");
964     return;
965   }
966   if (!Heap::Contains(map())) {
967     accumulator->Add("!!!INVALID MAP!!!");
968     return;
969   }
970 
971   accumulator->Add("%p ", this);
972 
973   if (IsString()) {
974     String::cast(this)->StringShortPrint(accumulator);
975     return;
976   }
977   if (IsJSObject()) {
978     JSObject::cast(this)->JSObjectShortPrint(accumulator);
979     return;
980   }
981   switch (map()->instance_type()) {
982     case MAP_TYPE:
983       accumulator->Add("<Map>");
984       break;
985     case FIXED_ARRAY_TYPE:
986       accumulator->Add("<FixedArray[%u]>", FixedArray::cast(this)->length());
987       break;
988     case BYTE_ARRAY_TYPE:
989       accumulator->Add("<ByteArray[%u]>", ByteArray::cast(this)->length());
990       break;
991     case PIXEL_ARRAY_TYPE:
992       accumulator->Add("<PixelArray[%u]>", PixelArray::cast(this)->length());
993       break;
994     case SHARED_FUNCTION_INFO_TYPE:
995       accumulator->Add("<SharedFunctionInfo>");
996       break;
997 #define MAKE_STRUCT_CASE(NAME, Name, name) \
998   case NAME##_TYPE:                        \
999     accumulator->Put('<');                 \
1000     accumulator->Add(#Name);               \
1001     accumulator->Put('>');                 \
1002     break;
1003   STRUCT_LIST(MAKE_STRUCT_CASE)
1004 #undef MAKE_STRUCT_CASE
1005     case CODE_TYPE:
1006       accumulator->Add("<Code>");
1007       break;
1008     case ODDBALL_TYPE: {
1009       if (IsUndefined())
1010         accumulator->Add("<undefined>");
1011       else if (IsTheHole())
1012         accumulator->Add("<the hole>");
1013       else if (IsNull())
1014         accumulator->Add("<null>");
1015       else if (IsTrue())
1016         accumulator->Add("<true>");
1017       else if (IsFalse())
1018         accumulator->Add("<false>");
1019       else
1020         accumulator->Add("<Odd Oddball>");
1021       break;
1022     }
1023     case HEAP_NUMBER_TYPE:
1024       accumulator->Add("<Number: ");
1025       HeapNumber::cast(this)->HeapNumberPrint(accumulator);
1026       accumulator->Put('>');
1027       break;
1028     case PROXY_TYPE:
1029       accumulator->Add("<Proxy>");
1030       break;
1031     case JS_GLOBAL_PROPERTY_CELL_TYPE:
1032       accumulator->Add("Cell for ");
1033       JSGlobalPropertyCell::cast(this)->value()->ShortPrint(accumulator);
1034       break;
1035     default:
1036       accumulator->Add("<Other heap object (%d)>", map()->instance_type());
1037       break;
1038   }
1039 }
1040 
1041 
SlowSizeFromMap(Map * map)1042 int HeapObject::SlowSizeFromMap(Map* map) {
1043   // Avoid calling functions such as FixedArray::cast during GC, which
1044   // read map pointer of this object again.
1045   InstanceType instance_type = map->instance_type();
1046   uint32_t type = static_cast<uint32_t>(instance_type);
1047 
1048   if (instance_type < FIRST_NONSTRING_TYPE
1049       && (StringShape(instance_type).IsSequential())) {
1050     if ((type & kStringEncodingMask) == kAsciiStringTag) {
1051       SeqAsciiString* seq_ascii_this = reinterpret_cast<SeqAsciiString*>(this);
1052       return seq_ascii_this->SeqAsciiStringSize(instance_type);
1053     } else {
1054       SeqTwoByteString* self = reinterpret_cast<SeqTwoByteString*>(this);
1055       return self->SeqTwoByteStringSize(instance_type);
1056     }
1057   }
1058 
1059   switch (instance_type) {
1060     case FIXED_ARRAY_TYPE:
1061       return reinterpret_cast<FixedArray*>(this)->FixedArraySize();
1062     case BYTE_ARRAY_TYPE:
1063       return reinterpret_cast<ByteArray*>(this)->ByteArraySize();
1064     case CODE_TYPE:
1065       return reinterpret_cast<Code*>(this)->CodeSize();
1066     case MAP_TYPE:
1067       return Map::kSize;
1068     default:
1069       return map->instance_size();
1070   }
1071 }
1072 
1073 
Iterate(ObjectVisitor * v)1074 void HeapObject::Iterate(ObjectVisitor* v) {
1075   // Handle header
1076   IteratePointer(v, kMapOffset);
1077   // Handle object body
1078   Map* m = map();
1079   IterateBody(m->instance_type(), SizeFromMap(m), v);
1080 }
1081 
1082 
IterateBody(InstanceType type,int object_size,ObjectVisitor * v)1083 void HeapObject::IterateBody(InstanceType type, int object_size,
1084                              ObjectVisitor* v) {
1085   // Avoiding <Type>::cast(this) because it accesses the map pointer field.
1086   // During GC, the map pointer field is encoded.
1087   if (type < FIRST_NONSTRING_TYPE) {
1088     switch (type & kStringRepresentationMask) {
1089       case kSeqStringTag:
1090         break;
1091       case kConsStringTag:
1092         reinterpret_cast<ConsString*>(this)->ConsStringIterateBody(v);
1093         break;
1094       case kSlicedStringTag:
1095         reinterpret_cast<SlicedString*>(this)->SlicedStringIterateBody(v);
1096         break;
1097     }
1098     return;
1099   }
1100 
1101   switch (type) {
1102     case FIXED_ARRAY_TYPE:
1103       reinterpret_cast<FixedArray*>(this)->FixedArrayIterateBody(v);
1104       break;
1105     case JS_OBJECT_TYPE:
1106     case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
1107     case JS_VALUE_TYPE:
1108     case JS_ARRAY_TYPE:
1109     case JS_REGEXP_TYPE:
1110     case JS_FUNCTION_TYPE:
1111     case JS_GLOBAL_PROXY_TYPE:
1112     case JS_GLOBAL_OBJECT_TYPE:
1113     case JS_BUILTINS_OBJECT_TYPE:
1114       reinterpret_cast<JSObject*>(this)->JSObjectIterateBody(object_size, v);
1115       break;
1116     case ODDBALL_TYPE:
1117       reinterpret_cast<Oddball*>(this)->OddballIterateBody(v);
1118       break;
1119     case PROXY_TYPE:
1120       reinterpret_cast<Proxy*>(this)->ProxyIterateBody(v);
1121       break;
1122     case MAP_TYPE:
1123       reinterpret_cast<Map*>(this)->MapIterateBody(v);
1124       break;
1125     case CODE_TYPE:
1126       reinterpret_cast<Code*>(this)->CodeIterateBody(v);
1127       break;
1128     case JS_GLOBAL_PROPERTY_CELL_TYPE:
1129       reinterpret_cast<JSGlobalPropertyCell*>(this)
1130           ->JSGlobalPropertyCellIterateBody(v);
1131       break;
1132     case HEAP_NUMBER_TYPE:
1133     case FILLER_TYPE:
1134     case BYTE_ARRAY_TYPE:
1135     case PIXEL_ARRAY_TYPE:
1136       break;
1137     case SHARED_FUNCTION_INFO_TYPE: {
1138       SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(this);
1139       shared->SharedFunctionInfoIterateBody(v);
1140       break;
1141     }
1142 #define MAKE_STRUCT_CASE(NAME, Name, name) \
1143         case NAME##_TYPE:
1144       STRUCT_LIST(MAKE_STRUCT_CASE)
1145 #undef MAKE_STRUCT_CASE
1146       IterateStructBody(object_size, v);
1147       break;
1148     default:
1149       PrintF("Unknown type: %d\n", type);
1150       UNREACHABLE();
1151   }
1152 }
1153 
1154 
IterateStructBody(int object_size,ObjectVisitor * v)1155 void HeapObject::IterateStructBody(int object_size, ObjectVisitor* v) {
1156   IteratePointers(v, HeapObject::kHeaderSize, object_size);
1157 }
1158 
1159 
HeapNumberToBoolean()1160 Object* HeapNumber::HeapNumberToBoolean() {
1161   // NaN, +0, and -0 should return the false object
1162   switch (fpclassify(value())) {
1163     case FP_NAN:  // fall through
1164     case FP_ZERO: return Heap::false_value();
1165     default: return Heap::true_value();
1166   }
1167 }
1168 
1169 
HeapNumberPrint()1170 void HeapNumber::HeapNumberPrint() {
1171   PrintF("%.16g", Number());
1172 }
1173 
1174 
HeapNumberPrint(StringStream * accumulator)1175 void HeapNumber::HeapNumberPrint(StringStream* accumulator) {
1176   // The Windows version of vsnprintf can allocate when printing a %g string
1177   // into a buffer that may not be big enough.  We don't want random memory
1178   // allocation when producing post-crash stack traces, so we print into a
1179   // buffer that is plenty big enough for any floating point number, then
1180   // print that using vsnprintf (which may truncate but never allocate if
1181   // there is no more space in the buffer).
1182   EmbeddedVector<char, 100> buffer;
1183   OS::SNPrintF(buffer, "%.16g", Number());
1184   accumulator->Add("%s", buffer.start());
1185 }
1186 
1187 
class_name()1188 String* JSObject::class_name() {
1189   if (IsJSFunction()) return Heap::function_class_symbol();
1190   if (map()->constructor()->IsJSFunction()) {
1191     JSFunction* constructor = JSFunction::cast(map()->constructor());
1192     return String::cast(constructor->shared()->instance_class_name());
1193   }
1194   // If the constructor is not present, return "Object".
1195   return Heap::Object_symbol();
1196 }
1197 
1198 
JSObjectIterateBody(int object_size,ObjectVisitor * v)1199 void JSObject::JSObjectIterateBody(int object_size, ObjectVisitor* v) {
1200   // Iterate over all fields in the body. Assumes all are Object*.
1201   IteratePointers(v, kPropertiesOffset, object_size);
1202 }
1203 
1204 
AddFastPropertyUsingMap(Map * new_map,String * name,Object * value)1205 Object* JSObject::AddFastPropertyUsingMap(Map* new_map,
1206                                           String* name,
1207                                           Object* value) {
1208   int index = new_map->PropertyIndexFor(name);
1209   if (map()->unused_property_fields() == 0) {
1210     ASSERT(map()->unused_property_fields() == 0);
1211     int new_unused = new_map->unused_property_fields();
1212     Object* values =
1213         properties()->CopySize(properties()->length() + new_unused + 1);
1214     if (values->IsFailure()) return values;
1215     set_properties(FixedArray::cast(values));
1216   }
1217   set_map(new_map);
1218   return FastPropertyAtPut(index, value);
1219 }
1220 
1221 
AddFastProperty(String * name,Object * value,PropertyAttributes attributes)1222 Object* JSObject::AddFastProperty(String* name,
1223                                   Object* value,
1224                                   PropertyAttributes attributes) {
1225   // Normalize the object if the name is an actual string (not the
1226   // hidden symbols) and is not a real identifier.
1227   StringInputBuffer buffer(name);
1228   if (!Scanner::IsIdentifier(&buffer) && name != Heap::hidden_symbol()) {
1229     Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
1230     if (obj->IsFailure()) return obj;
1231     return AddSlowProperty(name, value, attributes);
1232   }
1233 
1234   DescriptorArray* old_descriptors = map()->instance_descriptors();
1235   // Compute the new index for new field.
1236   int index = map()->NextFreePropertyIndex();
1237 
1238   // Allocate new instance descriptors with (name, index) added
1239   FieldDescriptor new_field(name, index, attributes);
1240   Object* new_descriptors =
1241       old_descriptors->CopyInsert(&new_field, REMOVE_TRANSITIONS);
1242   if (new_descriptors->IsFailure()) return new_descriptors;
1243 
1244   // Only allow map transition if the object's map is NOT equal to the
1245   // global object_function's map and there is not a transition for name.
1246   bool allow_map_transition =
1247         !old_descriptors->Contains(name) &&
1248         (Top::context()->global_context()->object_function()->map() != map());
1249 
1250   ASSERT(index < map()->inobject_properties() ||
1251          (index - map()->inobject_properties()) < properties()->length() ||
1252          map()->unused_property_fields() == 0);
1253   // Allocate a new map for the object.
1254   Object* r = map()->CopyDropDescriptors();
1255   if (r->IsFailure()) return r;
1256   Map* new_map = Map::cast(r);
1257   if (allow_map_transition) {
1258     // Allocate new instance descriptors for the old map with map transition.
1259     MapTransitionDescriptor d(name, Map::cast(new_map), attributes);
1260     Object* r = old_descriptors->CopyInsert(&d, KEEP_TRANSITIONS);
1261     if (r->IsFailure()) return r;
1262     old_descriptors = DescriptorArray::cast(r);
1263   }
1264 
1265   if (map()->unused_property_fields() == 0) {
1266     if (properties()->length() > kMaxFastProperties) {
1267       Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
1268       if (obj->IsFailure()) return obj;
1269       return AddSlowProperty(name, value, attributes);
1270     }
1271     // Make room for the new value
1272     Object* values =
1273         properties()->CopySize(properties()->length() + kFieldsAdded);
1274     if (values->IsFailure()) return values;
1275     set_properties(FixedArray::cast(values));
1276     new_map->set_unused_property_fields(kFieldsAdded - 1);
1277   } else {
1278     new_map->set_unused_property_fields(map()->unused_property_fields() - 1);
1279   }
1280   // We have now allocated all the necessary objects.
1281   // All the changes can be applied at once, so they are atomic.
1282   map()->set_instance_descriptors(old_descriptors);
1283   new_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors));
1284   set_map(new_map);
1285   return FastPropertyAtPut(index, value);
1286 }
1287 
1288 
AddConstantFunctionProperty(String * name,JSFunction * function,PropertyAttributes attributes)1289 Object* JSObject::AddConstantFunctionProperty(String* name,
1290                                               JSFunction* function,
1291                                               PropertyAttributes attributes) {
1292   // Allocate new instance descriptors with (name, function) added
1293   ConstantFunctionDescriptor d(name, function, attributes);
1294   Object* new_descriptors =
1295       map()->instance_descriptors()->CopyInsert(&d, REMOVE_TRANSITIONS);
1296   if (new_descriptors->IsFailure()) return new_descriptors;
1297 
1298   // Allocate a new map for the object.
1299   Object* new_map = map()->CopyDropDescriptors();
1300   if (new_map->IsFailure()) return new_map;
1301 
1302   DescriptorArray* descriptors = DescriptorArray::cast(new_descriptors);
1303   Map::cast(new_map)->set_instance_descriptors(descriptors);
1304   Map* old_map = map();
1305   set_map(Map::cast(new_map));
1306 
1307   // If the old map is the global object map (from new Object()),
1308   // then transitions are not added to it, so we are done.
1309   if (old_map == Top::context()->global_context()->object_function()->map()) {
1310     return function;
1311   }
1312 
1313   // Do not add CONSTANT_TRANSITIONS to global objects
1314   if (IsGlobalObject()) {
1315     return function;
1316   }
1317 
1318   // Add a CONSTANT_TRANSITION descriptor to the old map,
1319   // so future assignments to this property on other objects
1320   // of the same type will create a normal field, not a constant function.
1321   // Don't do this for special properties, with non-trival attributes.
1322   if (attributes != NONE) {
1323     return function;
1324   }
1325   ConstTransitionDescriptor mark(name);
1326   new_descriptors =
1327       old_map->instance_descriptors()->CopyInsert(&mark, KEEP_TRANSITIONS);
1328   if (new_descriptors->IsFailure()) {
1329     return function;  // We have accomplished the main goal, so return success.
1330   }
1331   old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors));
1332 
1333   return function;
1334 }
1335 
1336 
1337 // Add property in slow mode
AddSlowProperty(String * name,Object * value,PropertyAttributes attributes)1338 Object* JSObject::AddSlowProperty(String* name,
1339                                   Object* value,
1340                                   PropertyAttributes attributes) {
1341   ASSERT(!HasFastProperties());
1342   StringDictionary* dict = property_dictionary();
1343   Object* store_value = value;
1344   if (IsGlobalObject()) {
1345     // In case name is an orphaned property reuse the cell.
1346     int entry = dict->FindEntry(name);
1347     if (entry != StringDictionary::kNotFound) {
1348       store_value = dict->ValueAt(entry);
1349       JSGlobalPropertyCell::cast(store_value)->set_value(value);
1350       // Assign an enumeration index to the property and update
1351       // SetNextEnumerationIndex.
1352       int index = dict->NextEnumerationIndex();
1353       PropertyDetails details = PropertyDetails(attributes, NORMAL, index);
1354       dict->SetNextEnumerationIndex(index + 1);
1355       dict->SetEntry(entry, name, store_value, details);
1356       return value;
1357     }
1358     store_value = Heap::AllocateJSGlobalPropertyCell(value);
1359     if (store_value->IsFailure()) return store_value;
1360     JSGlobalPropertyCell::cast(store_value)->set_value(value);
1361   }
1362   PropertyDetails details = PropertyDetails(attributes, NORMAL);
1363   Object* result = dict->Add(name, store_value, details);
1364   if (result->IsFailure()) return result;
1365   if (dict != result) set_properties(StringDictionary::cast(result));
1366   return value;
1367 }
1368 
1369 
AddProperty(String * name,Object * value,PropertyAttributes attributes)1370 Object* JSObject::AddProperty(String* name,
1371                               Object* value,
1372                               PropertyAttributes attributes) {
1373   ASSERT(!IsJSGlobalProxy());
1374   if (HasFastProperties()) {
1375     // Ensure the descriptor array does not get too big.
1376     if (map()->instance_descriptors()->number_of_descriptors() <
1377         DescriptorArray::kMaxNumberOfDescriptors) {
1378       if (value->IsJSFunction()) {
1379         return AddConstantFunctionProperty(name,
1380                                            JSFunction::cast(value),
1381                                            attributes);
1382       } else {
1383         return AddFastProperty(name, value, attributes);
1384       }
1385     } else {
1386       // Normalize the object to prevent very large instance descriptors.
1387       // This eliminates unwanted N^2 allocation and lookup behavior.
1388       Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
1389       if (obj->IsFailure()) return obj;
1390     }
1391   }
1392   return AddSlowProperty(name, value, attributes);
1393 }
1394 
1395 
SetPropertyPostInterceptor(String * name,Object * value,PropertyAttributes attributes)1396 Object* JSObject::SetPropertyPostInterceptor(String* name,
1397                                              Object* value,
1398                                              PropertyAttributes attributes) {
1399   // Check local property, ignore interceptor.
1400   LookupResult result;
1401   LocalLookupRealNamedProperty(name, &result);
1402   if (result.IsValid()) return SetProperty(&result, name, value, attributes);
1403   // Add real property.
1404   return AddProperty(name, value, attributes);
1405 }
1406 
1407 
ReplaceSlowProperty(String * name,Object * value,PropertyAttributes attributes)1408 Object* JSObject::ReplaceSlowProperty(String* name,
1409                                        Object* value,
1410                                        PropertyAttributes attributes) {
1411   StringDictionary* dictionary = property_dictionary();
1412   int old_index = dictionary->FindEntry(name);
1413   int new_enumeration_index = 0;  // 0 means "Use the next available index."
1414   if (old_index != -1) {
1415     // All calls to ReplaceSlowProperty have had all transitions removed.
1416     ASSERT(!dictionary->DetailsAt(old_index).IsTransition());
1417     new_enumeration_index = dictionary->DetailsAt(old_index).index();
1418   }
1419 
1420   PropertyDetails new_details(attributes, NORMAL, new_enumeration_index);
1421   return SetNormalizedProperty(name, value, new_details);
1422 }
1423 
ConvertDescriptorToFieldAndMapTransition(String * name,Object * new_value,PropertyAttributes attributes)1424 Object* JSObject::ConvertDescriptorToFieldAndMapTransition(
1425     String* name,
1426     Object* new_value,
1427     PropertyAttributes attributes) {
1428   Map* old_map = map();
1429   Object* result = ConvertDescriptorToField(name, new_value, attributes);
1430   if (result->IsFailure()) return result;
1431   // If we get to this point we have succeeded - do not return failure
1432   // after this point.  Later stuff is optional.
1433   if (!HasFastProperties()) {
1434     return result;
1435   }
1436   // Do not add transitions to the map of "new Object()".
1437   if (map() == Top::context()->global_context()->object_function()->map()) {
1438     return result;
1439   }
1440 
1441   MapTransitionDescriptor transition(name,
1442                                      map(),
1443                                      attributes);
1444   Object* new_descriptors =
1445       old_map->instance_descriptors()->
1446           CopyInsert(&transition, KEEP_TRANSITIONS);
1447   if (new_descriptors->IsFailure()) return result;  // Yes, return _result_.
1448   old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors));
1449   return result;
1450 }
1451 
1452 
ConvertDescriptorToField(String * name,Object * new_value,PropertyAttributes attributes)1453 Object* JSObject::ConvertDescriptorToField(String* name,
1454                                            Object* new_value,
1455                                            PropertyAttributes attributes) {
1456   if (map()->unused_property_fields() == 0 &&
1457       properties()->length() > kMaxFastProperties) {
1458     Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
1459     if (obj->IsFailure()) return obj;
1460     return ReplaceSlowProperty(name, new_value, attributes);
1461   }
1462 
1463   int index = map()->NextFreePropertyIndex();
1464   FieldDescriptor new_field(name, index, attributes);
1465   // Make a new DescriptorArray replacing an entry with FieldDescriptor.
1466   Object* descriptors_unchecked = map()->instance_descriptors()->
1467       CopyInsert(&new_field, REMOVE_TRANSITIONS);
1468   if (descriptors_unchecked->IsFailure()) return descriptors_unchecked;
1469   DescriptorArray* new_descriptors =
1470       DescriptorArray::cast(descriptors_unchecked);
1471 
1472   // Make a new map for the object.
1473   Object* new_map_unchecked = map()->CopyDropDescriptors();
1474   if (new_map_unchecked->IsFailure()) return new_map_unchecked;
1475   Map* new_map = Map::cast(new_map_unchecked);
1476   new_map->set_instance_descriptors(new_descriptors);
1477 
1478   // Make new properties array if necessary.
1479   FixedArray* new_properties = 0;  // Will always be NULL or a valid pointer.
1480   int new_unused_property_fields = map()->unused_property_fields() - 1;
1481   if (map()->unused_property_fields() == 0) {
1482      new_unused_property_fields = kFieldsAdded - 1;
1483      Object* new_properties_unchecked =
1484         properties()->CopySize(properties()->length() + kFieldsAdded);
1485     if (new_properties_unchecked->IsFailure()) return new_properties_unchecked;
1486     new_properties = FixedArray::cast(new_properties_unchecked);
1487   }
1488 
1489   // Update pointers to commit changes.
1490   // Object points to the new map.
1491   new_map->set_unused_property_fields(new_unused_property_fields);
1492   set_map(new_map);
1493   if (new_properties) {
1494     set_properties(FixedArray::cast(new_properties));
1495   }
1496   return FastPropertyAtPut(index, new_value);
1497 }
1498 
1499 
1500 
SetPropertyWithInterceptor(String * name,Object * value,PropertyAttributes attributes)1501 Object* JSObject::SetPropertyWithInterceptor(String* name,
1502                                              Object* value,
1503                                              PropertyAttributes attributes) {
1504   HandleScope scope;
1505   Handle<JSObject> this_handle(this);
1506   Handle<String> name_handle(name);
1507   Handle<Object> value_handle(value);
1508   Handle<InterceptorInfo> interceptor(GetNamedInterceptor());
1509   if (!interceptor->setter()->IsUndefined()) {
1510     Handle<Object> data_handle(interceptor->data());
1511     LOG(ApiNamedPropertyAccess("interceptor-named-set", this, name));
1512     v8::AccessorInfo info(v8::Utils::ToLocal(this_handle),
1513                           v8::Utils::ToLocal(data_handle),
1514                           v8::Utils::ToLocal(this_handle));
1515     v8::NamedPropertySetter setter =
1516         v8::ToCData<v8::NamedPropertySetter>(interceptor->setter());
1517     v8::Handle<v8::Value> result;
1518     {
1519       // Leaving JavaScript.
1520       VMState state(EXTERNAL);
1521       Handle<Object> value_unhole(value->IsTheHole() ?
1522                                   Heap::undefined_value() :
1523                                   value);
1524       result = setter(v8::Utils::ToLocal(name_handle),
1525                       v8::Utils::ToLocal(value_unhole),
1526                       info);
1527     }
1528     RETURN_IF_SCHEDULED_EXCEPTION();
1529     if (!result.IsEmpty()) return *value_handle;
1530   }
1531   Object* raw_result = this_handle->SetPropertyPostInterceptor(*name_handle,
1532                                                                *value_handle,
1533                                                                attributes);
1534   RETURN_IF_SCHEDULED_EXCEPTION();
1535   return raw_result;
1536 }
1537 
1538 
SetProperty(String * name,Object * value,PropertyAttributes attributes)1539 Object* JSObject::SetProperty(String* name,
1540                               Object* value,
1541                               PropertyAttributes attributes) {
1542   LookupResult result;
1543   LocalLookup(name, &result);
1544   return SetProperty(&result, name, value, attributes);
1545 }
1546 
1547 
SetPropertyWithCallback(Object * structure,String * name,Object * value,JSObject * holder)1548 Object* JSObject::SetPropertyWithCallback(Object* structure,
1549                                           String* name,
1550                                           Object* value,
1551                                           JSObject* holder) {
1552   HandleScope scope;
1553 
1554   // We should never get here to initialize a const with the hole
1555   // value since a const declaration would conflict with the setter.
1556   ASSERT(!value->IsTheHole());
1557   Handle<Object> value_handle(value);
1558 
1559   // To accommodate both the old and the new api we switch on the
1560   // data structure used to store the callbacks.  Eventually proxy
1561   // callbacks should be phased out.
1562   if (structure->IsProxy()) {
1563     AccessorDescriptor* callback =
1564         reinterpret_cast<AccessorDescriptor*>(Proxy::cast(structure)->proxy());
1565     Object* obj = (callback->setter)(this,  value, callback->data);
1566     RETURN_IF_SCHEDULED_EXCEPTION();
1567     if (obj->IsFailure()) return obj;
1568     return *value_handle;
1569   }
1570 
1571   if (structure->IsAccessorInfo()) {
1572     // api style callbacks
1573     AccessorInfo* data = AccessorInfo::cast(structure);
1574     Object* call_obj = data->setter();
1575     v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj);
1576     if (call_fun == NULL) return value;
1577     Handle<JSObject> self(this);
1578     Handle<JSObject> holder_handle(JSObject::cast(holder));
1579     Handle<String> key(name);
1580     Handle<Object> fun_data(data->data());
1581     LOG(ApiNamedPropertyAccess("store", this, name));
1582     v8::AccessorInfo info(v8::Utils::ToLocal(self),
1583                           v8::Utils::ToLocal(fun_data),
1584                           v8::Utils::ToLocal(holder_handle));
1585     {
1586       // Leaving JavaScript.
1587       VMState state(EXTERNAL);
1588       call_fun(v8::Utils::ToLocal(key),
1589                v8::Utils::ToLocal(value_handle),
1590                info);
1591     }
1592     RETURN_IF_SCHEDULED_EXCEPTION();
1593     return *value_handle;
1594   }
1595 
1596   if (structure->IsFixedArray()) {
1597     Object* setter = FixedArray::cast(structure)->get(kSetterIndex);
1598     if (setter->IsJSFunction()) {
1599      return SetPropertyWithDefinedSetter(JSFunction::cast(setter), value);
1600     } else {
1601       Handle<String> key(name);
1602       Handle<Object> holder_handle(holder);
1603       Handle<Object> args[2] = { key, holder_handle };
1604       return Top::Throw(*Factory::NewTypeError("no_setter_in_callback",
1605                                                HandleVector(args, 2)));
1606     }
1607   }
1608 
1609   UNREACHABLE();
1610   return 0;
1611 }
1612 
1613 
SetPropertyWithDefinedSetter(JSFunction * setter,Object * value)1614 Object* JSObject::SetPropertyWithDefinedSetter(JSFunction* setter,
1615                                                Object* value) {
1616   Handle<Object> value_handle(value);
1617   Handle<JSFunction> fun(JSFunction::cast(setter));
1618   Handle<JSObject> self(this);
1619 #ifdef ENABLE_DEBUGGER_SUPPORT
1620   // Handle stepping into a setter if step into is active.
1621   if (Debug::StepInActive()) {
1622     Debug::HandleStepIn(fun, Handle<Object>::null(), 0, false);
1623   }
1624 #endif
1625   bool has_pending_exception;
1626   Object** argv[] = { value_handle.location() };
1627   Execution::Call(fun, self, 1, argv, &has_pending_exception);
1628   // Check for pending exception and return the result.
1629   if (has_pending_exception) return Failure::Exception();
1630   return *value_handle;
1631 }
1632 
1633 
LookupCallbackSetterInPrototypes(String * name,LookupResult * result)1634 void JSObject::LookupCallbackSetterInPrototypes(String* name,
1635                                                 LookupResult* result) {
1636   for (Object* pt = GetPrototype();
1637        pt != Heap::null_value();
1638        pt = pt->GetPrototype()) {
1639     JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result);
1640     if (result->IsValid()) {
1641       if (!result->IsTransitionType() && result->IsReadOnly()) {
1642         result->NotFound();
1643         return;
1644       }
1645       if (result->type() == CALLBACKS) {
1646         return;
1647       }
1648     }
1649   }
1650   result->NotFound();
1651 }
1652 
1653 
LookupCallbackSetterInPrototypes(uint32_t index)1654 Object* JSObject::LookupCallbackSetterInPrototypes(uint32_t index) {
1655   for (Object* pt = GetPrototype();
1656        pt != Heap::null_value();
1657        pt = pt->GetPrototype()) {
1658     if (!JSObject::cast(pt)->HasDictionaryElements()) {
1659         continue;
1660     }
1661     NumberDictionary* dictionary = JSObject::cast(pt)->element_dictionary();
1662     int entry = dictionary->FindEntry(index);
1663     if (entry != NumberDictionary::kNotFound) {
1664       Object* element = dictionary->ValueAt(entry);
1665       PropertyDetails details = dictionary->DetailsAt(entry);
1666       if (details.type() == CALLBACKS) {
1667         // Only accessors allowed as elements.
1668         return FixedArray::cast(element)->get(kSetterIndex);
1669       }
1670     }
1671   }
1672   return Heap::undefined_value();
1673 }
1674 
1675 
LookupInDescriptor(String * name,LookupResult * result)1676 void JSObject::LookupInDescriptor(String* name, LookupResult* result) {
1677   DescriptorArray* descriptors = map()->instance_descriptors();
1678   int number = DescriptorLookupCache::Lookup(descriptors, name);
1679   if (number == DescriptorLookupCache::kAbsent) {
1680     number = descriptors->Search(name);
1681     DescriptorLookupCache::Update(descriptors, name, number);
1682   }
1683   if (number != DescriptorArray::kNotFound) {
1684     result->DescriptorResult(this, descriptors->GetDetails(number), number);
1685   } else {
1686     result->NotFound();
1687   }
1688 }
1689 
1690 
LocalLookupRealNamedProperty(String * name,LookupResult * result)1691 void JSObject::LocalLookupRealNamedProperty(String* name,
1692                                             LookupResult* result) {
1693   if (IsJSGlobalProxy()) {
1694     Object* proto = GetPrototype();
1695     if (proto->IsNull()) return result->NotFound();
1696     ASSERT(proto->IsJSGlobalObject());
1697     return JSObject::cast(proto)->LocalLookupRealNamedProperty(name, result);
1698   }
1699 
1700   if (HasFastProperties()) {
1701     LookupInDescriptor(name, result);
1702     if (result->IsValid()) {
1703       ASSERT(result->holder() == this && result->type() != NORMAL);
1704       // Disallow caching for uninitialized constants. These can only
1705       // occur as fields.
1706       if (result->IsReadOnly() && result->type() == FIELD &&
1707           FastPropertyAt(result->GetFieldIndex())->IsTheHole()) {
1708         result->DisallowCaching();
1709       }
1710       return;
1711     }
1712   } else {
1713     int entry = property_dictionary()->FindEntry(name);
1714     if (entry != StringDictionary::kNotFound) {
1715       Object* value = property_dictionary()->ValueAt(entry);
1716       if (IsGlobalObject()) {
1717         PropertyDetails d = property_dictionary()->DetailsAt(entry);
1718         if (d.IsDeleted()) {
1719           result->NotFound();
1720           return;
1721         }
1722         value = JSGlobalPropertyCell::cast(value)->value();
1723         ASSERT(result->IsLoaded());
1724       }
1725       // Make sure to disallow caching for uninitialized constants
1726       // found in the dictionary-mode objects.
1727       if (value->IsTheHole()) result->DisallowCaching();
1728       result->DictionaryResult(this, entry);
1729       return;
1730     }
1731     // Slow case object skipped during lookup. Do not use inline caching.
1732     if (!IsGlobalObject()) result->DisallowCaching();
1733   }
1734   result->NotFound();
1735 }
1736 
1737 
LookupRealNamedProperty(String * name,LookupResult * result)1738 void JSObject::LookupRealNamedProperty(String* name, LookupResult* result) {
1739   LocalLookupRealNamedProperty(name, result);
1740   if (result->IsProperty()) return;
1741 
1742   LookupRealNamedPropertyInPrototypes(name, result);
1743 }
1744 
1745 
LookupRealNamedPropertyInPrototypes(String * name,LookupResult * result)1746 void JSObject::LookupRealNamedPropertyInPrototypes(String* name,
1747                                                    LookupResult* result) {
1748   for (Object* pt = GetPrototype();
1749        pt != Heap::null_value();
1750        pt = JSObject::cast(pt)->GetPrototype()) {
1751     JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result);
1752     if (result->IsValid()) {
1753       switch (result->type()) {
1754         case NORMAL:
1755         case FIELD:
1756         case CONSTANT_FUNCTION:
1757         case CALLBACKS:
1758           return;
1759         default: break;
1760       }
1761     }
1762   }
1763   result->NotFound();
1764 }
1765 
1766 
1767 // We only need to deal with CALLBACKS and INTERCEPTORS
SetPropertyWithFailedAccessCheck(LookupResult * result,String * name,Object * value)1768 Object* JSObject::SetPropertyWithFailedAccessCheck(LookupResult* result,
1769                                                    String* name,
1770                                                    Object* value) {
1771   if (!result->IsProperty()) {
1772     LookupCallbackSetterInPrototypes(name, result);
1773   }
1774 
1775   if (result->IsProperty()) {
1776     if (!result->IsReadOnly()) {
1777       switch (result->type()) {
1778         case CALLBACKS: {
1779           Object* obj = result->GetCallbackObject();
1780           if (obj->IsAccessorInfo()) {
1781             AccessorInfo* info = AccessorInfo::cast(obj);
1782             if (info->all_can_write()) {
1783               return SetPropertyWithCallback(result->GetCallbackObject(),
1784                                              name,
1785                                              value,
1786                                              result->holder());
1787             }
1788           }
1789           break;
1790         }
1791         case INTERCEPTOR: {
1792           // Try lookup real named properties. Note that only property can be
1793           // set is callbacks marked as ALL_CAN_WRITE on the prototype chain.
1794           LookupResult r;
1795           LookupRealNamedProperty(name, &r);
1796           if (r.IsProperty()) {
1797             return SetPropertyWithFailedAccessCheck(&r, name, value);
1798           }
1799           break;
1800         }
1801         default: {
1802           break;
1803         }
1804       }
1805     }
1806   }
1807 
1808   Top::ReportFailedAccessCheck(this, v8::ACCESS_SET);
1809   return value;
1810 }
1811 
1812 
SetProperty(LookupResult * result,String * name,Object * value,PropertyAttributes attributes)1813 Object* JSObject::SetProperty(LookupResult* result,
1814                               String* name,
1815                               Object* value,
1816                               PropertyAttributes attributes) {
1817   // Make sure that the top context does not change when doing callbacks or
1818   // interceptor calls.
1819   AssertNoContextChange ncc;
1820 
1821   // Check access rights if needed.
1822   if (IsAccessCheckNeeded()
1823       && !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) {
1824     return SetPropertyWithFailedAccessCheck(result, name, value);
1825   }
1826 
1827   if (IsJSGlobalProxy()) {
1828     Object* proto = GetPrototype();
1829     if (proto->IsNull()) return value;
1830     ASSERT(proto->IsJSGlobalObject());
1831     return JSObject::cast(proto)->SetProperty(result, name, value, attributes);
1832   }
1833 
1834   if (!result->IsProperty() && !IsJSContextExtensionObject()) {
1835     // We could not find a local property so let's check whether there is an
1836     // accessor that wants to handle the property.
1837     LookupResult accessor_result;
1838     LookupCallbackSetterInPrototypes(name, &accessor_result);
1839     if (accessor_result.IsValid()) {
1840       return SetPropertyWithCallback(accessor_result.GetCallbackObject(),
1841                                      name,
1842                                      value,
1843                                      accessor_result.holder());
1844     }
1845   }
1846   if (result->IsNotFound()) {
1847     return AddProperty(name, value, attributes);
1848   }
1849   if (!result->IsLoaded()) {
1850     return SetLazyProperty(result, name, value, attributes);
1851   }
1852   if (result->IsReadOnly() && result->IsProperty()) return value;
1853   // This is a real property that is not read-only, or it is a
1854   // transition or null descriptor and there are no setters in the prototypes.
1855   switch (result->type()) {
1856     case NORMAL:
1857       return SetNormalizedProperty(result, value);
1858     case FIELD:
1859       return FastPropertyAtPut(result->GetFieldIndex(), value);
1860     case MAP_TRANSITION:
1861       if (attributes == result->GetAttributes()) {
1862         // Only use map transition if the attributes match.
1863         return AddFastPropertyUsingMap(result->GetTransitionMap(),
1864                                        name,
1865                                        value);
1866       }
1867       return ConvertDescriptorToField(name, value, attributes);
1868     case CONSTANT_FUNCTION:
1869       // Only replace the function if necessary.
1870       if (value == result->GetConstantFunction()) return value;
1871       // Preserve the attributes of this existing property.
1872       attributes = result->GetAttributes();
1873       return ConvertDescriptorToField(name, value, attributes);
1874     case CALLBACKS:
1875       return SetPropertyWithCallback(result->GetCallbackObject(),
1876                                      name,
1877                                      value,
1878                                      result->holder());
1879     case INTERCEPTOR:
1880       return SetPropertyWithInterceptor(name, value, attributes);
1881     case CONSTANT_TRANSITION:
1882       // Replace with a MAP_TRANSITION to a new map with a FIELD, even
1883       // if the value is a function.
1884       return ConvertDescriptorToFieldAndMapTransition(name, value, attributes);
1885     case NULL_DESCRIPTOR:
1886       return ConvertDescriptorToFieldAndMapTransition(name, value, attributes);
1887     default:
1888       UNREACHABLE();
1889   }
1890   UNREACHABLE();
1891   return value;
1892 }
1893 
1894 
1895 // Set a real local property, even if it is READ_ONLY.  If the property is not
1896 // present, add it with attributes NONE.  This code is an exact clone of
1897 // SetProperty, with the check for IsReadOnly and the check for a
1898 // callback setter removed.  The two lines looking up the LookupResult
1899 // result are also added.  If one of the functions is changed, the other
1900 // should be.
IgnoreAttributesAndSetLocalProperty(String * name,Object * value,PropertyAttributes attributes)1901 Object* JSObject::IgnoreAttributesAndSetLocalProperty(
1902     String* name,
1903     Object* value,
1904     PropertyAttributes attributes) {
1905   // Make sure that the top context does not change when doing callbacks or
1906   // interceptor calls.
1907   AssertNoContextChange ncc;
1908   // ADDED TO CLONE
1909   LookupResult result_struct;
1910   LocalLookup(name, &result_struct);
1911   LookupResult* result = &result_struct;
1912   // END ADDED TO CLONE
1913   // Check access rights if needed.
1914   if (IsAccessCheckNeeded()
1915     && !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) {
1916     return SetPropertyWithFailedAccessCheck(result, name, value);
1917   }
1918 
1919   if (IsJSGlobalProxy()) {
1920     Object* proto = GetPrototype();
1921     if (proto->IsNull()) return value;
1922     ASSERT(proto->IsJSGlobalObject());
1923     return JSObject::cast(proto)->IgnoreAttributesAndSetLocalProperty(
1924         name,
1925         value,
1926         attributes);
1927   }
1928 
1929   // Check for accessor in prototype chain removed here in clone.
1930   if (result->IsNotFound()) {
1931     return AddProperty(name, value, attributes);
1932   }
1933   if (!result->IsLoaded()) {
1934     return SetLazyProperty(result, name, value, attributes);
1935   }
1936   // Check of IsReadOnly removed from here in clone.
1937   switch (result->type()) {
1938     case NORMAL:
1939       return SetNormalizedProperty(result, value);
1940     case FIELD:
1941       return FastPropertyAtPut(result->GetFieldIndex(), value);
1942     case MAP_TRANSITION:
1943       if (attributes == result->GetAttributes()) {
1944         // Only use map transition if the attributes match.
1945         return AddFastPropertyUsingMap(result->GetTransitionMap(),
1946                                        name,
1947                                        value);
1948       }
1949       return ConvertDescriptorToField(name, value, attributes);
1950     case CONSTANT_FUNCTION:
1951       // Only replace the function if necessary.
1952       if (value == result->GetConstantFunction()) return value;
1953       // Preserve the attributes of this existing property.
1954       attributes = result->GetAttributes();
1955       return ConvertDescriptorToField(name, value, attributes);
1956     case CALLBACKS:
1957     case INTERCEPTOR:
1958       // Override callback in clone
1959       return ConvertDescriptorToField(name, value, attributes);
1960     case CONSTANT_TRANSITION:
1961       // Replace with a MAP_TRANSITION to a new map with a FIELD, even
1962       // if the value is a function.
1963       return ConvertDescriptorToFieldAndMapTransition(name, value, attributes);
1964     case NULL_DESCRIPTOR:
1965       return ConvertDescriptorToFieldAndMapTransition(name, value, attributes);
1966     default:
1967       UNREACHABLE();
1968   }
1969   UNREACHABLE();
1970   return value;
1971 }
1972 
1973 
GetPropertyAttributePostInterceptor(JSObject * receiver,String * name,bool continue_search)1974 PropertyAttributes JSObject::GetPropertyAttributePostInterceptor(
1975       JSObject* receiver,
1976       String* name,
1977       bool continue_search) {
1978   // Check local property, ignore interceptor.
1979   LookupResult result;
1980   LocalLookupRealNamedProperty(name, &result);
1981   if (result.IsProperty()) return result.GetAttributes();
1982 
1983   if (continue_search) {
1984     // Continue searching via the prototype chain.
1985     Object* pt = GetPrototype();
1986     if (pt != Heap::null_value()) {
1987       return JSObject::cast(pt)->
1988         GetPropertyAttributeWithReceiver(receiver, name);
1989     }
1990   }
1991   return ABSENT;
1992 }
1993 
1994 
GetPropertyAttributeWithInterceptor(JSObject * receiver,String * name,bool continue_search)1995 PropertyAttributes JSObject::GetPropertyAttributeWithInterceptor(
1996       JSObject* receiver,
1997       String* name,
1998       bool continue_search) {
1999   // Make sure that the top context does not change when doing
2000   // callbacks or interceptor calls.
2001   AssertNoContextChange ncc;
2002 
2003   HandleScope scope;
2004   Handle<InterceptorInfo> interceptor(GetNamedInterceptor());
2005   Handle<JSObject> receiver_handle(receiver);
2006   Handle<JSObject> holder_handle(this);
2007   Handle<String> name_handle(name);
2008   Handle<Object> data_handle(interceptor->data());
2009   v8::AccessorInfo info(v8::Utils::ToLocal(receiver_handle),
2010                         v8::Utils::ToLocal(data_handle),
2011                         v8::Utils::ToLocal(holder_handle));
2012   if (!interceptor->query()->IsUndefined()) {
2013     v8::NamedPropertyQuery query =
2014         v8::ToCData<v8::NamedPropertyQuery>(interceptor->query());
2015     LOG(ApiNamedPropertyAccess("interceptor-named-has", *holder_handle, name));
2016     v8::Handle<v8::Boolean> result;
2017     {
2018       // Leaving JavaScript.
2019       VMState state(EXTERNAL);
2020       result = query(v8::Utils::ToLocal(name_handle), info);
2021     }
2022     if (!result.IsEmpty()) {
2023       // Convert the boolean result to a property attribute
2024       // specification.
2025       return result->IsTrue() ? NONE : ABSENT;
2026     }
2027   } else if (!interceptor->getter()->IsUndefined()) {
2028     v8::NamedPropertyGetter getter =
2029         v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter());
2030     LOG(ApiNamedPropertyAccess("interceptor-named-get-has", this, name));
2031     v8::Handle<v8::Value> result;
2032     {
2033       // Leaving JavaScript.
2034       VMState state(EXTERNAL);
2035       result = getter(v8::Utils::ToLocal(name_handle), info);
2036     }
2037     if (!result.IsEmpty()) return NONE;
2038   }
2039   return holder_handle->GetPropertyAttributePostInterceptor(*receiver_handle,
2040                                                             *name_handle,
2041                                                             continue_search);
2042 }
2043 
2044 
GetPropertyAttributeWithReceiver(JSObject * receiver,String * key)2045 PropertyAttributes JSObject::GetPropertyAttributeWithReceiver(
2046       JSObject* receiver,
2047       String* key) {
2048   uint32_t index = 0;
2049   if (key->AsArrayIndex(&index)) {
2050     if (HasElementWithReceiver(receiver, index)) return NONE;
2051     return ABSENT;
2052   }
2053   // Named property.
2054   LookupResult result;
2055   Lookup(key, &result);
2056   return GetPropertyAttribute(receiver, &result, key, true);
2057 }
2058 
2059 
GetPropertyAttribute(JSObject * receiver,LookupResult * result,String * name,bool continue_search)2060 PropertyAttributes JSObject::GetPropertyAttribute(JSObject* receiver,
2061                                                   LookupResult* result,
2062                                                   String* name,
2063                                                   bool continue_search) {
2064   // Check access rights if needed.
2065   if (IsAccessCheckNeeded() &&
2066       !Top::MayNamedAccess(this, name, v8::ACCESS_HAS)) {
2067     return GetPropertyAttributeWithFailedAccessCheck(receiver,
2068                                                      result,
2069                                                      name,
2070                                                      continue_search);
2071   }
2072   if (result->IsValid()) {
2073     switch (result->type()) {
2074       case NORMAL:  // fall through
2075       case FIELD:
2076       case CONSTANT_FUNCTION:
2077       case CALLBACKS:
2078         return result->GetAttributes();
2079       case INTERCEPTOR:
2080         return result->holder()->
2081           GetPropertyAttributeWithInterceptor(receiver, name, continue_search);
2082       case MAP_TRANSITION:
2083       case CONSTANT_TRANSITION:
2084       case NULL_DESCRIPTOR:
2085         return ABSENT;
2086       default:
2087         UNREACHABLE();
2088         break;
2089     }
2090   }
2091   return ABSENT;
2092 }
2093 
2094 
GetLocalPropertyAttribute(String * name)2095 PropertyAttributes JSObject::GetLocalPropertyAttribute(String* name) {
2096   // Check whether the name is an array index.
2097   uint32_t index = 0;
2098   if (name->AsArrayIndex(&index)) {
2099     if (HasLocalElement(index)) return NONE;
2100     return ABSENT;
2101   }
2102   // Named property.
2103   LookupResult result;
2104   LocalLookup(name, &result);
2105   return GetPropertyAttribute(this, &result, name, false);
2106 }
2107 
2108 
NormalizeProperties(PropertyNormalizationMode mode,int expected_additional_properties)2109 Object* JSObject::NormalizeProperties(PropertyNormalizationMode mode,
2110                                       int expected_additional_properties) {
2111   if (!HasFastProperties()) return this;
2112 
2113   // The global object is always normalized.
2114   ASSERT(!IsGlobalObject());
2115 
2116   // Allocate new content.
2117   int property_count = map()->NumberOfDescribedProperties();
2118   if (expected_additional_properties > 0) {
2119     property_count += expected_additional_properties;
2120   } else {
2121     property_count += 2;  // Make space for two more properties.
2122   }
2123   Object* obj =
2124       StringDictionary::Allocate(property_count * 2);
2125   if (obj->IsFailure()) return obj;
2126   StringDictionary* dictionary = StringDictionary::cast(obj);
2127 
2128   DescriptorArray* descs = map()->instance_descriptors();
2129   for (int i = 0; i < descs->number_of_descriptors(); i++) {
2130     PropertyDetails details = descs->GetDetails(i);
2131     switch (details.type()) {
2132       case CONSTANT_FUNCTION: {
2133         PropertyDetails d =
2134             PropertyDetails(details.attributes(), NORMAL, details.index());
2135         Object* value = descs->GetConstantFunction(i);
2136         Object* result = dictionary->Add(descs->GetKey(i), value, d);
2137         if (result->IsFailure()) return result;
2138         dictionary = StringDictionary::cast(result);
2139         break;
2140       }
2141       case FIELD: {
2142         PropertyDetails d =
2143             PropertyDetails(details.attributes(), NORMAL, details.index());
2144         Object* value = FastPropertyAt(descs->GetFieldIndex(i));
2145         Object* result = dictionary->Add(descs->GetKey(i), value, d);
2146         if (result->IsFailure()) return result;
2147         dictionary = StringDictionary::cast(result);
2148         break;
2149       }
2150       case CALLBACKS: {
2151         PropertyDetails d =
2152             PropertyDetails(details.attributes(), CALLBACKS, details.index());
2153         Object* value = descs->GetCallbacksObject(i);
2154         Object* result = dictionary->Add(descs->GetKey(i), value, d);
2155         if (result->IsFailure()) return result;
2156         dictionary = StringDictionary::cast(result);
2157         break;
2158       }
2159       case MAP_TRANSITION:
2160       case CONSTANT_TRANSITION:
2161       case NULL_DESCRIPTOR:
2162       case INTERCEPTOR:
2163         break;
2164       default:
2165         UNREACHABLE();
2166     }
2167   }
2168 
2169   // Copy the next enumeration index from instance descriptor.
2170   int index = map()->instance_descriptors()->NextEnumerationIndex();
2171   dictionary->SetNextEnumerationIndex(index);
2172 
2173   // Allocate new map.
2174   obj = map()->CopyDropDescriptors();
2175   if (obj->IsFailure()) return obj;
2176   Map* new_map = Map::cast(obj);
2177 
2178   // Clear inobject properties if needed by adjusting the instance size and
2179   // putting in a filler object instead of the inobject properties.
2180   if (mode == CLEAR_INOBJECT_PROPERTIES && map()->inobject_properties() > 0) {
2181     int instance_size_delta = map()->inobject_properties() * kPointerSize;
2182     int new_instance_size = map()->instance_size() - instance_size_delta;
2183     new_map->set_inobject_properties(0);
2184     new_map->set_instance_size(new_instance_size);
2185     Heap::CreateFillerObjectAt(this->address() + new_instance_size,
2186                                instance_size_delta);
2187   }
2188   new_map->set_unused_property_fields(0);
2189 
2190   // We have now successfully allocated all the necessary objects.
2191   // Changes can now be made with the guarantee that all of them take effect.
2192   set_map(new_map);
2193   map()->set_instance_descriptors(Heap::empty_descriptor_array());
2194 
2195   set_properties(dictionary);
2196 
2197   Counters::props_to_dictionary.Increment();
2198 
2199 #ifdef DEBUG
2200   if (FLAG_trace_normalization) {
2201     PrintF("Object properties have been normalized:\n");
2202     Print();
2203   }
2204 #endif
2205   return this;
2206 }
2207 
2208 
TransformToFastProperties(int unused_property_fields)2209 Object* JSObject::TransformToFastProperties(int unused_property_fields) {
2210   if (HasFastProperties()) return this;
2211   ASSERT(!IsGlobalObject());
2212   return property_dictionary()->
2213       TransformPropertiesToFastFor(this, unused_property_fields);
2214 }
2215 
2216 
NormalizeElements()2217 Object* JSObject::NormalizeElements() {
2218   ASSERT(!HasPixelElements());
2219   if (HasDictionaryElements()) return this;
2220 
2221   // Get number of entries.
2222   FixedArray* array = FixedArray::cast(elements());
2223 
2224   // Compute the effective length.
2225   int length = IsJSArray() ?
2226                Smi::cast(JSArray::cast(this)->length())->value() :
2227                array->length();
2228   Object* obj = NumberDictionary::Allocate(length);
2229   if (obj->IsFailure()) return obj;
2230   NumberDictionary* dictionary = NumberDictionary::cast(obj);
2231   // Copy entries.
2232   for (int i = 0; i < length; i++) {
2233     Object* value = array->get(i);
2234     if (!value->IsTheHole()) {
2235       PropertyDetails details = PropertyDetails(NONE, NORMAL);
2236       Object* result = dictionary->AddNumberEntry(i, array->get(i), details);
2237       if (result->IsFailure()) return result;
2238       dictionary = NumberDictionary::cast(result);
2239     }
2240   }
2241   // Switch to using the dictionary as the backing storage for elements.
2242   set_elements(dictionary);
2243 
2244   Counters::elements_to_dictionary.Increment();
2245 
2246 #ifdef DEBUG
2247   if (FLAG_trace_normalization) {
2248     PrintF("Object elements have been normalized:\n");
2249     Print();
2250   }
2251 #endif
2252 
2253   return this;
2254 }
2255 
2256 
DeletePropertyPostInterceptor(String * name,DeleteMode mode)2257 Object* JSObject::DeletePropertyPostInterceptor(String* name, DeleteMode mode) {
2258   // Check local property, ignore interceptor.
2259   LookupResult result;
2260   LocalLookupRealNamedProperty(name, &result);
2261   if (!result.IsValid()) return Heap::true_value();
2262 
2263   // Normalize object if needed.
2264   Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
2265   if (obj->IsFailure()) return obj;
2266 
2267   return DeleteNormalizedProperty(name, mode);
2268 }
2269 
2270 
DeletePropertyWithInterceptor(String * name)2271 Object* JSObject::DeletePropertyWithInterceptor(String* name) {
2272   HandleScope scope;
2273   Handle<InterceptorInfo> interceptor(GetNamedInterceptor());
2274   Handle<String> name_handle(name);
2275   Handle<JSObject> this_handle(this);
2276   if (!interceptor->deleter()->IsUndefined()) {
2277     v8::NamedPropertyDeleter deleter =
2278         v8::ToCData<v8::NamedPropertyDeleter>(interceptor->deleter());
2279     Handle<Object> data_handle(interceptor->data());
2280     LOG(ApiNamedPropertyAccess("interceptor-named-delete", *this_handle, name));
2281     v8::AccessorInfo info(v8::Utils::ToLocal(this_handle),
2282                           v8::Utils::ToLocal(data_handle),
2283                           v8::Utils::ToLocal(this_handle));
2284     v8::Handle<v8::Boolean> result;
2285     {
2286       // Leaving JavaScript.
2287       VMState state(EXTERNAL);
2288       result = deleter(v8::Utils::ToLocal(name_handle), info);
2289     }
2290     RETURN_IF_SCHEDULED_EXCEPTION();
2291     if (!result.IsEmpty()) {
2292       ASSERT(result->IsBoolean());
2293       return *v8::Utils::OpenHandle(*result);
2294     }
2295   }
2296   Object* raw_result =
2297       this_handle->DeletePropertyPostInterceptor(*name_handle, NORMAL_DELETION);
2298   RETURN_IF_SCHEDULED_EXCEPTION();
2299   return raw_result;
2300 }
2301 
2302 
DeleteElementPostInterceptor(uint32_t index,DeleteMode mode)2303 Object* JSObject::DeleteElementPostInterceptor(uint32_t index,
2304                                                DeleteMode mode) {
2305   ASSERT(!HasPixelElements());
2306   switch (GetElementsKind()) {
2307     case FAST_ELEMENTS: {
2308       uint32_t length = IsJSArray() ?
2309       static_cast<uint32_t>(Smi::cast(JSArray::cast(this)->length())->value()) :
2310       static_cast<uint32_t>(FixedArray::cast(elements())->length());
2311       if (index < length) {
2312         FixedArray::cast(elements())->set_the_hole(index);
2313       }
2314       break;
2315     }
2316     case DICTIONARY_ELEMENTS: {
2317       NumberDictionary* dictionary = element_dictionary();
2318       int entry = dictionary->FindEntry(index);
2319       if (entry != NumberDictionary::kNotFound) {
2320         return dictionary->DeleteProperty(entry, mode);
2321       }
2322       break;
2323     }
2324     default:
2325       UNREACHABLE();
2326       break;
2327   }
2328   return Heap::true_value();
2329 }
2330 
2331 
DeleteElementWithInterceptor(uint32_t index)2332 Object* JSObject::DeleteElementWithInterceptor(uint32_t index) {
2333   // Make sure that the top context does not change when doing
2334   // callbacks or interceptor calls.
2335   AssertNoContextChange ncc;
2336   HandleScope scope;
2337   Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
2338   if (interceptor->deleter()->IsUndefined()) return Heap::false_value();
2339   v8::IndexedPropertyDeleter deleter =
2340       v8::ToCData<v8::IndexedPropertyDeleter>(interceptor->deleter());
2341   Handle<JSObject> this_handle(this);
2342   Handle<Object> data_handle(interceptor->data());
2343   LOG(ApiIndexedPropertyAccess("interceptor-indexed-delete", this, index));
2344   v8::AccessorInfo info(v8::Utils::ToLocal(this_handle),
2345                         v8::Utils::ToLocal(data_handle),
2346                         v8::Utils::ToLocal(this_handle));
2347   v8::Handle<v8::Boolean> result;
2348   {
2349     // Leaving JavaScript.
2350     VMState state(EXTERNAL);
2351     result = deleter(index, info);
2352   }
2353   RETURN_IF_SCHEDULED_EXCEPTION();
2354   if (!result.IsEmpty()) {
2355     ASSERT(result->IsBoolean());
2356     return *v8::Utils::OpenHandle(*result);
2357   }
2358   Object* raw_result =
2359       this_handle->DeleteElementPostInterceptor(index, NORMAL_DELETION);
2360   RETURN_IF_SCHEDULED_EXCEPTION();
2361   return raw_result;
2362 }
2363 
2364 
DeleteElement(uint32_t index,DeleteMode mode)2365 Object* JSObject::DeleteElement(uint32_t index, DeleteMode mode) {
2366   // Check access rights if needed.
2367   if (IsAccessCheckNeeded() &&
2368       !Top::MayIndexedAccess(this, index, v8::ACCESS_DELETE)) {
2369     Top::ReportFailedAccessCheck(this, v8::ACCESS_DELETE);
2370     return Heap::false_value();
2371   }
2372 
2373   if (IsJSGlobalProxy()) {
2374     Object* proto = GetPrototype();
2375     if (proto->IsNull()) return Heap::false_value();
2376     ASSERT(proto->IsJSGlobalObject());
2377     return JSGlobalObject::cast(proto)->DeleteElement(index, mode);
2378   }
2379 
2380   if (HasIndexedInterceptor()) {
2381     // Skip interceptor if forcing deletion.
2382     if (mode == FORCE_DELETION) {
2383       return DeleteElementPostInterceptor(index, mode);
2384     }
2385     return DeleteElementWithInterceptor(index);
2386   }
2387 
2388   switch (GetElementsKind()) {
2389     case FAST_ELEMENTS: {
2390       uint32_t length = IsJSArray() ?
2391       static_cast<uint32_t>(Smi::cast(JSArray::cast(this)->length())->value()) :
2392       static_cast<uint32_t>(FixedArray::cast(elements())->length());
2393       if (index < length) {
2394         FixedArray::cast(elements())->set_the_hole(index);
2395       }
2396       break;
2397     }
2398     case PIXEL_ELEMENTS: {
2399       // Pixel elements cannot be deleted. Just silently ignore here.
2400       break;
2401     }
2402     case DICTIONARY_ELEMENTS: {
2403       NumberDictionary* dictionary = element_dictionary();
2404       int entry = dictionary->FindEntry(index);
2405       if (entry != NumberDictionary::kNotFound) {
2406         return dictionary->DeleteProperty(entry, mode);
2407       }
2408       break;
2409     }
2410     default:
2411       UNREACHABLE();
2412       break;
2413   }
2414   return Heap::true_value();
2415 }
2416 
2417 
DeleteProperty(String * name,DeleteMode mode)2418 Object* JSObject::DeleteProperty(String* name, DeleteMode mode) {
2419   // ECMA-262, 3rd, 8.6.2.5
2420   ASSERT(name->IsString());
2421 
2422   // Check access rights if needed.
2423   if (IsAccessCheckNeeded() &&
2424       !Top::MayNamedAccess(this, name, v8::ACCESS_DELETE)) {
2425     Top::ReportFailedAccessCheck(this, v8::ACCESS_DELETE);
2426     return Heap::false_value();
2427   }
2428 
2429   if (IsJSGlobalProxy()) {
2430     Object* proto = GetPrototype();
2431     if (proto->IsNull()) return Heap::false_value();
2432     ASSERT(proto->IsJSGlobalObject());
2433     return JSGlobalObject::cast(proto)->DeleteProperty(name, mode);
2434   }
2435 
2436   uint32_t index = 0;
2437   if (name->AsArrayIndex(&index)) {
2438     return DeleteElement(index, mode);
2439   } else {
2440     LookupResult result;
2441     LocalLookup(name, &result);
2442     if (!result.IsValid()) return Heap::true_value();
2443     // Ignore attributes if forcing a deletion.
2444     if (result.IsDontDelete() && mode != FORCE_DELETION) {
2445       return Heap::false_value();
2446     }
2447     // Check for interceptor.
2448     if (result.type() == INTERCEPTOR) {
2449       // Skip interceptor if forcing a deletion.
2450       if (mode == FORCE_DELETION) {
2451         return DeletePropertyPostInterceptor(name, mode);
2452       }
2453       return DeletePropertyWithInterceptor(name);
2454     }
2455     if (!result.IsLoaded()) {
2456       return JSObject::cast(this)->DeleteLazyProperty(&result,
2457                                                       name,
2458                                                       mode);
2459     }
2460     // Normalize object if needed.
2461     Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
2462     if (obj->IsFailure()) return obj;
2463     // Make sure the properties are normalized before removing the entry.
2464     return DeleteNormalizedProperty(name, mode);
2465   }
2466 }
2467 
2468 
2469 // Check whether this object references another object.
ReferencesObject(Object * obj)2470 bool JSObject::ReferencesObject(Object* obj) {
2471   AssertNoAllocation no_alloc;
2472 
2473   // Is the object the constructor for this object?
2474   if (map()->constructor() == obj) {
2475     return true;
2476   }
2477 
2478   // Is the object the prototype for this object?
2479   if (map()->prototype() == obj) {
2480     return true;
2481   }
2482 
2483   // Check if the object is among the named properties.
2484   Object* key = SlowReverseLookup(obj);
2485   if (key != Heap::undefined_value()) {
2486     return true;
2487   }
2488 
2489   // Check if the object is among the indexed properties.
2490   switch (GetElementsKind()) {
2491     case PIXEL_ELEMENTS:
2492       // Raw pixels do not reference other objects.
2493       break;
2494     case FAST_ELEMENTS: {
2495       int length = IsJSArray() ?
2496           Smi::cast(JSArray::cast(this)->length())->value() :
2497           FixedArray::cast(elements())->length();
2498       for (int i = 0; i < length; i++) {
2499         Object* element = FixedArray::cast(elements())->get(i);
2500         if (!element->IsTheHole() && element == obj) {
2501           return true;
2502         }
2503       }
2504       break;
2505     }
2506     case DICTIONARY_ELEMENTS: {
2507       key = element_dictionary()->SlowReverseLookup(obj);
2508       if (key != Heap::undefined_value()) {
2509         return true;
2510       }
2511       break;
2512     }
2513     default:
2514       UNREACHABLE();
2515       break;
2516   }
2517 
2518   // For functions check the context. Boilerplate functions do
2519   // not have to be traversed since they have no real context.
2520   if (IsJSFunction() && !JSFunction::cast(this)->IsBoilerplate()) {
2521     // Get the constructor function for arguments array.
2522     JSObject* arguments_boilerplate =
2523         Top::context()->global_context()->arguments_boilerplate();
2524     JSFunction* arguments_function =
2525         JSFunction::cast(arguments_boilerplate->map()->constructor());
2526 
2527     // Get the context and don't check if it is the global context.
2528     JSFunction* f = JSFunction::cast(this);
2529     Context* context = f->context();
2530     if (context->IsGlobalContext()) {
2531       return false;
2532     }
2533 
2534     // Check the non-special context slots.
2535     for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) {
2536       // Only check JS objects.
2537       if (context->get(i)->IsJSObject()) {
2538         JSObject* ctxobj = JSObject::cast(context->get(i));
2539         // If it is an arguments array check the content.
2540         if (ctxobj->map()->constructor() == arguments_function) {
2541           if (ctxobj->ReferencesObject(obj)) {
2542             return true;
2543           }
2544         } else if (ctxobj == obj) {
2545           return true;
2546         }
2547       }
2548     }
2549 
2550     // Check the context extension if any.
2551     if (context->has_extension()) {
2552       return context->extension()->ReferencesObject(obj);
2553     }
2554   }
2555 
2556   // No references to object.
2557   return false;
2558 }
2559 
2560 
2561 // Tests for the fast common case for property enumeration:
2562 // - this object has an enum cache
2563 // - this object has no elements
2564 // - no prototype has enumerable properties/elements
2565 // - neither this object nor any prototype has interceptors
IsSimpleEnum()2566 bool JSObject::IsSimpleEnum() {
2567   JSObject* arguments_boilerplate =
2568       Top::context()->global_context()->arguments_boilerplate();
2569   JSFunction* arguments_function =
2570       JSFunction::cast(arguments_boilerplate->map()->constructor());
2571   if (IsAccessCheckNeeded()) return false;
2572   if (map()->constructor() == arguments_function) return false;
2573 
2574   for (Object* o = this;
2575        o != Heap::null_value();
2576        o = JSObject::cast(o)->GetPrototype()) {
2577     JSObject* curr = JSObject::cast(o);
2578     if (!curr->HasFastProperties()) return false;
2579     if (!curr->map()->instance_descriptors()->HasEnumCache()) return false;
2580     if (curr->NumberOfEnumElements() > 0) return false;
2581     if (curr->HasNamedInterceptor()) return false;
2582     if (curr->HasIndexedInterceptor()) return false;
2583     if (curr != this) {
2584       FixedArray* curr_fixed_array =
2585           FixedArray::cast(curr->map()->instance_descriptors()->GetEnumCache());
2586       if (curr_fixed_array->length() > 0) {
2587         return false;
2588       }
2589     }
2590   }
2591   return true;
2592 }
2593 
2594 
NumberOfDescribedProperties()2595 int Map::NumberOfDescribedProperties() {
2596   int result = 0;
2597   DescriptorArray* descs = instance_descriptors();
2598   for (int i = 0; i < descs->number_of_descriptors(); i++) {
2599     if (descs->IsProperty(i)) result++;
2600   }
2601   return result;
2602 }
2603 
2604 
PropertyIndexFor(String * name)2605 int Map::PropertyIndexFor(String* name) {
2606   DescriptorArray* descs = instance_descriptors();
2607   for (int i = 0; i < descs->number_of_descriptors(); i++) {
2608     if (name->Equals(descs->GetKey(i)) && !descs->IsNullDescriptor(i)) {
2609       return descs->GetFieldIndex(i);
2610     }
2611   }
2612   return -1;
2613 }
2614 
2615 
NextFreePropertyIndex()2616 int Map::NextFreePropertyIndex() {
2617   int max_index = -1;
2618   DescriptorArray* descs = instance_descriptors();
2619   for (int i = 0; i < descs->number_of_descriptors(); i++) {
2620     if (descs->GetType(i) == FIELD) {
2621       int current_index = descs->GetFieldIndex(i);
2622       if (current_index > max_index) max_index = current_index;
2623     }
2624   }
2625   return max_index + 1;
2626 }
2627 
2628 
FindAccessor(String * name)2629 AccessorDescriptor* Map::FindAccessor(String* name) {
2630   DescriptorArray* descs = instance_descriptors();
2631   for (int i = 0; i < descs->number_of_descriptors(); i++) {
2632     if (name->Equals(descs->GetKey(i)) && descs->GetType(i) == CALLBACKS) {
2633       return descs->GetCallbacks(i);
2634     }
2635   }
2636   return NULL;
2637 }
2638 
2639 
LocalLookup(String * name,LookupResult * result)2640 void JSObject::LocalLookup(String* name, LookupResult* result) {
2641   ASSERT(name->IsString());
2642 
2643   if (IsJSGlobalProxy()) {
2644     Object* proto = GetPrototype();
2645     if (proto->IsNull()) return result->NotFound();
2646     ASSERT(proto->IsJSGlobalObject());
2647     return JSObject::cast(proto)->LocalLookup(name, result);
2648   }
2649 
2650   // Do not use inline caching if the object is a non-global object
2651   // that requires access checks.
2652   if (!IsJSGlobalProxy() && IsAccessCheckNeeded()) {
2653     result->DisallowCaching();
2654   }
2655 
2656   // Check __proto__ before interceptor.
2657   if (name->Equals(Heap::Proto_symbol()) && !IsJSContextExtensionObject()) {
2658     result->ConstantResult(this);
2659     return;
2660   }
2661 
2662   // Check for lookup interceptor except when bootstrapping.
2663   if (HasNamedInterceptor() && !Bootstrapper::IsActive()) {
2664     result->InterceptorResult(this);
2665     return;
2666   }
2667 
2668   LocalLookupRealNamedProperty(name, result);
2669 }
2670 
2671 
Lookup(String * name,LookupResult * result)2672 void JSObject::Lookup(String* name, LookupResult* result) {
2673   // Ecma-262 3rd 8.6.2.4
2674   for (Object* current = this;
2675        current != Heap::null_value();
2676        current = JSObject::cast(current)->GetPrototype()) {
2677     JSObject::cast(current)->LocalLookup(name, result);
2678     if (result->IsValid() && !result->IsTransitionType()) return;
2679   }
2680   result->NotFound();
2681 }
2682 
2683 
2684 // Search object and it's prototype chain for callback properties.
LookupCallback(String * name,LookupResult * result)2685 void JSObject::LookupCallback(String* name, LookupResult* result) {
2686   for (Object* current = this;
2687        current != Heap::null_value();
2688        current = JSObject::cast(current)->GetPrototype()) {
2689     JSObject::cast(current)->LocalLookupRealNamedProperty(name, result);
2690     if (result->IsValid() && result->type() == CALLBACKS) return;
2691   }
2692   result->NotFound();
2693 }
2694 
2695 
DefineGetterSetter(String * name,PropertyAttributes attributes)2696 Object* JSObject::DefineGetterSetter(String* name,
2697                                      PropertyAttributes attributes) {
2698   // Make sure that the top context does not change when doing callbacks or
2699   // interceptor calls.
2700   AssertNoContextChange ncc;
2701 
2702   // Check access rights if needed.
2703   if (IsAccessCheckNeeded() &&
2704       !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) {
2705     Top::ReportFailedAccessCheck(this, v8::ACCESS_SET);
2706     return Heap::undefined_value();
2707   }
2708 
2709   // Try to flatten before operating on the string.
2710   name->TryFlattenIfNotFlat();
2711 
2712   // Check if there is an API defined callback object which prohibits
2713   // callback overwriting in this object or it's prototype chain.
2714   // This mechanism is needed for instance in a browser setting, where
2715   // certain accessors such as window.location should not be allowed
2716   // to be overwritten because allowing overwriting could potentially
2717   // cause security problems.
2718   LookupResult callback_result;
2719   LookupCallback(name, &callback_result);
2720   if (callback_result.IsValid()) {
2721     Object* obj = callback_result.GetCallbackObject();
2722     if (obj->IsAccessorInfo() &&
2723         AccessorInfo::cast(obj)->prohibits_overwriting()) {
2724       return Heap::undefined_value();
2725     }
2726   }
2727 
2728   uint32_t index;
2729   bool is_element = name->AsArrayIndex(&index);
2730   if (is_element && IsJSArray()) return Heap::undefined_value();
2731 
2732   if (is_element) {
2733     switch (GetElementsKind()) {
2734       case FAST_ELEMENTS:
2735         break;
2736       case PIXEL_ELEMENTS:
2737         // Ignore getters and setters on pixel elements.
2738         return Heap::undefined_value();
2739       case DICTIONARY_ELEMENTS: {
2740         // Lookup the index.
2741         NumberDictionary* dictionary = element_dictionary();
2742         int entry = dictionary->FindEntry(index);
2743         if (entry != NumberDictionary::kNotFound) {
2744           Object* result = dictionary->ValueAt(entry);
2745           PropertyDetails details = dictionary->DetailsAt(entry);
2746           if (details.IsReadOnly()) return Heap::undefined_value();
2747           if (details.type() == CALLBACKS) {
2748             // Only accessors allowed as elements.
2749             ASSERT(result->IsFixedArray());
2750             return result;
2751           }
2752         }
2753         break;
2754       }
2755       default:
2756         UNREACHABLE();
2757         break;
2758     }
2759   } else {
2760     // Lookup the name.
2761     LookupResult result;
2762     LocalLookup(name, &result);
2763     if (result.IsValid()) {
2764       if (result.IsReadOnly()) return Heap::undefined_value();
2765       if (result.type() == CALLBACKS) {
2766         Object* obj = result.GetCallbackObject();
2767         if (obj->IsFixedArray()) return obj;
2768       }
2769     }
2770   }
2771 
2772   // Allocate the fixed array to hold getter and setter.
2773   Object* structure = Heap::AllocateFixedArray(2, TENURED);
2774   if (structure->IsFailure()) return structure;
2775   PropertyDetails details = PropertyDetails(attributes, CALLBACKS);
2776 
2777   if (is_element) {
2778     // Normalize object to make this operation simple.
2779     Object* ok = NormalizeElements();
2780     if (ok->IsFailure()) return ok;
2781 
2782     // Update the dictionary with the new CALLBACKS property.
2783     Object* dict =
2784         element_dictionary()->Set(index, structure, details);
2785     if (dict->IsFailure()) return dict;
2786 
2787     // If name is an index we need to stay in slow case.
2788     NumberDictionary* elements = NumberDictionary::cast(dict);
2789     elements->set_requires_slow_elements();
2790     // Set the potential new dictionary on the object.
2791     set_elements(NumberDictionary::cast(dict));
2792   } else {
2793     // Normalize object to make this operation simple.
2794     Object* ok = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
2795     if (ok->IsFailure()) return ok;
2796 
2797     // For the global object allocate a new map to invalidate the global inline
2798     // caches which have a global property cell reference directly in the code.
2799     if (IsGlobalObject()) {
2800       Object* new_map = map()->CopyDropDescriptors();
2801       if (new_map->IsFailure()) return new_map;
2802       set_map(Map::cast(new_map));
2803     }
2804 
2805     // Update the dictionary with the new CALLBACKS property.
2806     return SetNormalizedProperty(name, structure, details);
2807   }
2808 
2809   return structure;
2810 }
2811 
2812 
DefineAccessor(String * name,bool is_getter,JSFunction * fun,PropertyAttributes attributes)2813 Object* JSObject::DefineAccessor(String* name, bool is_getter, JSFunction* fun,
2814                                  PropertyAttributes attributes) {
2815   // Check access rights if needed.
2816   if (IsAccessCheckNeeded() &&
2817       !Top::MayNamedAccess(this, name, v8::ACCESS_HAS)) {
2818     Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
2819     return Heap::undefined_value();
2820   }
2821 
2822   if (IsJSGlobalProxy()) {
2823     Object* proto = GetPrototype();
2824     if (proto->IsNull()) return this;
2825     ASSERT(proto->IsJSGlobalObject());
2826     return JSObject::cast(proto)->DefineAccessor(name, is_getter,
2827                                                  fun, attributes);
2828   }
2829 
2830   Object* array = DefineGetterSetter(name, attributes);
2831   if (array->IsFailure() || array->IsUndefined()) return array;
2832   FixedArray::cast(array)->set(is_getter ? 0 : 1, fun);
2833   return this;
2834 }
2835 
2836 
LookupAccessor(String * name,bool is_getter)2837 Object* JSObject::LookupAccessor(String* name, bool is_getter) {
2838   // Make sure that the top context does not change when doing callbacks or
2839   // interceptor calls.
2840   AssertNoContextChange ncc;
2841 
2842   // Check access rights if needed.
2843   if (IsAccessCheckNeeded() &&
2844       !Top::MayNamedAccess(this, name, v8::ACCESS_HAS)) {
2845     Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
2846     return Heap::undefined_value();
2847   }
2848 
2849   // Make the lookup and include prototypes.
2850   int accessor_index = is_getter ? kGetterIndex : kSetterIndex;
2851   uint32_t index;
2852   if (name->AsArrayIndex(&index)) {
2853     for (Object* obj = this;
2854          obj != Heap::null_value();
2855          obj = JSObject::cast(obj)->GetPrototype()) {
2856       JSObject* js_object = JSObject::cast(obj);
2857       if (js_object->HasDictionaryElements()) {
2858         NumberDictionary* dictionary = js_object->element_dictionary();
2859         int entry = dictionary->FindEntry(index);
2860         if (entry != NumberDictionary::kNotFound) {
2861           Object* element = dictionary->ValueAt(entry);
2862           PropertyDetails details = dictionary->DetailsAt(entry);
2863           if (details.type() == CALLBACKS) {
2864             // Only accessors allowed as elements.
2865             return FixedArray::cast(element)->get(accessor_index);
2866           }
2867         }
2868       }
2869     }
2870   } else {
2871     for (Object* obj = this;
2872          obj != Heap::null_value();
2873          obj = JSObject::cast(obj)->GetPrototype()) {
2874       LookupResult result;
2875       JSObject::cast(obj)->LocalLookup(name, &result);
2876       if (result.IsValid()) {
2877         if (result.IsReadOnly()) return Heap::undefined_value();
2878         if (result.type() == CALLBACKS) {
2879           Object* obj = result.GetCallbackObject();
2880           if (obj->IsFixedArray()) {
2881             return FixedArray::cast(obj)->get(accessor_index);
2882           }
2883         }
2884       }
2885     }
2886   }
2887   return Heap::undefined_value();
2888 }
2889 
2890 
SlowReverseLookup(Object * value)2891 Object* JSObject::SlowReverseLookup(Object* value) {
2892   if (HasFastProperties()) {
2893     DescriptorArray* descs = map()->instance_descriptors();
2894     for (int i = 0; i < descs->number_of_descriptors(); i++) {
2895       if (descs->GetType(i) == FIELD) {
2896         if (FastPropertyAt(descs->GetFieldIndex(i)) == value) {
2897           return descs->GetKey(i);
2898         }
2899       } else if (descs->GetType(i) == CONSTANT_FUNCTION) {
2900         if (descs->GetConstantFunction(i) == value) {
2901           return descs->GetKey(i);
2902         }
2903       }
2904     }
2905     return Heap::undefined_value();
2906   } else {
2907     return property_dictionary()->SlowReverseLookup(value);
2908   }
2909 }
2910 
2911 
CopyDropDescriptors()2912 Object* Map::CopyDropDescriptors() {
2913   Object* result = Heap::AllocateMap(instance_type(), instance_size());
2914   if (result->IsFailure()) return result;
2915   Map::cast(result)->set_prototype(prototype());
2916   Map::cast(result)->set_constructor(constructor());
2917   // Don't copy descriptors, so map transitions always remain a forest.
2918   // If we retained the same descriptors we would have two maps
2919   // pointing to the same transition which is bad because the garbage
2920   // collector relies on being able to reverse pointers from transitions
2921   // to maps.  If properties need to be retained use CopyDropTransitions.
2922   Map::cast(result)->set_instance_descriptors(Heap::empty_descriptor_array());
2923   // Please note instance_type and instance_size are set when allocated.
2924   Map::cast(result)->set_inobject_properties(inobject_properties());
2925   Map::cast(result)->set_unused_property_fields(unused_property_fields());
2926 
2927   // If the map has pre-allocated properties always start out with a descriptor
2928   // array describing these properties.
2929   if (pre_allocated_property_fields() > 0) {
2930     ASSERT(constructor()->IsJSFunction());
2931     JSFunction* ctor = JSFunction::cast(constructor());
2932     Object* descriptors =
2933         ctor->initial_map()->instance_descriptors()->RemoveTransitions();
2934     if (descriptors->IsFailure()) return descriptors;
2935     Map::cast(result)->set_instance_descriptors(
2936         DescriptorArray::cast(descriptors));
2937     Map::cast(result)->set_pre_allocated_property_fields(
2938         pre_allocated_property_fields());
2939   }
2940   Map::cast(result)->set_bit_field(bit_field());
2941   Map::cast(result)->set_bit_field2(bit_field2());
2942   Map::cast(result)->ClearCodeCache();
2943   return result;
2944 }
2945 
2946 
CopyDropTransitions()2947 Object* Map::CopyDropTransitions() {
2948   Object* new_map = CopyDropDescriptors();
2949   if (new_map->IsFailure()) return new_map;
2950   Object* descriptors = instance_descriptors()->RemoveTransitions();
2951   if (descriptors->IsFailure()) return descriptors;
2952   cast(new_map)->set_instance_descriptors(DescriptorArray::cast(descriptors));
2953   return cast(new_map);
2954 }
2955 
2956 
UpdateCodeCache(String * name,Code * code)2957 Object* Map::UpdateCodeCache(String* name, Code* code) {
2958   ASSERT(code->ic_state() == MONOMORPHIC);
2959   FixedArray* cache = code_cache();
2960 
2961   // When updating the code cache we disregard the type encoded in the
2962   // flags. This allows call constant stubs to overwrite call field
2963   // stubs, etc.
2964   Code::Flags flags = Code::RemoveTypeFromFlags(code->flags());
2965 
2966   // First check whether we can update existing code cache without
2967   // extending it.
2968   int length = cache->length();
2969   int deleted_index = -1;
2970   for (int i = 0; i < length; i += 2) {
2971     Object* key = cache->get(i);
2972     if (key->IsNull()) {
2973       if (deleted_index < 0) deleted_index = i;
2974       continue;
2975     }
2976     if (key->IsUndefined()) {
2977       if (deleted_index >= 0) i = deleted_index;
2978       cache->set(i + 0, name);
2979       cache->set(i + 1, code);
2980       return this;
2981     }
2982     if (name->Equals(String::cast(key))) {
2983       Code::Flags found = Code::cast(cache->get(i + 1))->flags();
2984       if (Code::RemoveTypeFromFlags(found) == flags) {
2985         cache->set(i + 1, code);
2986         return this;
2987       }
2988     }
2989   }
2990 
2991   // Reached the end of the code cache.  If there were deleted
2992   // elements, reuse the space for the first of them.
2993   if (deleted_index >= 0) {
2994     cache->set(deleted_index + 0, name);
2995     cache->set(deleted_index + 1, code);
2996     return this;
2997   }
2998 
2999   // Extend the code cache with some new entries (at least one).
3000   int new_length = length + ((length >> 1) & ~1) + 2;
3001   ASSERT((new_length & 1) == 0);  // must be a multiple of two
3002   Object* result = cache->CopySize(new_length);
3003   if (result->IsFailure()) return result;
3004 
3005   // Add the (name, code) pair to the new cache.
3006   cache = FixedArray::cast(result);
3007   cache->set(length + 0, name);
3008   cache->set(length + 1, code);
3009   set_code_cache(cache);
3010   return this;
3011 }
3012 
3013 
FindInCodeCache(String * name,Code::Flags flags)3014 Object* Map::FindInCodeCache(String* name, Code::Flags flags) {
3015   FixedArray* cache = code_cache();
3016   int length = cache->length();
3017   for (int i = 0; i < length; i += 2) {
3018     Object* key = cache->get(i);
3019     // Skip deleted elements.
3020     if (key->IsNull()) continue;
3021     if (key->IsUndefined()) return key;
3022     if (name->Equals(String::cast(key))) {
3023       Code* code = Code::cast(cache->get(i + 1));
3024       if (code->flags() == flags) return code;
3025     }
3026   }
3027   return Heap::undefined_value();
3028 }
3029 
3030 
IndexInCodeCache(Code * code)3031 int Map::IndexInCodeCache(Code* code) {
3032   FixedArray* array = code_cache();
3033   int len = array->length();
3034   for (int i = 0; i < len; i += 2) {
3035     if (array->get(i + 1) == code) return i + 1;
3036   }
3037   return -1;
3038 }
3039 
3040 
RemoveFromCodeCache(int index)3041 void Map::RemoveFromCodeCache(int index) {
3042   FixedArray* array = code_cache();
3043   ASSERT(array->length() >= index && array->get(index)->IsCode());
3044   // Use null instead of undefined for deleted elements to distinguish
3045   // deleted elements from unused elements.  This distinction is used
3046   // when looking up in the cache and when updating the cache.
3047   array->set_null(index - 1);  // key
3048   array->set_null(index);  // code
3049 }
3050 
3051 
FixedArrayIterateBody(ObjectVisitor * v)3052 void FixedArray::FixedArrayIterateBody(ObjectVisitor* v) {
3053   IteratePointers(v, kHeaderSize, kHeaderSize + length() * kPointerSize);
3054 }
3055 
3056 
HasKey(FixedArray * array,Object * key)3057 static bool HasKey(FixedArray* array, Object* key) {
3058   int len0 = array->length();
3059   for (int i = 0; i < len0; i++) {
3060     Object* element = array->get(i);
3061     if (element->IsSmi() && key->IsSmi() && (element == key)) return true;
3062     if (element->IsString() &&
3063         key->IsString() && String::cast(element)->Equals(String::cast(key))) {
3064       return true;
3065     }
3066   }
3067   return false;
3068 }
3069 
3070 
AddKeysFromJSArray(JSArray * array)3071 Object* FixedArray::AddKeysFromJSArray(JSArray* array) {
3072   ASSERT(!array->HasPixelElements());
3073   switch (array->GetElementsKind()) {
3074     case JSObject::FAST_ELEMENTS:
3075       return UnionOfKeys(FixedArray::cast(array->elements()));
3076     case JSObject::DICTIONARY_ELEMENTS: {
3077       NumberDictionary* dict = array->element_dictionary();
3078       int size = dict->NumberOfElements();
3079 
3080       // Allocate a temporary fixed array.
3081       Object* object = Heap::AllocateFixedArray(size);
3082       if (object->IsFailure()) return object;
3083       FixedArray* key_array = FixedArray::cast(object);
3084 
3085       int capacity = dict->Capacity();
3086       int pos = 0;
3087       // Copy the elements from the JSArray to the temporary fixed array.
3088       for (int i = 0; i < capacity; i++) {
3089         if (dict->IsKey(dict->KeyAt(i))) {
3090           key_array->set(pos++, dict->ValueAt(i));
3091         }
3092       }
3093       // Compute the union of this and the temporary fixed array.
3094       return UnionOfKeys(key_array);
3095     }
3096     default:
3097       UNREACHABLE();
3098   }
3099   UNREACHABLE();
3100   return Heap::null_value();  // Failure case needs to "return" a value.
3101 }
3102 
3103 
UnionOfKeys(FixedArray * other)3104 Object* FixedArray::UnionOfKeys(FixedArray* other) {
3105   int len0 = length();
3106   int len1 = other->length();
3107   // Optimize if either is empty.
3108   if (len0 == 0) return other;
3109   if (len1 == 0) return this;
3110 
3111   // Compute how many elements are not in this.
3112   int extra = 0;
3113   for (int y = 0; y < len1; y++) {
3114     Object* value = other->get(y);
3115     if (!value->IsTheHole() && !HasKey(this, value)) extra++;
3116   }
3117 
3118   if (extra == 0) return this;
3119 
3120   // Allocate the result
3121   Object* obj = Heap::AllocateFixedArray(len0 + extra);
3122   if (obj->IsFailure()) return obj;
3123   // Fill in the content
3124   FixedArray* result = FixedArray::cast(obj);
3125   WriteBarrierMode mode = result->GetWriteBarrierMode();
3126   for (int i = 0; i < len0; i++) {
3127     result->set(i, get(i), mode);
3128   }
3129   // Fill in the extra keys.
3130   int index = 0;
3131   for (int y = 0; y < len1; y++) {
3132     Object* value = other->get(y);
3133     if (!value->IsTheHole() && !HasKey(this, value)) {
3134       result->set(len0 + index, other->get(y), mode);
3135       index++;
3136     }
3137   }
3138   ASSERT(extra == index);
3139   return result;
3140 }
3141 
3142 
CopySize(int new_length)3143 Object* FixedArray::CopySize(int new_length) {
3144   if (new_length == 0) return Heap::empty_fixed_array();
3145   Object* obj = Heap::AllocateFixedArray(new_length);
3146   if (obj->IsFailure()) return obj;
3147   FixedArray* result = FixedArray::cast(obj);
3148   // Copy the content
3149   int len = length();
3150   if (new_length < len) len = new_length;
3151   result->set_map(map());
3152   WriteBarrierMode mode = result->GetWriteBarrierMode();
3153   for (int i = 0; i < len; i++) {
3154     result->set(i, get(i), mode);
3155   }
3156   return result;
3157 }
3158 
3159 
CopyTo(int pos,FixedArray * dest,int dest_pos,int len)3160 void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) {
3161   WriteBarrierMode mode = dest->GetWriteBarrierMode();
3162   for (int index = 0; index < len; index++) {
3163     dest->set(dest_pos+index, get(pos+index), mode);
3164   }
3165 }
3166 
3167 
3168 #ifdef DEBUG
IsEqualTo(FixedArray * other)3169 bool FixedArray::IsEqualTo(FixedArray* other) {
3170   if (length() != other->length()) return false;
3171   for (int i = 0 ; i < length(); ++i) {
3172     if (get(i) != other->get(i)) return false;
3173   }
3174   return true;
3175 }
3176 #endif
3177 
3178 
Allocate(int number_of_descriptors)3179 Object* DescriptorArray::Allocate(int number_of_descriptors) {
3180   if (number_of_descriptors == 0) {
3181     return Heap::empty_descriptor_array();
3182   }
3183   // Allocate the array of keys.
3184   Object* array = Heap::AllocateFixedArray(ToKeyIndex(number_of_descriptors));
3185   if (array->IsFailure()) return array;
3186   // Do not use DescriptorArray::cast on incomplete object.
3187   FixedArray* result = FixedArray::cast(array);
3188 
3189   // Allocate the content array and set it in the descriptor array.
3190   array = Heap::AllocateFixedArray(number_of_descriptors << 1);
3191   if (array->IsFailure()) return array;
3192   result->set(kContentArrayIndex, array);
3193   result->set(kEnumerationIndexIndex,
3194               Smi::FromInt(PropertyDetails::kInitialIndex),
3195               SKIP_WRITE_BARRIER);
3196   return result;
3197 }
3198 
3199 
SetEnumCache(FixedArray * bridge_storage,FixedArray * new_cache)3200 void DescriptorArray::SetEnumCache(FixedArray* bridge_storage,
3201                                    FixedArray* new_cache) {
3202   ASSERT(bridge_storage->length() >= kEnumCacheBridgeLength);
3203   if (HasEnumCache()) {
3204     FixedArray::cast(get(kEnumerationIndexIndex))->
3205       set(kEnumCacheBridgeCacheIndex, new_cache);
3206   } else {
3207     if (IsEmpty()) return;  // Do nothing for empty descriptor array.
3208     FixedArray::cast(bridge_storage)->
3209       set(kEnumCacheBridgeCacheIndex, new_cache);
3210     fast_set(FixedArray::cast(bridge_storage),
3211              kEnumCacheBridgeEnumIndex,
3212              get(kEnumerationIndexIndex));
3213     set(kEnumerationIndexIndex, bridge_storage);
3214   }
3215 }
3216 
3217 
CopyInsert(Descriptor * descriptor,TransitionFlag transition_flag)3218 Object* DescriptorArray::CopyInsert(Descriptor* descriptor,
3219                                     TransitionFlag transition_flag) {
3220   // Transitions are only kept when inserting another transition.
3221   // This precondition is not required by this function's implementation, but
3222   // is currently required by the semantics of maps, so we check it.
3223   // Conversely, we filter after replacing, so replacing a transition and
3224   // removing all other transitions is not supported.
3225   bool remove_transitions = transition_flag == REMOVE_TRANSITIONS;
3226   ASSERT(remove_transitions == !descriptor->GetDetails().IsTransition());
3227   ASSERT(descriptor->GetDetails().type() != NULL_DESCRIPTOR);
3228 
3229   // Ensure the key is a symbol.
3230   Object* result = descriptor->KeyToSymbol();
3231   if (result->IsFailure()) return result;
3232 
3233   int transitions = 0;
3234   int null_descriptors = 0;
3235   if (remove_transitions) {
3236     for (int i = 0; i < number_of_descriptors(); i++) {
3237       if (IsTransition(i)) transitions++;
3238       if (IsNullDescriptor(i)) null_descriptors++;
3239     }
3240   } else {
3241     for (int i = 0; i < number_of_descriptors(); i++) {
3242       if (IsNullDescriptor(i)) null_descriptors++;
3243     }
3244   }
3245   int new_size = number_of_descriptors() - transitions - null_descriptors;
3246 
3247   // If key is in descriptor, we replace it in-place when filtering.
3248   // Count a null descriptor for key as inserted, not replaced.
3249   int index = Search(descriptor->GetKey());
3250   const bool inserting = (index == kNotFound);
3251   const bool replacing = !inserting;
3252   bool keep_enumeration_index = false;
3253   if (inserting) {
3254     ++new_size;
3255   }
3256   if (replacing) {
3257     // We are replacing an existing descriptor.  We keep the enumeration
3258     // index of a visible property.
3259     PropertyType t = PropertyDetails(GetDetails(index)).type();
3260     if (t == CONSTANT_FUNCTION ||
3261         t == FIELD ||
3262         t == CALLBACKS ||
3263         t == INTERCEPTOR) {
3264       keep_enumeration_index = true;
3265     } else if (remove_transitions) {
3266      // Replaced descriptor has been counted as removed if it is
3267      // a transition that will be replaced.  Adjust count in this case.
3268       ++new_size;
3269     }
3270   }
3271   result = Allocate(new_size);
3272   if (result->IsFailure()) return result;
3273   DescriptorArray* new_descriptors = DescriptorArray::cast(result);
3274   // Set the enumeration index in the descriptors and set the enumeration index
3275   // in the result.
3276   int enumeration_index = NextEnumerationIndex();
3277   if (!descriptor->GetDetails().IsTransition()) {
3278     if (keep_enumeration_index) {
3279       descriptor->SetEnumerationIndex(
3280           PropertyDetails(GetDetails(index)).index());
3281     } else {
3282       descriptor->SetEnumerationIndex(enumeration_index);
3283       ++enumeration_index;
3284     }
3285   }
3286   new_descriptors->SetNextEnumerationIndex(enumeration_index);
3287 
3288   // Copy the descriptors, filtering out transitions and null descriptors,
3289   // and inserting or replacing a descriptor.
3290   uint32_t descriptor_hash = descriptor->GetKey()->Hash();
3291   int from_index = 0;
3292   int to_index = 0;
3293 
3294   for (; from_index < number_of_descriptors(); from_index++) {
3295     String* key = GetKey(from_index);
3296     if (key->Hash() > descriptor_hash || key == descriptor->GetKey()) {
3297       break;
3298     }
3299     if (IsNullDescriptor(from_index)) continue;
3300     if (remove_transitions && IsTransition(from_index)) continue;
3301     new_descriptors->CopyFrom(to_index++, this, from_index);
3302   }
3303 
3304   new_descriptors->Set(to_index++, descriptor);
3305   if (replacing) from_index++;
3306 
3307   for (; from_index < number_of_descriptors(); from_index++) {
3308     if (IsNullDescriptor(from_index)) continue;
3309     if (remove_transitions && IsTransition(from_index)) continue;
3310     new_descriptors->CopyFrom(to_index++, this, from_index);
3311   }
3312 
3313   ASSERT(to_index == new_descriptors->number_of_descriptors());
3314   SLOW_ASSERT(new_descriptors->IsSortedNoDuplicates());
3315 
3316   return new_descriptors;
3317 }
3318 
3319 
RemoveTransitions()3320 Object* DescriptorArray::RemoveTransitions() {
3321   // Remove all transitions and null descriptors. Return a copy of the array
3322   // with all transitions removed, or a Failure object if the new array could
3323   // not be allocated.
3324 
3325   // Compute the size of the map transition entries to be removed.
3326   int num_removed = 0;
3327   for (int i = 0; i < number_of_descriptors(); i++) {
3328     if (!IsProperty(i)) num_removed++;
3329   }
3330 
3331   // Allocate the new descriptor array.
3332   Object* result = Allocate(number_of_descriptors() - num_removed);
3333   if (result->IsFailure()) return result;
3334   DescriptorArray* new_descriptors = DescriptorArray::cast(result);
3335 
3336   // Copy the content.
3337   int next_descriptor = 0;
3338   for (int i = 0; i < number_of_descriptors(); i++) {
3339     if (IsProperty(i)) new_descriptors->CopyFrom(next_descriptor++, this, i);
3340   }
3341   ASSERT(next_descriptor == new_descriptors->number_of_descriptors());
3342 
3343   return new_descriptors;
3344 }
3345 
3346 
Sort()3347 void DescriptorArray::Sort() {
3348   // In-place heap sort.
3349   int len = number_of_descriptors();
3350 
3351   // Bottom-up max-heap construction.
3352   for (int i = 1; i < len; ++i) {
3353     int child_index = i;
3354     while (child_index > 0) {
3355       int parent_index = ((child_index + 1) >> 1) - 1;
3356       uint32_t parent_hash = GetKey(parent_index)->Hash();
3357       uint32_t child_hash = GetKey(child_index)->Hash();
3358       if (parent_hash < child_hash) {
3359         Swap(parent_index, child_index);
3360       } else {
3361         break;
3362       }
3363       child_index = parent_index;
3364     }
3365   }
3366 
3367   // Extract elements and create sorted array.
3368   for (int i = len - 1; i > 0; --i) {
3369     // Put max element at the back of the array.
3370     Swap(0, i);
3371     // Sift down the new top element.
3372     int parent_index = 0;
3373     while (true) {
3374       int child_index = ((parent_index + 1) << 1) - 1;
3375       if (child_index >= i) break;
3376       uint32_t child1_hash = GetKey(child_index)->Hash();
3377       uint32_t child2_hash = GetKey(child_index + 1)->Hash();
3378       uint32_t parent_hash = GetKey(parent_index)->Hash();
3379       if (child_index + 1 >= i || child1_hash > child2_hash) {
3380         if (parent_hash > child1_hash) break;
3381         Swap(parent_index, child_index);
3382         parent_index = child_index;
3383       } else {
3384         if (parent_hash > child2_hash) break;
3385         Swap(parent_index, child_index + 1);
3386         parent_index = child_index + 1;
3387       }
3388     }
3389   }
3390 
3391   SLOW_ASSERT(IsSortedNoDuplicates());
3392 }
3393 
3394 
BinarySearch(String * name,int low,int high)3395 int DescriptorArray::BinarySearch(String* name, int low, int high) {
3396   uint32_t hash = name->Hash();
3397 
3398   while (low <= high) {
3399     int mid = (low + high) / 2;
3400     String* mid_name = GetKey(mid);
3401     uint32_t mid_hash = mid_name->Hash();
3402 
3403     if (mid_hash > hash) {
3404       high = mid - 1;
3405       continue;
3406     }
3407     if (mid_hash < hash) {
3408       low = mid + 1;
3409       continue;
3410     }
3411     // Found an element with the same hash-code.
3412     ASSERT(hash == mid_hash);
3413     // There might be more, so we find the first one and
3414     // check them all to see if we have a match.
3415     if (name == mid_name  && !is_null_descriptor(mid)) return mid;
3416     while ((mid > low) && (GetKey(mid - 1)->Hash() == hash)) mid--;
3417     for (; (mid <= high) && (GetKey(mid)->Hash() == hash); mid++) {
3418       if (GetKey(mid)->Equals(name) && !is_null_descriptor(mid)) return mid;
3419     }
3420     break;
3421   }
3422   return kNotFound;
3423 }
3424 
3425 
LinearSearch(String * name,int len)3426 int DescriptorArray::LinearSearch(String* name, int len) {
3427   uint32_t hash = name->Hash();
3428   for (int number = 0; number < len; number++) {
3429     String* entry = GetKey(number);
3430     if ((entry->Hash() == hash) &&
3431         name->Equals(entry) &&
3432         !is_null_descriptor(number)) {
3433       return number;
3434     }
3435   }
3436   return kNotFound;
3437 }
3438 
3439 
3440 #ifdef DEBUG
IsEqualTo(DescriptorArray * other)3441 bool DescriptorArray::IsEqualTo(DescriptorArray* other) {
3442   if (IsEmpty()) return other->IsEmpty();
3443   if (other->IsEmpty()) return false;
3444   if (length() != other->length()) return false;
3445   for (int i = 0; i < length(); ++i) {
3446     if (get(i) != other->get(i) && i != kContentArrayIndex) return false;
3447   }
3448   return GetContentArray()->IsEqualTo(other->GetContentArray());
3449 }
3450 #endif
3451 
3452 
3453 static StaticResource<StringInputBuffer> string_input_buffer;
3454 
3455 
LooksValid()3456 bool String::LooksValid() {
3457   if (!Heap::Contains(this)) return false;
3458   return true;
3459 }
3460 
3461 
Utf8Length()3462 int String::Utf8Length() {
3463   if (IsAsciiRepresentation()) return length();
3464   // Attempt to flatten before accessing the string.  It probably
3465   // doesn't make Utf8Length faster, but it is very likely that
3466   // the string will be accessed later (for example by WriteUtf8)
3467   // so it's still a good idea.
3468   TryFlattenIfNotFlat();
3469   Access<StringInputBuffer> buffer(&string_input_buffer);
3470   buffer->Reset(0, this);
3471   int result = 0;
3472   while (buffer->has_more())
3473     result += unibrow::Utf8::Length(buffer->GetNext());
3474   return result;
3475 }
3476 
3477 
ToAsciiVector()3478 Vector<const char> String::ToAsciiVector() {
3479   ASSERT(IsAsciiRepresentation());
3480   ASSERT(IsFlat());
3481 
3482   int offset = 0;
3483   int length = this->length();
3484   StringRepresentationTag string_tag = StringShape(this).representation_tag();
3485   String* string = this;
3486   if (string_tag == kSlicedStringTag) {
3487     SlicedString* sliced = SlicedString::cast(string);
3488     offset += sliced->start();
3489     string = sliced->buffer();
3490     string_tag = StringShape(string).representation_tag();
3491   } else if (string_tag == kConsStringTag) {
3492     ConsString* cons = ConsString::cast(string);
3493     ASSERT(cons->second()->length() == 0);
3494     string = cons->first();
3495     string_tag = StringShape(string).representation_tag();
3496   }
3497   if (string_tag == kSeqStringTag) {
3498     SeqAsciiString* seq = SeqAsciiString::cast(string);
3499     char* start = seq->GetChars();
3500     return Vector<const char>(start + offset, length);
3501   }
3502   ASSERT(string_tag == kExternalStringTag);
3503   ExternalAsciiString* ext = ExternalAsciiString::cast(string);
3504   const char* start = ext->resource()->data();
3505   return Vector<const char>(start + offset, length);
3506 }
3507 
3508 
ToUC16Vector()3509 Vector<const uc16> String::ToUC16Vector() {
3510   ASSERT(IsTwoByteRepresentation());
3511   ASSERT(IsFlat());
3512 
3513   int offset = 0;
3514   int length = this->length();
3515   StringRepresentationTag string_tag = StringShape(this).representation_tag();
3516   String* string = this;
3517   if (string_tag == kSlicedStringTag) {
3518     SlicedString* sliced = SlicedString::cast(string);
3519     offset += sliced->start();
3520     string = String::cast(sliced->buffer());
3521     string_tag = StringShape(string).representation_tag();
3522   } else if (string_tag == kConsStringTag) {
3523     ConsString* cons = ConsString::cast(string);
3524     ASSERT(cons->second()->length() == 0);
3525     string = cons->first();
3526     string_tag = StringShape(string).representation_tag();
3527   }
3528   if (string_tag == kSeqStringTag) {
3529     SeqTwoByteString* seq = SeqTwoByteString::cast(string);
3530     return Vector<const uc16>(seq->GetChars() + offset, length);
3531   }
3532   ASSERT(string_tag == kExternalStringTag);
3533   ExternalTwoByteString* ext = ExternalTwoByteString::cast(string);
3534   const uc16* start =
3535       reinterpret_cast<const uc16*>(ext->resource()->data());
3536   return Vector<const uc16>(start + offset, length);
3537 }
3538 
3539 
ToCString(AllowNullsFlag allow_nulls,RobustnessFlag robust_flag,int offset,int length,int * length_return)3540 SmartPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
3541                                      RobustnessFlag robust_flag,
3542                                      int offset,
3543                                      int length,
3544                                      int* length_return) {
3545   ASSERT(NativeAllocationChecker::allocation_allowed());
3546   if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
3547     return SmartPointer<char>(NULL);
3548   }
3549 
3550   // Negative length means the to the end of the string.
3551   if (length < 0) length = kMaxInt - offset;
3552 
3553   // Compute the size of the UTF-8 string. Start at the specified offset.
3554   Access<StringInputBuffer> buffer(&string_input_buffer);
3555   buffer->Reset(offset, this);
3556   int character_position = offset;
3557   int utf8_bytes = 0;
3558   while (buffer->has_more()) {
3559     uint16_t character = buffer->GetNext();
3560     if (character_position < offset + length) {
3561       utf8_bytes += unibrow::Utf8::Length(character);
3562     }
3563     character_position++;
3564   }
3565 
3566   if (length_return) {
3567     *length_return = utf8_bytes;
3568   }
3569 
3570   char* result = NewArray<char>(utf8_bytes + 1);
3571 
3572   // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset.
3573   buffer->Rewind();
3574   buffer->Seek(offset);
3575   character_position = offset;
3576   int utf8_byte_position = 0;
3577   while (buffer->has_more()) {
3578     uint16_t character = buffer->GetNext();
3579     if (character_position < offset + length) {
3580       if (allow_nulls == DISALLOW_NULLS && character == 0) {
3581         character = ' ';
3582       }
3583       utf8_byte_position +=
3584           unibrow::Utf8::Encode(result + utf8_byte_position, character);
3585     }
3586     character_position++;
3587   }
3588   result[utf8_byte_position] = 0;
3589   return SmartPointer<char>(result);
3590 }
3591 
3592 
ToCString(AllowNullsFlag allow_nulls,RobustnessFlag robust_flag,int * length_return)3593 SmartPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
3594                                      RobustnessFlag robust_flag,
3595                                      int* length_return) {
3596   return ToCString(allow_nulls, robust_flag, 0, -1, length_return);
3597 }
3598 
3599 
GetTwoByteData()3600 const uc16* String::GetTwoByteData() {
3601   return GetTwoByteData(0);
3602 }
3603 
3604 
GetTwoByteData(unsigned start)3605 const uc16* String::GetTwoByteData(unsigned start) {
3606   ASSERT(!IsAsciiRepresentation());
3607   switch (StringShape(this).representation_tag()) {
3608     case kSeqStringTag:
3609       return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start);
3610     case kExternalStringTag:
3611       return ExternalTwoByteString::cast(this)->
3612         ExternalTwoByteStringGetData(start);
3613     case kSlicedStringTag: {
3614       SlicedString* sliced_string = SlicedString::cast(this);
3615       String* buffer = sliced_string->buffer();
3616       if (StringShape(buffer).IsCons()) {
3617         ConsString* cs = ConsString::cast(buffer);
3618         // Flattened string.
3619         ASSERT(cs->second()->length() == 0);
3620         buffer = cs->first();
3621       }
3622       return buffer->GetTwoByteData(start + sliced_string->start());
3623     }
3624     case kConsStringTag:
3625       UNREACHABLE();
3626       return NULL;
3627   }
3628   UNREACHABLE();
3629   return NULL;
3630 }
3631 
3632 
ToWideCString(RobustnessFlag robust_flag)3633 SmartPointer<uc16> String::ToWideCString(RobustnessFlag robust_flag) {
3634   ASSERT(NativeAllocationChecker::allocation_allowed());
3635 
3636   if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
3637     return SmartPointer<uc16>();
3638   }
3639 
3640   Access<StringInputBuffer> buffer(&string_input_buffer);
3641   buffer->Reset(this);
3642 
3643   uc16* result = NewArray<uc16>(length() + 1);
3644 
3645   int i = 0;
3646   while (buffer->has_more()) {
3647     uint16_t character = buffer->GetNext();
3648     result[i++] = character;
3649   }
3650   result[i] = 0;
3651   return SmartPointer<uc16>(result);
3652 }
3653 
3654 
SeqTwoByteStringGetData(unsigned start)3655 const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) {
3656   return reinterpret_cast<uc16*>(
3657       reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start;
3658 }
3659 
3660 
SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)3661 void SeqTwoByteString::SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* rbb,
3662                                                            unsigned* offset_ptr,
3663                                                            unsigned max_chars) {
3664   unsigned chars_read = 0;
3665   unsigned offset = *offset_ptr;
3666   while (chars_read < max_chars) {
3667     uint16_t c = *reinterpret_cast<uint16_t*>(
3668         reinterpret_cast<char*>(this) -
3669             kHeapObjectTag + kHeaderSize + offset * kShortSize);
3670     if (c <= kMaxAsciiCharCode) {
3671       // Fast case for ASCII characters.   Cursor is an input output argument.
3672       if (!unibrow::CharacterStream::EncodeAsciiCharacter(c,
3673                                                           rbb->util_buffer,
3674                                                           rbb->capacity,
3675                                                           rbb->cursor)) {
3676         break;
3677       }
3678     } else {
3679       if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c,
3680                                                              rbb->util_buffer,
3681                                                              rbb->capacity,
3682                                                              rbb->cursor)) {
3683         break;
3684       }
3685     }
3686     offset++;
3687     chars_read++;
3688   }
3689   *offset_ptr = offset;
3690   rbb->remaining += chars_read;
3691 }
3692 
3693 
SeqAsciiStringReadBlock(unsigned * remaining,unsigned * offset_ptr,unsigned max_chars)3694 const unibrow::byte* SeqAsciiString::SeqAsciiStringReadBlock(
3695     unsigned* remaining,
3696     unsigned* offset_ptr,
3697     unsigned max_chars) {
3698   const unibrow::byte* b = reinterpret_cast<unibrow::byte*>(this) -
3699       kHeapObjectTag + kHeaderSize + *offset_ptr * kCharSize;
3700   *remaining = max_chars;
3701   *offset_ptr += max_chars;
3702   return b;
3703 }
3704 
3705 
3706 // This will iterate unless the block of string data spans two 'halves' of
3707 // a ConsString, in which case it will recurse.  Since the block of string
3708 // data to be read has a maximum size this limits the maximum recursion
3709 // depth to something sane.  Since C++ does not have tail call recursion
3710 // elimination, the iteration must be explicit. Since this is not an
3711 // -IntoBuffer method it can delegate to one of the efficient
3712 // *AsciiStringReadBlock routines.
ConsStringReadBlock(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)3713 const unibrow::byte* ConsString::ConsStringReadBlock(ReadBlockBuffer* rbb,
3714                                                      unsigned* offset_ptr,
3715                                                      unsigned max_chars) {
3716   ConsString* current = this;
3717   unsigned offset = *offset_ptr;
3718   int offset_correction = 0;
3719 
3720   while (true) {
3721     String* left = current->first();
3722     unsigned left_length = (unsigned)left->length();
3723     if (left_length > offset &&
3724         (max_chars <= left_length - offset ||
3725          (rbb->capacity <= left_length - offset &&
3726           (max_chars = left_length - offset, true)))) {  // comma operator!
3727       // Left hand side only - iterate unless we have reached the bottom of
3728       // the cons tree.  The assignment on the left of the comma operator is
3729       // in order to make use of the fact that the -IntoBuffer routines can
3730       // produce at most 'capacity' characters.  This enables us to postpone
3731       // the point where we switch to the -IntoBuffer routines (below) in order
3732       // to maximize the chances of delegating a big chunk of work to the
3733       // efficient *AsciiStringReadBlock routines.
3734       if (StringShape(left).IsCons()) {
3735         current = ConsString::cast(left);
3736         continue;
3737       } else {
3738         const unibrow::byte* answer =
3739             String::ReadBlock(left, rbb, &offset, max_chars);
3740         *offset_ptr = offset + offset_correction;
3741         return answer;
3742       }
3743     } else if (left_length <= offset) {
3744       // Right hand side only - iterate unless we have reached the bottom of
3745       // the cons tree.
3746       String* right = current->second();
3747       offset -= left_length;
3748       offset_correction += left_length;
3749       if (StringShape(right).IsCons()) {
3750         current = ConsString::cast(right);
3751         continue;
3752       } else {
3753         const unibrow::byte* answer =
3754             String::ReadBlock(right, rbb, &offset, max_chars);
3755         *offset_ptr = offset + offset_correction;
3756         return answer;
3757       }
3758     } else {
3759       // The block to be read spans two sides of the ConsString, so we call the
3760       // -IntoBuffer version, which will recurse.  The -IntoBuffer methods
3761       // are able to assemble data from several part strings because they use
3762       // the util_buffer to store their data and never return direct pointers
3763       // to their storage.  We don't try to read more than the buffer capacity
3764       // here or we can get too much recursion.
3765       ASSERT(rbb->remaining == 0);
3766       ASSERT(rbb->cursor == 0);
3767       current->ConsStringReadBlockIntoBuffer(
3768           rbb,
3769           &offset,
3770           max_chars > rbb->capacity ? rbb->capacity : max_chars);
3771       *offset_ptr = offset + offset_correction;
3772       return rbb->util_buffer;
3773     }
3774   }
3775 }
3776 
3777 
SlicedStringReadBlock(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)3778 const unibrow::byte* SlicedString::SlicedStringReadBlock(ReadBlockBuffer* rbb,
3779                                                          unsigned* offset_ptr,
3780                                                          unsigned max_chars) {
3781   String* backing = buffer();
3782   unsigned offset = start() + *offset_ptr;
3783   unsigned length = backing->length();
3784   if (max_chars > length - offset) {
3785     max_chars = length - offset;
3786   }
3787   const unibrow::byte* answer =
3788       String::ReadBlock(backing, rbb, &offset, max_chars);
3789   *offset_ptr = offset - start();
3790   return answer;
3791 }
3792 
3793 
ExternalAsciiStringGet(int index)3794 uint16_t ExternalAsciiString::ExternalAsciiStringGet(int index) {
3795   ASSERT(index >= 0 && index < length());
3796   return resource()->data()[index];
3797 }
3798 
3799 
ExternalAsciiStringReadBlock(unsigned * remaining,unsigned * offset_ptr,unsigned max_chars)3800 const unibrow::byte* ExternalAsciiString::ExternalAsciiStringReadBlock(
3801       unsigned* remaining,
3802       unsigned* offset_ptr,
3803       unsigned max_chars) {
3804   // Cast const char* to unibrow::byte* (signedness difference).
3805   const unibrow::byte* b =
3806       reinterpret_cast<const unibrow::byte*>(resource()->data()) + *offset_ptr;
3807   *remaining = max_chars;
3808   *offset_ptr += max_chars;
3809   return b;
3810 }
3811 
3812 
ExternalTwoByteStringGetData(unsigned start)3813 const uc16* ExternalTwoByteString::ExternalTwoByteStringGetData(
3814       unsigned start) {
3815   return resource()->data() + start;
3816 }
3817 
3818 
ExternalTwoByteStringGet(int index)3819 uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) {
3820   ASSERT(index >= 0 && index < length());
3821   return resource()->data()[index];
3822 }
3823 
3824 
ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)3825 void ExternalTwoByteString::ExternalTwoByteStringReadBlockIntoBuffer(
3826       ReadBlockBuffer* rbb,
3827       unsigned* offset_ptr,
3828       unsigned max_chars) {
3829   unsigned chars_read = 0;
3830   unsigned offset = *offset_ptr;
3831   const uint16_t* data = resource()->data();
3832   while (chars_read < max_chars) {
3833     uint16_t c = data[offset];
3834     if (c <= kMaxAsciiCharCode) {
3835       // Fast case for ASCII characters. Cursor is an input output argument.
3836       if (!unibrow::CharacterStream::EncodeAsciiCharacter(c,
3837                                                           rbb->util_buffer,
3838                                                           rbb->capacity,
3839                                                           rbb->cursor))
3840         break;
3841     } else {
3842       if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c,
3843                                                              rbb->util_buffer,
3844                                                              rbb->capacity,
3845                                                              rbb->cursor))
3846         break;
3847     }
3848     offset++;
3849     chars_read++;
3850   }
3851   *offset_ptr = offset;
3852   rbb->remaining += chars_read;
3853 }
3854 
3855 
SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)3856 void SeqAsciiString::SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* rbb,
3857                                                  unsigned* offset_ptr,
3858                                                  unsigned max_chars) {
3859   unsigned capacity = rbb->capacity - rbb->cursor;
3860   if (max_chars > capacity) max_chars = capacity;
3861   memcpy(rbb->util_buffer + rbb->cursor,
3862          reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize +
3863              *offset_ptr * kCharSize,
3864          max_chars);
3865   rbb->remaining += max_chars;
3866   *offset_ptr += max_chars;
3867   rbb->cursor += max_chars;
3868 }
3869 
3870 
ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)3871 void ExternalAsciiString::ExternalAsciiStringReadBlockIntoBuffer(
3872       ReadBlockBuffer* rbb,
3873       unsigned* offset_ptr,
3874       unsigned max_chars) {
3875   unsigned capacity = rbb->capacity - rbb->cursor;
3876   if (max_chars > capacity) max_chars = capacity;
3877   memcpy(rbb->util_buffer + rbb->cursor,
3878          resource()->data() + *offset_ptr,
3879          max_chars);
3880   rbb->remaining += max_chars;
3881   *offset_ptr += max_chars;
3882   rbb->cursor += max_chars;
3883 }
3884 
3885 
3886 // This method determines the type of string involved and then copies
3887 // a whole chunk of characters into a buffer, or returns a pointer to a buffer
3888 // where they can be found.  The pointer is not necessarily valid across a GC
3889 // (see AsciiStringReadBlock).
ReadBlock(String * input,ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)3890 const unibrow::byte* String::ReadBlock(String* input,
3891                                        ReadBlockBuffer* rbb,
3892                                        unsigned* offset_ptr,
3893                                        unsigned max_chars) {
3894   ASSERT(*offset_ptr <= static_cast<unsigned>(input->length()));
3895   if (max_chars == 0) {
3896     rbb->remaining = 0;
3897     return NULL;
3898   }
3899   switch (StringShape(input).representation_tag()) {
3900     case kSeqStringTag:
3901       if (input->IsAsciiRepresentation()) {
3902         SeqAsciiString* str = SeqAsciiString::cast(input);
3903         return str->SeqAsciiStringReadBlock(&rbb->remaining,
3904                                             offset_ptr,
3905                                             max_chars);
3906       } else {
3907         SeqTwoByteString* str = SeqTwoByteString::cast(input);
3908         str->SeqTwoByteStringReadBlockIntoBuffer(rbb,
3909                                                  offset_ptr,
3910                                                  max_chars);
3911         return rbb->util_buffer;
3912       }
3913     case kConsStringTag:
3914       return ConsString::cast(input)->ConsStringReadBlock(rbb,
3915                                                           offset_ptr,
3916                                                           max_chars);
3917     case kSlicedStringTag:
3918       return SlicedString::cast(input)->SlicedStringReadBlock(rbb,
3919                                                               offset_ptr,
3920                                                               max_chars);
3921     case kExternalStringTag:
3922       if (input->IsAsciiRepresentation()) {
3923         return ExternalAsciiString::cast(input)->ExternalAsciiStringReadBlock(
3924             &rbb->remaining,
3925             offset_ptr,
3926             max_chars);
3927       } else {
3928         ExternalTwoByteString::cast(input)->
3929             ExternalTwoByteStringReadBlockIntoBuffer(rbb,
3930                                                      offset_ptr,
3931                                                      max_chars);
3932         return rbb->util_buffer;
3933       }
3934     default:
3935       break;
3936   }
3937 
3938   UNREACHABLE();
3939   return 0;
3940 }
3941 
3942 
3943 FlatStringReader* FlatStringReader::top_ = NULL;
3944 
3945 
FlatStringReader(Handle<String> str)3946 FlatStringReader::FlatStringReader(Handle<String> str)
3947     : str_(str.location()),
3948       length_(str->length()),
3949       prev_(top_) {
3950   top_ = this;
3951   RefreshState();
3952 }
3953 
3954 
FlatStringReader(Vector<const char> input)3955 FlatStringReader::FlatStringReader(Vector<const char> input)
3956     : str_(NULL),
3957       is_ascii_(true),
3958       length_(input.length()),
3959       start_(input.start()),
3960       prev_(top_) {
3961   top_ = this;
3962 }
3963 
3964 
~FlatStringReader()3965 FlatStringReader::~FlatStringReader() {
3966   ASSERT_EQ(top_, this);
3967   top_ = prev_;
3968 }
3969 
3970 
RefreshState()3971 void FlatStringReader::RefreshState() {
3972   if (str_ == NULL) return;
3973   Handle<String> str(str_);
3974   ASSERT(str->IsFlat());
3975   is_ascii_ = str->IsAsciiRepresentation();
3976   if (is_ascii_) {
3977     start_ = str->ToAsciiVector().start();
3978   } else {
3979     start_ = str->ToUC16Vector().start();
3980   }
3981 }
3982 
3983 
PostGarbageCollectionProcessing()3984 void FlatStringReader::PostGarbageCollectionProcessing() {
3985   FlatStringReader* current = top_;
3986   while (current != NULL) {
3987     current->RefreshState();
3988     current = current->prev_;
3989   }
3990 }
3991 
3992 
Seek(unsigned pos)3993 void StringInputBuffer::Seek(unsigned pos) {
3994   Reset(pos, input_);
3995 }
3996 
3997 
Seek(unsigned pos)3998 void SafeStringInputBuffer::Seek(unsigned pos) {
3999   Reset(pos, input_);
4000 }
4001 
4002 
4003 // This method determines the type of string involved and then copies
4004 // a whole chunk of characters into a buffer.  It can be used with strings
4005 // that have been glued together to form a ConsString and which must cooperate
4006 // to fill up a buffer.
ReadBlockIntoBuffer(String * input,ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)4007 void String::ReadBlockIntoBuffer(String* input,
4008                                  ReadBlockBuffer* rbb,
4009                                  unsigned* offset_ptr,
4010                                  unsigned max_chars) {
4011   ASSERT(*offset_ptr <= (unsigned)input->length());
4012   if (max_chars == 0) return;
4013 
4014   switch (StringShape(input).representation_tag()) {
4015     case kSeqStringTag:
4016       if (input->IsAsciiRepresentation()) {
4017         SeqAsciiString::cast(input)->SeqAsciiStringReadBlockIntoBuffer(rbb,
4018                                                                  offset_ptr,
4019                                                                  max_chars);
4020         return;
4021       } else {
4022         SeqTwoByteString::cast(input)->SeqTwoByteStringReadBlockIntoBuffer(rbb,
4023                                                                      offset_ptr,
4024                                                                      max_chars);
4025         return;
4026       }
4027     case kConsStringTag:
4028       ConsString::cast(input)->ConsStringReadBlockIntoBuffer(rbb,
4029                                                              offset_ptr,
4030                                                              max_chars);
4031       return;
4032     case kSlicedStringTag:
4033       SlicedString::cast(input)->SlicedStringReadBlockIntoBuffer(rbb,
4034                                                                  offset_ptr,
4035                                                                  max_chars);
4036       return;
4037     case kExternalStringTag:
4038       if (input->IsAsciiRepresentation()) {
4039          ExternalAsciiString::cast(input)->
4040              ExternalAsciiStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars);
4041        } else {
4042          ExternalTwoByteString::cast(input)->
4043              ExternalTwoByteStringReadBlockIntoBuffer(rbb,
4044                                                       offset_ptr,
4045                                                       max_chars);
4046        }
4047        return;
4048     default:
4049       break;
4050   }
4051 
4052   UNREACHABLE();
4053   return;
4054 }
4055 
4056 
ReadBlock(String * input,unibrow::byte * util_buffer,unsigned capacity,unsigned * remaining,unsigned * offset_ptr)4057 const unibrow::byte* String::ReadBlock(String* input,
4058                                        unibrow::byte* util_buffer,
4059                                        unsigned capacity,
4060                                        unsigned* remaining,
4061                                        unsigned* offset_ptr) {
4062   ASSERT(*offset_ptr <= (unsigned)input->length());
4063   unsigned chars = input->length() - *offset_ptr;
4064   ReadBlockBuffer rbb(util_buffer, 0, capacity, 0);
4065   const unibrow::byte* answer = ReadBlock(input, &rbb, offset_ptr, chars);
4066   ASSERT(rbb.remaining <= static_cast<unsigned>(input->length()));
4067   *remaining = rbb.remaining;
4068   return answer;
4069 }
4070 
4071 
ReadBlock(String ** raw_input,unibrow::byte * util_buffer,unsigned capacity,unsigned * remaining,unsigned * offset_ptr)4072 const unibrow::byte* String::ReadBlock(String** raw_input,
4073                                        unibrow::byte* util_buffer,
4074                                        unsigned capacity,
4075                                        unsigned* remaining,
4076                                        unsigned* offset_ptr) {
4077   Handle<String> input(raw_input);
4078   ASSERT(*offset_ptr <= (unsigned)input->length());
4079   unsigned chars = input->length() - *offset_ptr;
4080   if (chars > capacity) chars = capacity;
4081   ReadBlockBuffer rbb(util_buffer, 0, capacity, 0);
4082   ReadBlockIntoBuffer(*input, &rbb, offset_ptr, chars);
4083   ASSERT(rbb.remaining <= static_cast<unsigned>(input->length()));
4084   *remaining = rbb.remaining;
4085   return rbb.util_buffer;
4086 }
4087 
4088 
4089 // This will iterate unless the block of string data spans two 'halves' of
4090 // a ConsString, in which case it will recurse.  Since the block of string
4091 // data to be read has a maximum size this limits the maximum recursion
4092 // depth to something sane.  Since C++ does not have tail call recursion
4093 // elimination, the iteration must be explicit.
ConsStringReadBlockIntoBuffer(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)4094 void ConsString::ConsStringReadBlockIntoBuffer(ReadBlockBuffer* rbb,
4095                                                unsigned* offset_ptr,
4096                                                unsigned max_chars) {
4097   ConsString* current = this;
4098   unsigned offset = *offset_ptr;
4099   int offset_correction = 0;
4100 
4101   while (true) {
4102     String* left = current->first();
4103     unsigned left_length = (unsigned)left->length();
4104     if (left_length > offset &&
4105       max_chars <= left_length - offset) {
4106       // Left hand side only - iterate unless we have reached the bottom of
4107       // the cons tree.
4108       if (StringShape(left).IsCons()) {
4109         current = ConsString::cast(left);
4110         continue;
4111       } else {
4112         String::ReadBlockIntoBuffer(left, rbb, &offset, max_chars);
4113         *offset_ptr = offset + offset_correction;
4114         return;
4115       }
4116     } else if (left_length <= offset) {
4117       // Right hand side only - iterate unless we have reached the bottom of
4118       // the cons tree.
4119       offset -= left_length;
4120       offset_correction += left_length;
4121       String* right = current->second();
4122       if (StringShape(right).IsCons()) {
4123         current = ConsString::cast(right);
4124         continue;
4125       } else {
4126         String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars);
4127         *offset_ptr = offset + offset_correction;
4128         return;
4129       }
4130     } else {
4131       // The block to be read spans two sides of the ConsString, so we recurse.
4132       // First recurse on the left.
4133       max_chars -= left_length - offset;
4134       String::ReadBlockIntoBuffer(left, rbb, &offset, left_length - offset);
4135       // We may have reached the max or there may not have been enough space
4136       // in the buffer for the characters in the left hand side.
4137       if (offset == left_length) {
4138         // Recurse on the right.
4139         String* right = String::cast(current->second());
4140         offset -= left_length;
4141         offset_correction += left_length;
4142         String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars);
4143       }
4144       *offset_ptr = offset + offset_correction;
4145       return;
4146     }
4147   }
4148 }
4149 
4150 
SlicedStringReadBlockIntoBuffer(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)4151 void SlicedString::SlicedStringReadBlockIntoBuffer(ReadBlockBuffer* rbb,
4152                                                    unsigned* offset_ptr,
4153                                                    unsigned max_chars) {
4154   String* backing = buffer();
4155   unsigned offset = start() + *offset_ptr;
4156   unsigned length = backing->length();
4157   if (max_chars > length - offset) {
4158     max_chars = length - offset;
4159   }
4160   String::ReadBlockIntoBuffer(backing, rbb, &offset, max_chars);
4161   *offset_ptr = offset - start();
4162 }
4163 
4164 
ConsStringIterateBody(ObjectVisitor * v)4165 void ConsString::ConsStringIterateBody(ObjectVisitor* v) {
4166   IteratePointers(v, kFirstOffset, kSecondOffset + kPointerSize);
4167 }
4168 
4169 
JSGlobalPropertyCellIterateBody(ObjectVisitor * v)4170 void JSGlobalPropertyCell::JSGlobalPropertyCellIterateBody(ObjectVisitor* v) {
4171   IteratePointers(v, kValueOffset, kValueOffset + kPointerSize);
4172 }
4173 
4174 
ConsStringGet(int index)4175 uint16_t ConsString::ConsStringGet(int index) {
4176   ASSERT(index >= 0 && index < this->length());
4177 
4178   // Check for a flattened cons string
4179   if (second()->length() == 0) {
4180     String* left = first();
4181     return left->Get(index);
4182   }
4183 
4184   String* string = String::cast(this);
4185 
4186   while (true) {
4187     if (StringShape(string).IsCons()) {
4188       ConsString* cons_string = ConsString::cast(string);
4189       String* left = cons_string->first();
4190       if (left->length() > index) {
4191         string = left;
4192       } else {
4193         index -= left->length();
4194         string = cons_string->second();
4195       }
4196     } else {
4197       return string->Get(index);
4198     }
4199   }
4200 
4201   UNREACHABLE();
4202   return 0;
4203 }
4204 
4205 
4206 template <typename sinkchar>
WriteToFlat(String * src,sinkchar * sink,int f,int t)4207 void String::WriteToFlat(String* src,
4208                          sinkchar* sink,
4209                          int f,
4210                          int t) {
4211   String* source = src;
4212   int from = f;
4213   int to = t;
4214   while (true) {
4215     ASSERT(0 <= from && from <= to && to <= source->length());
4216     switch (StringShape(source).full_representation_tag()) {
4217       case kAsciiStringTag | kExternalStringTag: {
4218         CopyChars(sink,
4219                   ExternalAsciiString::cast(source)->resource()->data() + from,
4220                   to - from);
4221         return;
4222       }
4223       case kTwoByteStringTag | kExternalStringTag: {
4224         const uc16* data =
4225             ExternalTwoByteString::cast(source)->resource()->data();
4226         CopyChars(sink,
4227                   data + from,
4228                   to - from);
4229         return;
4230       }
4231       case kAsciiStringTag | kSeqStringTag: {
4232         CopyChars(sink,
4233                   SeqAsciiString::cast(source)->GetChars() + from,
4234                   to - from);
4235         return;
4236       }
4237       case kTwoByteStringTag | kSeqStringTag: {
4238         CopyChars(sink,
4239                   SeqTwoByteString::cast(source)->GetChars() + from,
4240                   to - from);
4241         return;
4242       }
4243       case kAsciiStringTag | kSlicedStringTag:
4244       case kTwoByteStringTag | kSlicedStringTag: {
4245         SlicedString* sliced_string = SlicedString::cast(source);
4246         int start = sliced_string->start();
4247         from += start;
4248         to += start;
4249         source = String::cast(sliced_string->buffer());
4250         break;
4251       }
4252       case kAsciiStringTag | kConsStringTag:
4253       case kTwoByteStringTag | kConsStringTag: {
4254         ConsString* cons_string = ConsString::cast(source);
4255         String* first = cons_string->first();
4256         int boundary = first->length();
4257         if (to - boundary >= boundary - from) {
4258           // Right hand side is longer.  Recurse over left.
4259           if (from < boundary) {
4260             WriteToFlat(first, sink, from, boundary);
4261             sink += boundary - from;
4262             from = 0;
4263           } else {
4264             from -= boundary;
4265           }
4266           to -= boundary;
4267           source = cons_string->second();
4268         } else {
4269           // Left hand side is longer.  Recurse over right.
4270           if (to > boundary) {
4271             String* second = cons_string->second();
4272             WriteToFlat(second,
4273                         sink + boundary - from,
4274                         0,
4275                         to - boundary);
4276             to = boundary;
4277           }
4278           source = first;
4279         }
4280         break;
4281       }
4282     }
4283   }
4284 }
4285 
4286 
SlicedStringIterateBody(ObjectVisitor * v)4287 void SlicedString::SlicedStringIterateBody(ObjectVisitor* v) {
4288   IteratePointer(v, kBufferOffset);
4289 }
4290 
4291 
SlicedStringGet(int index)4292 uint16_t SlicedString::SlicedStringGet(int index) {
4293   ASSERT(index >= 0 && index < this->length());
4294   // Delegate to the buffer string.
4295   String* underlying = buffer();
4296   return underlying->Get(start() + index);
4297 }
4298 
4299 
4300 template <typename IteratorA, typename IteratorB>
CompareStringContents(IteratorA * ia,IteratorB * ib)4301 static inline bool CompareStringContents(IteratorA* ia, IteratorB* ib) {
4302   // General slow case check.  We know that the ia and ib iterators
4303   // have the same length.
4304   while (ia->has_more()) {
4305     uc32 ca = ia->GetNext();
4306     uc32 cb = ib->GetNext();
4307     if (ca != cb)
4308       return false;
4309   }
4310   return true;
4311 }
4312 
4313 
4314 // Compares the contents of two strings by reading and comparing
4315 // int-sized blocks of characters.
4316 template <typename Char>
CompareRawStringContents(Vector<Char> a,Vector<Char> b)4317 static inline bool CompareRawStringContents(Vector<Char> a, Vector<Char> b) {
4318   int length = a.length();
4319   ASSERT_EQ(length, b.length());
4320   const Char* pa = a.start();
4321   const Char* pb = b.start();
4322   int i = 0;
4323 #ifndef V8_HOST_CAN_READ_UNALIGNED
4324   // If this architecture isn't comfortable reading unaligned ints
4325   // then we have to check that the strings are aligned before
4326   // comparing them blockwise.
4327   const int kAlignmentMask = sizeof(uint32_t) - 1;  // NOLINT
4328   uint32_t pa_addr = reinterpret_cast<uint32_t>(pa);
4329   uint32_t pb_addr = reinterpret_cast<uint32_t>(pb);
4330   if (((pa_addr & kAlignmentMask) | (pb_addr & kAlignmentMask)) == 0) {
4331 #endif
4332     const int kStepSize = sizeof(int) / sizeof(Char);  // NOLINT
4333     int endpoint = length - kStepSize;
4334     // Compare blocks until we reach near the end of the string.
4335     for (; i <= endpoint; i += kStepSize) {
4336       uint32_t wa = *reinterpret_cast<const uint32_t*>(pa + i);
4337       uint32_t wb = *reinterpret_cast<const uint32_t*>(pb + i);
4338       if (wa != wb) {
4339         return false;
4340       }
4341     }
4342 #ifndef V8_HOST_CAN_READ_UNALIGNED
4343   }
4344 #endif
4345   // Compare the remaining characters that didn't fit into a block.
4346   for (; i < length; i++) {
4347     if (a[i] != b[i]) {
4348       return false;
4349     }
4350   }
4351   return true;
4352 }
4353 
4354 
4355 static StringInputBuffer string_compare_buffer_b;
4356 
4357 
4358 template <typename IteratorA>
CompareStringContentsPartial(IteratorA * ia,String * b)4359 static inline bool CompareStringContentsPartial(IteratorA* ia, String* b) {
4360   if (b->IsFlat()) {
4361     if (b->IsAsciiRepresentation()) {
4362       VectorIterator<char> ib(b->ToAsciiVector());
4363       return CompareStringContents(ia, &ib);
4364     } else {
4365       VectorIterator<uc16> ib(b->ToUC16Vector());
4366       return CompareStringContents(ia, &ib);
4367     }
4368   } else {
4369     string_compare_buffer_b.Reset(0, b);
4370     return CompareStringContents(ia, &string_compare_buffer_b);
4371   }
4372 }
4373 
4374 
4375 static StringInputBuffer string_compare_buffer_a;
4376 
4377 
SlowEquals(String * other)4378 bool String::SlowEquals(String* other) {
4379   // Fast check: negative check with lengths.
4380   int len = length();
4381   if (len != other->length()) return false;
4382   if (len == 0) return true;
4383 
4384   // Fast check: if hash code is computed for both strings
4385   // a fast negative check can be performed.
4386   if (HasHashCode() && other->HasHashCode()) {
4387     if (Hash() != other->Hash()) return false;
4388   }
4389 
4390   if (StringShape(this).IsSequentialAscii() &&
4391       StringShape(other).IsSequentialAscii()) {
4392     const char* str1 = SeqAsciiString::cast(this)->GetChars();
4393     const char* str2 = SeqAsciiString::cast(other)->GetChars();
4394     return CompareRawStringContents(Vector<const char>(str1, len),
4395                                     Vector<const char>(str2, len));
4396   }
4397 
4398   if (this->IsFlat()) {
4399     if (IsAsciiRepresentation()) {
4400       Vector<const char> vec1 = this->ToAsciiVector();
4401       if (other->IsFlat()) {
4402         if (other->IsAsciiRepresentation()) {
4403           Vector<const char> vec2 = other->ToAsciiVector();
4404           return CompareRawStringContents(vec1, vec2);
4405         } else {
4406           VectorIterator<char> buf1(vec1);
4407           VectorIterator<uc16> ib(other->ToUC16Vector());
4408           return CompareStringContents(&buf1, &ib);
4409         }
4410       } else {
4411         VectorIterator<char> buf1(vec1);
4412         string_compare_buffer_b.Reset(0, other);
4413         return CompareStringContents(&buf1, &string_compare_buffer_b);
4414       }
4415     } else {
4416       Vector<const uc16> vec1 = this->ToUC16Vector();
4417       if (other->IsFlat()) {
4418         if (other->IsAsciiRepresentation()) {
4419           VectorIterator<uc16> buf1(vec1);
4420           VectorIterator<char> ib(other->ToAsciiVector());
4421           return CompareStringContents(&buf1, &ib);
4422         } else {
4423           Vector<const uc16> vec2(other->ToUC16Vector());
4424           return CompareRawStringContents(vec1, vec2);
4425         }
4426       } else {
4427         VectorIterator<uc16> buf1(vec1);
4428         string_compare_buffer_b.Reset(0, other);
4429         return CompareStringContents(&buf1, &string_compare_buffer_b);
4430       }
4431     }
4432   } else {
4433     string_compare_buffer_a.Reset(0, this);
4434     return CompareStringContentsPartial(&string_compare_buffer_a, other);
4435   }
4436 }
4437 
4438 
MarkAsUndetectable()4439 bool String::MarkAsUndetectable() {
4440   if (StringShape(this).IsSymbol()) return false;
4441 
4442   Map* map = this->map();
4443   if (map == Heap::short_string_map()) {
4444     this->set_map(Heap::undetectable_short_string_map());
4445     return true;
4446   } else if (map == Heap::medium_string_map()) {
4447     this->set_map(Heap::undetectable_medium_string_map());
4448     return true;
4449   } else if (map == Heap::long_string_map()) {
4450     this->set_map(Heap::undetectable_long_string_map());
4451     return true;
4452   } else if (map == Heap::short_ascii_string_map()) {
4453     this->set_map(Heap::undetectable_short_ascii_string_map());
4454     return true;
4455   } else if (map == Heap::medium_ascii_string_map()) {
4456     this->set_map(Heap::undetectable_medium_ascii_string_map());
4457     return true;
4458   } else if (map == Heap::long_ascii_string_map()) {
4459     this->set_map(Heap::undetectable_long_ascii_string_map());
4460     return true;
4461   }
4462   // Rest cannot be marked as undetectable
4463   return false;
4464 }
4465 
4466 
IsEqualTo(Vector<const char> str)4467 bool String::IsEqualTo(Vector<const char> str) {
4468   int slen = length();
4469   Access<Scanner::Utf8Decoder> decoder(Scanner::utf8_decoder());
4470   decoder->Reset(str.start(), str.length());
4471   int i;
4472   for (i = 0; i < slen && decoder->has_more(); i++) {
4473     uc32 r = decoder->GetNext();
4474     if (Get(i) != r) return false;
4475   }
4476   return i == slen && !decoder->has_more();
4477 }
4478 
4479 
ComputeAndSetHash()4480 uint32_t String::ComputeAndSetHash() {
4481   // Should only be called if hash code has not yet been computed.
4482   ASSERT(!(length_field() & kHashComputedMask));
4483 
4484   // Compute the hash code.
4485   StringInputBuffer buffer(this);
4486   uint32_t field = ComputeLengthAndHashField(&buffer, length());
4487 
4488   // Store the hash code in the object.
4489   set_length_field(field);
4490 
4491   // Check the hash code is there.
4492   ASSERT(length_field() & kHashComputedMask);
4493   uint32_t result = field >> kHashShift;
4494   ASSERT(result != 0);  // Ensure that the hash value of 0 is never computed.
4495   return result;
4496 }
4497 
4498 
ComputeArrayIndex(unibrow::CharacterStream * buffer,uint32_t * index,int length)4499 bool String::ComputeArrayIndex(unibrow::CharacterStream* buffer,
4500                                uint32_t* index,
4501                                int length) {
4502   if (length == 0 || length > kMaxArrayIndexSize) return false;
4503   uc32 ch = buffer->GetNext();
4504 
4505   // If the string begins with a '0' character, it must only consist
4506   // of it to be a legal array index.
4507   if (ch == '0') {
4508     *index = 0;
4509     return length == 1;
4510   }
4511 
4512   // Convert string to uint32 array index; character by character.
4513   int d = ch - '0';
4514   if (d < 0 || d > 9) return false;
4515   uint32_t result = d;
4516   while (buffer->has_more()) {
4517     d = buffer->GetNext() - '0';
4518     if (d < 0 || d > 9) return false;
4519     // Check that the new result is below the 32 bit limit.
4520     if (result > 429496729U - ((d > 5) ? 1 : 0)) return false;
4521     result = (result * 10) + d;
4522   }
4523 
4524   *index = result;
4525   return true;
4526 }
4527 
4528 
SlowAsArrayIndex(uint32_t * index)4529 bool String::SlowAsArrayIndex(uint32_t* index) {
4530   if (length() <= kMaxCachedArrayIndexLength) {
4531     Hash();  // force computation of hash code
4532     uint32_t field = length_field();
4533     if ((field & kIsArrayIndexMask) == 0) return false;
4534     *index = (field & ((1 << kShortLengthShift) - 1)) >> kLongLengthShift;
4535     return true;
4536   } else {
4537     StringInputBuffer buffer(this);
4538     return ComputeArrayIndex(&buffer, index, length());
4539   }
4540 }
4541 
4542 
HashField(uint32_t hash,bool is_array_index)4543 static inline uint32_t HashField(uint32_t hash, bool is_array_index) {
4544   uint32_t result =
4545       (hash << String::kLongLengthShift) | String::kHashComputedMask;
4546   if (is_array_index) result |= String::kIsArrayIndexMask;
4547   return result;
4548 }
4549 
4550 
GetHashField()4551 uint32_t StringHasher::GetHashField() {
4552   ASSERT(is_valid());
4553   if (length_ <= String::kMaxShortStringSize) {
4554     uint32_t payload;
4555     if (is_array_index()) {
4556       payload = v8::internal::HashField(array_index(), true);
4557     } else {
4558       payload = v8::internal::HashField(GetHash(), false);
4559     }
4560     return (payload & ((1 << String::kShortLengthShift) - 1)) |
4561            (length_ << String::kShortLengthShift);
4562   } else if (length_ <= String::kMaxMediumStringSize) {
4563     uint32_t payload = v8::internal::HashField(GetHash(), false);
4564     return (payload & ((1 << String::kMediumLengthShift) - 1)) |
4565            (length_ << String::kMediumLengthShift);
4566   } else {
4567     return v8::internal::HashField(length_, false);
4568   }
4569 }
4570 
4571 
ComputeLengthAndHashField(unibrow::CharacterStream * buffer,int length)4572 uint32_t String::ComputeLengthAndHashField(unibrow::CharacterStream* buffer,
4573                                            int length) {
4574   StringHasher hasher(length);
4575 
4576   // Very long strings have a trivial hash that doesn't inspect the
4577   // string contents.
4578   if (hasher.has_trivial_hash()) {
4579     return hasher.GetHashField();
4580   }
4581 
4582   // Do the iterative array index computation as long as there is a
4583   // chance this is an array index.
4584   while (buffer->has_more() && hasher.is_array_index()) {
4585     hasher.AddCharacter(buffer->GetNext());
4586   }
4587 
4588   // Process the remaining characters without updating the array
4589   // index.
4590   while (buffer->has_more()) {
4591     hasher.AddCharacterNoIndex(buffer->GetNext());
4592   }
4593 
4594   return hasher.GetHashField();
4595 }
4596 
4597 
Slice(int start,int end)4598 Object* String::Slice(int start, int end) {
4599   if (start == 0 && end == length()) return this;
4600   if (StringShape(this).representation_tag() == kSlicedStringTag) {
4601     // Translate slices of a SlicedString into slices of the
4602     // underlying string buffer.
4603     SlicedString* str = SlicedString::cast(this);
4604     String* buf = str->buffer();
4605     return Heap::AllocateSlicedString(buf,
4606                                       str->start() + start,
4607                                       str->start() + end);
4608   }
4609   Object* result = Heap::AllocateSlicedString(this, start, end);
4610   if (result->IsFailure()) {
4611     return result;
4612   }
4613   // Due to the way we retry after GC on allocation failure we are not allowed
4614   // to fail on allocation after this point.  This is the one-allocation rule.
4615 
4616   // Try to flatten a cons string that is under the sliced string.
4617   // This is to avoid memory leaks and possible stack overflows caused by
4618   // building 'towers' of sliced strings on cons strings.
4619   // This may fail due to an allocation failure (when a GC is needed), but it
4620   // will succeed often enough to avoid the problem.  We only have to do this
4621   // if Heap::AllocateSlicedString actually returned a SlicedString.  It will
4622   // return flat strings for small slices for efficiency reasons.
4623   String* answer = String::cast(result);
4624   if (StringShape(answer).IsSliced() &&
4625       StringShape(this).representation_tag() == kConsStringTag) {
4626     TryFlatten();
4627     // If the flatten succeeded we might as well make the sliced string point
4628     // to the flat string rather than the cons string.
4629     String* second = ConsString::cast(this)->second();
4630     if (second->length() == 0) {
4631       SlicedString::cast(answer)->set_buffer(ConsString::cast(this)->first());
4632     }
4633   }
4634   return answer;
4635 }
4636 
4637 
PrintOn(FILE * file)4638 void String::PrintOn(FILE* file) {
4639   int length = this->length();
4640   for (int i = 0; i < length; i++) {
4641     fprintf(file, "%c", Get(i));
4642   }
4643 }
4644 
4645 
CreateBackPointers()4646 void Map::CreateBackPointers() {
4647   DescriptorArray* descriptors = instance_descriptors();
4648   for (int i = 0; i < descriptors->number_of_descriptors(); i++) {
4649     if (descriptors->GetType(i) == MAP_TRANSITION) {
4650       // Get target.
4651       Map* target = Map::cast(descriptors->GetValue(i));
4652 #ifdef DEBUG
4653       // Verify target.
4654       Object* source_prototype = prototype();
4655       Object* target_prototype = target->prototype();
4656       ASSERT(source_prototype->IsJSObject() ||
4657              source_prototype->IsMap() ||
4658              source_prototype->IsNull());
4659       ASSERT(target_prototype->IsJSObject() ||
4660              target_prototype->IsNull());
4661       ASSERT(source_prototype->IsMap() ||
4662              source_prototype == target_prototype);
4663 #endif
4664       // Point target back to source.  set_prototype() will not let us set
4665       // the prototype to a map, as we do here.
4666       *RawField(target, kPrototypeOffset) = this;
4667     }
4668   }
4669 }
4670 
4671 
ClearNonLiveTransitions(Object * real_prototype)4672 void Map::ClearNonLiveTransitions(Object* real_prototype) {
4673   // Live DescriptorArray objects will be marked, so we must use
4674   // low-level accessors to get and modify their data.
4675   DescriptorArray* d = reinterpret_cast<DescriptorArray*>(
4676       *RawField(this, Map::kInstanceDescriptorsOffset));
4677   if (d == Heap::raw_unchecked_empty_descriptor_array()) return;
4678   Smi* NullDescriptorDetails =
4679     PropertyDetails(NONE, NULL_DESCRIPTOR).AsSmi();
4680   FixedArray* contents = reinterpret_cast<FixedArray*>(
4681       d->get(DescriptorArray::kContentArrayIndex));
4682   ASSERT(contents->length() >= 2);
4683   for (int i = 0; i < contents->length(); i += 2) {
4684     // If the pair (value, details) is a map transition,
4685     // check if the target is live.  If not, null the descriptor.
4686     // Also drop the back pointer for that map transition, so that this
4687     // map is not reached again by following a back pointer from a
4688     // non-live object.
4689     PropertyDetails details(Smi::cast(contents->get(i + 1)));
4690     if (details.type() == MAP_TRANSITION) {
4691       Map* target = reinterpret_cast<Map*>(contents->get(i));
4692       ASSERT(target->IsHeapObject());
4693       if (!target->IsMarked()) {
4694         ASSERT(target->IsMap());
4695         contents->set(i + 1, NullDescriptorDetails, SKIP_WRITE_BARRIER);
4696         contents->set(i, Heap::null_value(), SKIP_WRITE_BARRIER);
4697         ASSERT(target->prototype() == this ||
4698                target->prototype() == real_prototype);
4699         // Getter prototype() is read-only, set_prototype() has side effects.
4700         *RawField(target, Map::kPrototypeOffset) = real_prototype;
4701       }
4702     }
4703   }
4704 }
4705 
4706 
MapIterateBody(ObjectVisitor * v)4707 void Map::MapIterateBody(ObjectVisitor* v) {
4708   // Assumes all Object* members are contiguously allocated!
4709   IteratePointers(v, kPrototypeOffset, kCodeCacheOffset + kPointerSize);
4710 }
4711 
4712 
SetInstancePrototype(Object * value)4713 Object* JSFunction::SetInstancePrototype(Object* value) {
4714   ASSERT(value->IsJSObject());
4715 
4716   if (has_initial_map()) {
4717     initial_map()->set_prototype(value);
4718   } else {
4719     // Put the value in the initial map field until an initial map is
4720     // needed.  At that point, a new initial map is created and the
4721     // prototype is put into the initial map where it belongs.
4722     set_prototype_or_initial_map(value);
4723   }
4724   return value;
4725 }
4726 
4727 
4728 
SetPrototype(Object * value)4729 Object* JSFunction::SetPrototype(Object* value) {
4730   Object* construct_prototype = value;
4731 
4732   // If the value is not a JSObject, store the value in the map's
4733   // constructor field so it can be accessed.  Also, set the prototype
4734   // used for constructing objects to the original object prototype.
4735   // See ECMA-262 13.2.2.
4736   if (!value->IsJSObject()) {
4737     // Copy the map so this does not affect unrelated functions.
4738     // Remove map transitions because they point to maps with a
4739     // different prototype.
4740     Object* new_map = map()->CopyDropTransitions();
4741     if (new_map->IsFailure()) return new_map;
4742     set_map(Map::cast(new_map));
4743     map()->set_constructor(value);
4744     map()->set_non_instance_prototype(true);
4745     construct_prototype =
4746         Top::context()->global_context()->initial_object_prototype();
4747   } else {
4748     map()->set_non_instance_prototype(false);
4749   }
4750 
4751   return SetInstancePrototype(construct_prototype);
4752 }
4753 
4754 
SetInstanceClassName(String * name)4755 Object* JSFunction::SetInstanceClassName(String* name) {
4756   shared()->set_instance_class_name(name);
4757   return this;
4758 }
4759 
4760 
GlobalContextFromLiterals(FixedArray * literals)4761 Context* JSFunction::GlobalContextFromLiterals(FixedArray* literals) {
4762   return Context::cast(literals->get(JSFunction::kLiteralGlobalContextIndex));
4763 }
4764 
4765 
OddballIterateBody(ObjectVisitor * v)4766 void Oddball::OddballIterateBody(ObjectVisitor* v) {
4767   // Assumes all Object* members are contiguously allocated!
4768   IteratePointers(v, kToStringOffset, kToNumberOffset + kPointerSize);
4769 }
4770 
4771 
Initialize(const char * to_string,Object * to_number)4772 Object* Oddball::Initialize(const char* to_string, Object* to_number) {
4773   Object* symbol = Heap::LookupAsciiSymbol(to_string);
4774   if (symbol->IsFailure()) return symbol;
4775   set_to_string(String::cast(symbol));
4776   set_to_number(to_number);
4777   return this;
4778 }
4779 
4780 
HasSourceCode()4781 bool SharedFunctionInfo::HasSourceCode() {
4782   return !script()->IsUndefined() &&
4783          !Script::cast(script())->source()->IsUndefined();
4784 }
4785 
4786 
GetSourceCode()4787 Object* SharedFunctionInfo::GetSourceCode() {
4788   HandleScope scope;
4789   if (script()->IsUndefined()) return Heap::undefined_value();
4790   Object* source = Script::cast(script())->source();
4791   if (source->IsUndefined()) return Heap::undefined_value();
4792   return *SubString(Handle<String>(String::cast(source)),
4793                     start_position(), end_position());
4794 }
4795 
4796 
CalculateInstanceSize()4797 int SharedFunctionInfo::CalculateInstanceSize() {
4798   int instance_size =
4799       JSObject::kHeaderSize +
4800       expected_nof_properties() * kPointerSize;
4801   if (instance_size > JSObject::kMaxInstanceSize) {
4802     instance_size = JSObject::kMaxInstanceSize;
4803   }
4804   return instance_size;
4805 }
4806 
4807 
CalculateInObjectProperties()4808 int SharedFunctionInfo::CalculateInObjectProperties() {
4809   return (CalculateInstanceSize() - JSObject::kHeaderSize) / kPointerSize;
4810 }
4811 
4812 
SetThisPropertyAssignmentsInfo(bool only_this_property_assignments,bool only_simple_this_property_assignments,FixedArray * assignments)4813 void SharedFunctionInfo::SetThisPropertyAssignmentsInfo(
4814     bool only_this_property_assignments,
4815     bool only_simple_this_property_assignments,
4816     FixedArray* assignments) {
4817   set_compiler_hints(BooleanBit::set(compiler_hints(),
4818                                      kHasOnlyThisPropertyAssignments,
4819                                      only_this_property_assignments));
4820   set_compiler_hints(BooleanBit::set(compiler_hints(),
4821                                      kHasOnlySimpleThisPropertyAssignments,
4822                                      only_simple_this_property_assignments));
4823   set_this_property_assignments(assignments);
4824   set_this_property_assignments_count(assignments->length() / 3);
4825 }
4826 
4827 
ClearThisPropertyAssignmentsInfo()4828 void SharedFunctionInfo::ClearThisPropertyAssignmentsInfo() {
4829   set_compiler_hints(BooleanBit::set(compiler_hints(),
4830                                      kHasOnlyThisPropertyAssignments,
4831                                      false));
4832   set_compiler_hints(BooleanBit::set(compiler_hints(),
4833                                      kHasOnlySimpleThisPropertyAssignments,
4834                                      false));
4835   set_this_property_assignments(Heap::undefined_value());
4836   set_this_property_assignments_count(0);
4837 }
4838 
4839 
GetThisPropertyAssignmentName(int index)4840 String* SharedFunctionInfo::GetThisPropertyAssignmentName(int index) {
4841   Object* obj = this_property_assignments();
4842   ASSERT(obj->IsFixedArray());
4843   ASSERT(index < this_property_assignments_count());
4844   obj = FixedArray::cast(obj)->get(index * 3);
4845   ASSERT(obj->IsString());
4846   return String::cast(obj);
4847 }
4848 
4849 
IsThisPropertyAssignmentArgument(int index)4850 bool SharedFunctionInfo::IsThisPropertyAssignmentArgument(int index) {
4851   Object* obj = this_property_assignments();
4852   ASSERT(obj->IsFixedArray());
4853   ASSERT(index < this_property_assignments_count());
4854   obj = FixedArray::cast(obj)->get(index * 3 + 1);
4855   return Smi::cast(obj)->value() != -1;
4856 }
4857 
4858 
GetThisPropertyAssignmentArgument(int index)4859 int SharedFunctionInfo::GetThisPropertyAssignmentArgument(int index) {
4860   ASSERT(IsThisPropertyAssignmentArgument(index));
4861   Object* obj =
4862       FixedArray::cast(this_property_assignments())->get(index * 3 + 1);
4863   return Smi::cast(obj)->value();
4864 }
4865 
4866 
GetThisPropertyAssignmentConstant(int index)4867 Object* SharedFunctionInfo::GetThisPropertyAssignmentConstant(int index) {
4868   ASSERT(!IsThisPropertyAssignmentArgument(index));
4869   Object* obj =
4870       FixedArray::cast(this_property_assignments())->get(index * 3 + 2);
4871   return obj;
4872 }
4873 
4874 
4875 
4876 // Support function for printing the source code to a StringStream
4877 // without any allocation in the heap.
SourceCodePrint(StringStream * accumulator,int max_length)4878 void SharedFunctionInfo::SourceCodePrint(StringStream* accumulator,
4879                                          int max_length) {
4880   // For some native functions there is no source.
4881   if (script()->IsUndefined() ||
4882       Script::cast(script())->source()->IsUndefined()) {
4883     accumulator->Add("<No Source>");
4884     return;
4885   }
4886 
4887   // Get the slice of the source for this function.
4888   // Don't use String::cast because we don't want more assertion errors while
4889   // we are already creating a stack dump.
4890   String* script_source =
4891       reinterpret_cast<String*>(Script::cast(script())->source());
4892 
4893   if (!script_source->LooksValid()) {
4894     accumulator->Add("<Invalid Source>");
4895     return;
4896   }
4897 
4898   if (!is_toplevel()) {
4899     accumulator->Add("function ");
4900     Object* name = this->name();
4901     if (name->IsString() && String::cast(name)->length() > 0) {
4902       accumulator->PrintName(name);
4903     }
4904   }
4905 
4906   int len = end_position() - start_position();
4907   if (len > max_length) {
4908     accumulator->Put(script_source,
4909                      start_position(),
4910                      start_position() + max_length);
4911     accumulator->Add("...\n");
4912   } else {
4913     accumulator->Put(script_source, start_position(), end_position());
4914   }
4915 }
4916 
4917 
SharedFunctionInfoIterateBody(ObjectVisitor * v)4918 void SharedFunctionInfo::SharedFunctionInfoIterateBody(ObjectVisitor* v) {
4919   IteratePointers(v, kNameOffset, kConstructStubOffset + kPointerSize);
4920   IteratePointers(v, kInstanceClassNameOffset, kScriptOffset + kPointerSize);
4921   IteratePointers(v, kDebugInfoOffset, kInferredNameOffset + kPointerSize);
4922   IteratePointers(v, kThisPropertyAssignmentsOffset,
4923       kThisPropertyAssignmentsOffset + kPointerSize);
4924 }
4925 
4926 
BeginCodeIteration(Code * code)4927 void ObjectVisitor::BeginCodeIteration(Code* code) {
4928   ASSERT(code->ic_flag() == Code::IC_TARGET_IS_OBJECT);
4929 }
4930 
4931 
VisitCodeTarget(RelocInfo * rinfo)4932 void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) {
4933   ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
4934   VisitPointer(rinfo->target_object_address());
4935 }
4936 
4937 
VisitDebugTarget(RelocInfo * rinfo)4938 void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) {
4939   ASSERT(RelocInfo::IsJSReturn(rinfo->rmode()) && rinfo->IsCallInstruction());
4940   VisitPointer(rinfo->call_object_address());
4941 }
4942 
4943 
4944 // Convert relocatable targets from address to code object address. This is
4945 // mainly IC call targets but for debugging straight-line code can be replaced
4946 // with a call instruction which also has to be relocated.
ConvertICTargetsFromAddressToObject()4947 void Code::ConvertICTargetsFromAddressToObject() {
4948   ASSERT(ic_flag() == IC_TARGET_IS_ADDRESS);
4949 
4950   for (RelocIterator it(this, RelocInfo::kCodeTargetMask);
4951        !it.done(); it.next()) {
4952     Address ic_addr = it.rinfo()->target_address();
4953     ASSERT(ic_addr != NULL);
4954     HeapObject* code = HeapObject::FromAddress(ic_addr - Code::kHeaderSize);
4955     ASSERT(code->IsHeapObject());
4956     it.rinfo()->set_target_object(code);
4957   }
4958 
4959 #ifdef ENABLE_DEBUGGER_SUPPORT
4960   if (Debug::has_break_points()) {
4961     for (RelocIterator it(this, RelocInfo::ModeMask(RelocInfo::JS_RETURN));
4962          !it.done();
4963          it.next()) {
4964       if (it.rinfo()->IsCallInstruction()) {
4965         Address addr = it.rinfo()->call_address();
4966         ASSERT(addr != NULL);
4967         HeapObject* code = HeapObject::FromAddress(addr - Code::kHeaderSize);
4968         ASSERT(code->IsHeapObject());
4969         it.rinfo()->set_call_object(code);
4970       }
4971     }
4972   }
4973 #endif
4974   set_ic_flag(IC_TARGET_IS_OBJECT);
4975 }
4976 
4977 
CodeIterateBody(ObjectVisitor * v)4978 void Code::CodeIterateBody(ObjectVisitor* v) {
4979   v->BeginCodeIteration(this);
4980 
4981   int mode_mask = RelocInfo::kCodeTargetMask |
4982                   RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
4983                   RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
4984                   RelocInfo::ModeMask(RelocInfo::JS_RETURN) |
4985                   RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
4986 
4987   for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
4988     RelocInfo::Mode rmode = it.rinfo()->rmode();
4989     if (rmode == RelocInfo::EMBEDDED_OBJECT) {
4990       v->VisitPointer(it.rinfo()->target_object_address());
4991     } else if (RelocInfo::IsCodeTarget(rmode)) {
4992       v->VisitCodeTarget(it.rinfo());
4993     } else if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
4994       v->VisitExternalReference(it.rinfo()->target_reference_address());
4995 #ifdef ENABLE_DEBUGGER_SUPPORT
4996     } else if (Debug::has_break_points() &&
4997                RelocInfo::IsJSReturn(rmode) &&
4998                it.rinfo()->IsCallInstruction()) {
4999       v->VisitDebugTarget(it.rinfo());
5000 #endif
5001     } else if (rmode == RelocInfo::RUNTIME_ENTRY) {
5002       v->VisitRuntimeEntry(it.rinfo());
5003     }
5004   }
5005 
5006   ScopeInfo<>::IterateScopeInfo(this, v);
5007 
5008   v->EndCodeIteration(this);
5009 }
5010 
5011 
ConvertICTargetsFromObjectToAddress()5012 void Code::ConvertICTargetsFromObjectToAddress() {
5013   ASSERT(ic_flag() == IC_TARGET_IS_OBJECT);
5014 
5015   for (RelocIterator it(this, RelocInfo::kCodeTargetMask);
5016        !it.done(); it.next()) {
5017     // We cannot use the safe cast (Code::cast) here, because we may be in
5018     // the middle of relocating old objects during GC and the map pointer in
5019     // the code object may be mangled
5020     Code* code = reinterpret_cast<Code*>(it.rinfo()->target_object());
5021     ASSERT((code != NULL) && code->IsHeapObject());
5022     it.rinfo()->set_target_address(code->instruction_start());
5023   }
5024 
5025 #ifdef ENABLE_DEBUGGER_SUPPORT
5026   if (Debug::has_break_points()) {
5027     for (RelocIterator it(this, RelocInfo::ModeMask(RelocInfo::JS_RETURN));
5028          !it.done();
5029          it.next()) {
5030       if (it.rinfo()->IsCallInstruction()) {
5031         Code* code = reinterpret_cast<Code*>(it.rinfo()->call_object());
5032         ASSERT((code != NULL) && code->IsHeapObject());
5033         it.rinfo()->set_call_address(code->instruction_start());
5034       }
5035     }
5036   }
5037 #endif
5038   set_ic_flag(IC_TARGET_IS_ADDRESS);
5039 }
5040 
5041 
Relocate(int delta)5042 void Code::Relocate(int delta) {
5043   for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) {
5044     it.rinfo()->apply(delta);
5045   }
5046   CPU::FlushICache(instruction_start(), instruction_size());
5047 }
5048 
5049 
CopyFrom(const CodeDesc & desc)5050 void Code::CopyFrom(const CodeDesc& desc) {
5051   // copy code
5052   memmove(instruction_start(), desc.buffer, desc.instr_size);
5053 
5054   // fill gap with zero bytes
5055   { byte* p = instruction_start() + desc.instr_size;
5056     byte* q = relocation_start();
5057     while (p < q) {
5058       *p++ = 0;
5059     }
5060   }
5061 
5062   // copy reloc info
5063   memmove(relocation_start(),
5064           desc.buffer + desc.buffer_size - desc.reloc_size,
5065           desc.reloc_size);
5066 
5067   // unbox handles and relocate
5068   int delta = instruction_start() - desc.buffer;
5069   int mode_mask = RelocInfo::kCodeTargetMask |
5070                   RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
5071                   RelocInfo::kApplyMask;
5072   for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
5073     RelocInfo::Mode mode = it.rinfo()->rmode();
5074     if (mode == RelocInfo::EMBEDDED_OBJECT) {
5075       Object** p = reinterpret_cast<Object**>(it.rinfo()->target_object());
5076       it.rinfo()->set_target_object(*p);
5077     } else if (RelocInfo::IsCodeTarget(mode)) {
5078       // rewrite code handles in inline cache targets to direct
5079       // pointers to the first instruction in the code object
5080       Object** p = reinterpret_cast<Object**>(it.rinfo()->target_object());
5081       Code* code = Code::cast(*p);
5082       it.rinfo()->set_target_address(code->instruction_start());
5083     } else {
5084       it.rinfo()->apply(delta);
5085     }
5086   }
5087   CPU::FlushICache(instruction_start(), instruction_size());
5088 }
5089 
5090 
5091 // Locate the source position which is closest to the address in the code. This
5092 // is using the source position information embedded in the relocation info.
5093 // The position returned is relative to the beginning of the script where the
5094 // source for this function is found.
SourcePosition(Address pc)5095 int Code::SourcePosition(Address pc) {
5096   int distance = kMaxInt;
5097   int position = RelocInfo::kNoPosition;  // Initially no position found.
5098   // Run through all the relocation info to find the best matching source
5099   // position. All the code needs to be considered as the sequence of the
5100   // instructions in the code does not necessarily follow the same order as the
5101   // source.
5102   RelocIterator it(this, RelocInfo::kPositionMask);
5103   while (!it.done()) {
5104     // Only look at positions after the current pc.
5105     if (it.rinfo()->pc() < pc) {
5106       // Get position and distance.
5107       int dist = pc - it.rinfo()->pc();
5108       int pos = it.rinfo()->data();
5109       // If this position is closer than the current candidate or if it has the
5110       // same distance as the current candidate and the position is higher then
5111       // this position is the new candidate.
5112       if ((dist < distance) ||
5113           (dist == distance && pos > position)) {
5114         position = pos;
5115         distance = dist;
5116       }
5117     }
5118     it.next();
5119   }
5120   return position;
5121 }
5122 
5123 
5124 // Same as Code::SourcePosition above except it only looks for statement
5125 // positions.
SourceStatementPosition(Address pc)5126 int Code::SourceStatementPosition(Address pc) {
5127   // First find the position as close as possible using all position
5128   // information.
5129   int position = SourcePosition(pc);
5130   // Now find the closest statement position before the position.
5131   int statement_position = 0;
5132   RelocIterator it(this, RelocInfo::kPositionMask);
5133   while (!it.done()) {
5134     if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) {
5135       int p = it.rinfo()->data();
5136       if (statement_position < p && p <= position) {
5137         statement_position = p;
5138       }
5139     }
5140     it.next();
5141   }
5142   return statement_position;
5143 }
5144 
5145 
5146 #ifdef ENABLE_DISASSEMBLER
5147 // Identify kind of code.
Kind2String(Kind kind)5148 const char* Code::Kind2String(Kind kind) {
5149   switch (kind) {
5150     case FUNCTION: return "FUNCTION";
5151     case STUB: return "STUB";
5152     case BUILTIN: return "BUILTIN";
5153     case LOAD_IC: return "LOAD_IC";
5154     case KEYED_LOAD_IC: return "KEYED_LOAD_IC";
5155     case STORE_IC: return "STORE_IC";
5156     case KEYED_STORE_IC: return "KEYED_STORE_IC";
5157     case CALL_IC: return "CALL_IC";
5158   }
5159   UNREACHABLE();
5160   return NULL;
5161 }
5162 
5163 
ICState2String(InlineCacheState state)5164 const char* Code::ICState2String(InlineCacheState state) {
5165   switch (state) {
5166     case UNINITIALIZED: return "UNINITIALIZED";
5167     case PREMONOMORPHIC: return "PREMONOMORPHIC";
5168     case MONOMORPHIC: return "MONOMORPHIC";
5169     case MONOMORPHIC_PROTOTYPE_FAILURE: return "MONOMORPHIC_PROTOTYPE_FAILURE";
5170     case MEGAMORPHIC: return "MEGAMORPHIC";
5171     case DEBUG_BREAK: return "DEBUG_BREAK";
5172     case DEBUG_PREPARE_STEP_IN: return "DEBUG_PREPARE_STEP_IN";
5173   }
5174   UNREACHABLE();
5175   return NULL;
5176 }
5177 
5178 
PropertyType2String(PropertyType type)5179 const char* Code::PropertyType2String(PropertyType type) {
5180   switch (type) {
5181     case NORMAL: return "NORMAL";
5182     case FIELD: return "FIELD";
5183     case CONSTANT_FUNCTION: return "CONSTANT_FUNCTION";
5184     case CALLBACKS: return "CALLBACKS";
5185     case INTERCEPTOR: return "INTERCEPTOR";
5186     case MAP_TRANSITION: return "MAP_TRANSITION";
5187     case CONSTANT_TRANSITION: return "CONSTANT_TRANSITION";
5188     case NULL_DESCRIPTOR: return "NULL_DESCRIPTOR";
5189   }
5190   UNREACHABLE();
5191   return NULL;
5192 }
5193 
Disassemble(const char * name)5194 void Code::Disassemble(const char* name) {
5195   PrintF("kind = %s\n", Kind2String(kind()));
5196   if (is_inline_cache_stub()) {
5197     PrintF("ic_state = %s\n", ICState2String(ic_state()));
5198     PrintF("ic_in_loop = %d\n", ic_in_loop() == IN_LOOP);
5199     if (ic_state() == MONOMORPHIC) {
5200       PrintF("type = %s\n", PropertyType2String(type()));
5201     }
5202   }
5203   if ((name != NULL) && (name[0] != '\0')) {
5204     PrintF("name = %s\n", name);
5205   }
5206 
5207   PrintF("Instructions (size = %d)\n", instruction_size());
5208   Disassembler::Decode(NULL, this);
5209   PrintF("\n");
5210 
5211   PrintF("RelocInfo (size = %d)\n", relocation_size());
5212   for (RelocIterator it(this); !it.done(); it.next())
5213     it.rinfo()->Print();
5214   PrintF("\n");
5215 }
5216 #endif  // ENABLE_DISASSEMBLER
5217 
5218 
SetFastElements(FixedArray * elems)5219 void JSObject::SetFastElements(FixedArray* elems) {
5220   // We should never end in here with a pixel array.
5221   ASSERT(!HasPixelElements());
5222 #ifdef DEBUG
5223   // Check the provided array is filled with the_hole.
5224   uint32_t len = static_cast<uint32_t>(elems->length());
5225   for (uint32_t i = 0; i < len; i++) ASSERT(elems->get(i)->IsTheHole());
5226 #endif
5227   WriteBarrierMode mode = elems->GetWriteBarrierMode();
5228   switch (GetElementsKind()) {
5229     case FAST_ELEMENTS: {
5230       FixedArray* old_elements = FixedArray::cast(elements());
5231       uint32_t old_length = static_cast<uint32_t>(old_elements->length());
5232       // Fill out the new array with this content and array holes.
5233       for (uint32_t i = 0; i < old_length; i++) {
5234         elems->set(i, old_elements->get(i), mode);
5235       }
5236       break;
5237     }
5238     case DICTIONARY_ELEMENTS: {
5239       NumberDictionary* dictionary = NumberDictionary::cast(elements());
5240       for (int i = 0; i < dictionary->Capacity(); i++) {
5241         Object* key = dictionary->KeyAt(i);
5242         if (key->IsNumber()) {
5243           uint32_t entry = static_cast<uint32_t>(key->Number());
5244           elems->set(entry, dictionary->ValueAt(i), mode);
5245         }
5246       }
5247       break;
5248     }
5249     default:
5250       UNREACHABLE();
5251       break;
5252   }
5253   set_elements(elems);
5254 }
5255 
5256 
SetSlowElements(Object * len)5257 Object* JSObject::SetSlowElements(Object* len) {
5258   // We should never end in here with a pixel array.
5259   ASSERT(!HasPixelElements());
5260 
5261   uint32_t new_length = static_cast<uint32_t>(len->Number());
5262 
5263   switch (GetElementsKind()) {
5264     case FAST_ELEMENTS: {
5265       // Make sure we never try to shrink dense arrays into sparse arrays.
5266       ASSERT(static_cast<uint32_t>(FixedArray::cast(elements())->length()) <=
5267                                    new_length);
5268       Object* obj = NormalizeElements();
5269       if (obj->IsFailure()) return obj;
5270 
5271       // Update length for JSArrays.
5272       if (IsJSArray()) JSArray::cast(this)->set_length(len);
5273       break;
5274     }
5275     case DICTIONARY_ELEMENTS: {
5276       if (IsJSArray()) {
5277         uint32_t old_length =
5278         static_cast<uint32_t>(JSArray::cast(this)->length()->Number());
5279         element_dictionary()->RemoveNumberEntries(new_length, old_length),
5280         JSArray::cast(this)->set_length(len);
5281       }
5282       break;
5283     }
5284     default:
5285       UNREACHABLE();
5286       break;
5287   }
5288   return this;
5289 }
5290 
5291 
Initialize(int capacity)5292 Object* JSArray::Initialize(int capacity) {
5293   ASSERT(capacity >= 0);
5294   set_length(Smi::FromInt(0), SKIP_WRITE_BARRIER);
5295   FixedArray* new_elements;
5296   if (capacity == 0) {
5297     new_elements = Heap::empty_fixed_array();
5298   } else {
5299     Object* obj = Heap::AllocateFixedArrayWithHoles(capacity);
5300     if (obj->IsFailure()) return obj;
5301     new_elements = FixedArray::cast(obj);
5302   }
5303   set_elements(new_elements);
5304   return this;
5305 }
5306 
5307 
Expand(int required_size)5308 void JSArray::Expand(int required_size) {
5309   Handle<JSArray> self(this);
5310   Handle<FixedArray> old_backing(FixedArray::cast(elements()));
5311   int old_size = old_backing->length();
5312   // Doubling in size would be overkill, but leave some slack to avoid
5313   // constantly growing.
5314   int new_size = required_size + (required_size >> 3);
5315   Handle<FixedArray> new_backing = Factory::NewFixedArray(new_size);
5316   // Can't use this any more now because we may have had a GC!
5317   for (int i = 0; i < old_size; i++) new_backing->set(i, old_backing->get(i));
5318   self->SetContent(*new_backing);
5319 }
5320 
5321 
5322 // Computes the new capacity when expanding the elements of a JSObject.
NewElementsCapacity(int old_capacity)5323 static int NewElementsCapacity(int old_capacity) {
5324   // (old_capacity + 50%) + 16
5325   return old_capacity + (old_capacity >> 1) + 16;
5326 }
5327 
5328 
ArrayLengthRangeError()5329 static Object* ArrayLengthRangeError() {
5330   HandleScope scope;
5331   return Top::Throw(*Factory::NewRangeError("invalid_array_length",
5332                                             HandleVector<Object>(NULL, 0)));
5333 }
5334 
5335 
SetElementsLength(Object * len)5336 Object* JSObject::SetElementsLength(Object* len) {
5337   // We should never end in here with a pixel array.
5338   ASSERT(!HasPixelElements());
5339 
5340   Object* smi_length = len->ToSmi();
5341   if (smi_length->IsSmi()) {
5342     int value = Smi::cast(smi_length)->value();
5343     if (value < 0) return ArrayLengthRangeError();
5344     switch (GetElementsKind()) {
5345       case FAST_ELEMENTS: {
5346         int old_capacity = FixedArray::cast(elements())->length();
5347         if (value <= old_capacity) {
5348           if (IsJSArray()) {
5349             int old_length = FastD2I(JSArray::cast(this)->length()->Number());
5350             // NOTE: We may be able to optimize this by removing the
5351             // last part of the elements backing storage array and
5352             // setting the capacity to the new size.
5353             for (int i = value; i < old_length; i++) {
5354               FixedArray::cast(elements())->set_the_hole(i);
5355             }
5356             JSArray::cast(this)->set_length(smi_length, SKIP_WRITE_BARRIER);
5357           }
5358           return this;
5359         }
5360         int min = NewElementsCapacity(old_capacity);
5361         int new_capacity = value > min ? value : min;
5362         if (new_capacity <= kMaxFastElementsLength ||
5363             !ShouldConvertToSlowElements(new_capacity)) {
5364           Object* obj = Heap::AllocateFixedArrayWithHoles(new_capacity);
5365           if (obj->IsFailure()) return obj;
5366           if (IsJSArray()) JSArray::cast(this)->set_length(smi_length,
5367                                                            SKIP_WRITE_BARRIER);
5368           SetFastElements(FixedArray::cast(obj));
5369           return this;
5370         }
5371         break;
5372       }
5373       case DICTIONARY_ELEMENTS: {
5374         if (IsJSArray()) {
5375           if (value == 0) {
5376             // If the length of a slow array is reset to zero, we clear
5377             // the array and flush backing storage. This has the added
5378             // benefit that the array returns to fast mode.
5379             initialize_elements();
5380           } else {
5381             // Remove deleted elements.
5382             uint32_t old_length =
5383             static_cast<uint32_t>(JSArray::cast(this)->length()->Number());
5384             element_dictionary()->RemoveNumberEntries(value, old_length);
5385           }
5386           JSArray::cast(this)->set_length(smi_length, SKIP_WRITE_BARRIER);
5387         }
5388         return this;
5389       }
5390       default:
5391         UNREACHABLE();
5392         break;
5393     }
5394   }
5395 
5396   // General slow case.
5397   if (len->IsNumber()) {
5398     uint32_t length;
5399     if (Array::IndexFromObject(len, &length)) {
5400       return SetSlowElements(len);
5401     } else {
5402       return ArrayLengthRangeError();
5403     }
5404   }
5405 
5406   // len is not a number so make the array size one and
5407   // set only element to len.
5408   Object* obj = Heap::AllocateFixedArray(1);
5409   if (obj->IsFailure()) return obj;
5410   FixedArray::cast(obj)->set(0, len);
5411   if (IsJSArray()) JSArray::cast(this)->set_length(Smi::FromInt(1),
5412                                                    SKIP_WRITE_BARRIER);
5413   set_elements(FixedArray::cast(obj));
5414   return this;
5415 }
5416 
5417 
HasElementPostInterceptor(JSObject * receiver,uint32_t index)5418 bool JSObject::HasElementPostInterceptor(JSObject* receiver, uint32_t index) {
5419   switch (GetElementsKind()) {
5420     case FAST_ELEMENTS: {
5421       uint32_t length = IsJSArray() ?
5422           static_cast<uint32_t>
5423               (Smi::cast(JSArray::cast(this)->length())->value()) :
5424           static_cast<uint32_t>(FixedArray::cast(elements())->length());
5425       if ((index < length) &&
5426           !FixedArray::cast(elements())->get(index)->IsTheHole()) {
5427         return true;
5428       }
5429       break;
5430     }
5431     case PIXEL_ELEMENTS: {
5432       // TODO(iposva): Add testcase.
5433       PixelArray* pixels = PixelArray::cast(elements());
5434       if (index < static_cast<uint32_t>(pixels->length())) {
5435         return true;
5436       }
5437       break;
5438     }
5439     case DICTIONARY_ELEMENTS: {
5440       if (element_dictionary()->FindEntry(index)
5441           != NumberDictionary::kNotFound) {
5442         return true;
5443       }
5444       break;
5445     }
5446     default:
5447       UNREACHABLE();
5448       break;
5449   }
5450 
5451   // Handle [] on String objects.
5452   if (this->IsStringObjectWithCharacterAt(index)) return true;
5453 
5454   Object* pt = GetPrototype();
5455   if (pt == Heap::null_value()) return false;
5456   return JSObject::cast(pt)->HasElementWithReceiver(receiver, index);
5457 }
5458 
5459 
HasElementWithInterceptor(JSObject * receiver,uint32_t index)5460 bool JSObject::HasElementWithInterceptor(JSObject* receiver, uint32_t index) {
5461   // Make sure that the top context does not change when doing
5462   // callbacks or interceptor calls.
5463   AssertNoContextChange ncc;
5464   HandleScope scope;
5465   Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
5466   Handle<JSObject> receiver_handle(receiver);
5467   Handle<JSObject> holder_handle(this);
5468   Handle<Object> data_handle(interceptor->data());
5469   v8::AccessorInfo info(v8::Utils::ToLocal(receiver_handle),
5470                         v8::Utils::ToLocal(data_handle),
5471                         v8::Utils::ToLocal(holder_handle));
5472   if (!interceptor->query()->IsUndefined()) {
5473     v8::IndexedPropertyQuery query =
5474         v8::ToCData<v8::IndexedPropertyQuery>(interceptor->query());
5475     LOG(ApiIndexedPropertyAccess("interceptor-indexed-has", this, index));
5476     v8::Handle<v8::Boolean> result;
5477     {
5478       // Leaving JavaScript.
5479       VMState state(EXTERNAL);
5480       result = query(index, info);
5481     }
5482     if (!result.IsEmpty()) return result->IsTrue();
5483   } else if (!interceptor->getter()->IsUndefined()) {
5484     v8::IndexedPropertyGetter getter =
5485         v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter());
5486     LOG(ApiIndexedPropertyAccess("interceptor-indexed-has-get", this, index));
5487     v8::Handle<v8::Value> result;
5488     {
5489       // Leaving JavaScript.
5490       VMState state(EXTERNAL);
5491       result = getter(index, info);
5492     }
5493     if (!result.IsEmpty()) return true;
5494   }
5495   return holder_handle->HasElementPostInterceptor(*receiver_handle, index);
5496 }
5497 
5498 
HasLocalElement(uint32_t index)5499 bool JSObject::HasLocalElement(uint32_t index) {
5500   // Check access rights if needed.
5501   if (IsAccessCheckNeeded() &&
5502       !Top::MayIndexedAccess(this, index, v8::ACCESS_HAS)) {
5503     Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
5504     return false;
5505   }
5506 
5507   // Check for lookup interceptor
5508   if (HasIndexedInterceptor()) {
5509     return HasElementWithInterceptor(this, index);
5510   }
5511 
5512   // Handle [] on String objects.
5513   if (this->IsStringObjectWithCharacterAt(index)) return true;
5514 
5515   switch (GetElementsKind()) {
5516     case FAST_ELEMENTS: {
5517       uint32_t length = IsJSArray() ?
5518           static_cast<uint32_t>
5519               (Smi::cast(JSArray::cast(this)->length())->value()) :
5520           static_cast<uint32_t>(FixedArray::cast(elements())->length());
5521       return (index < length) &&
5522           !FixedArray::cast(elements())->get(index)->IsTheHole();
5523     }
5524     case PIXEL_ELEMENTS: {
5525       PixelArray* pixels = PixelArray::cast(elements());
5526       return (index < static_cast<uint32_t>(pixels->length()));
5527     }
5528     case DICTIONARY_ELEMENTS: {
5529       return element_dictionary()->FindEntry(index)
5530           != NumberDictionary::kNotFound;
5531     }
5532     default:
5533       UNREACHABLE();
5534       break;
5535   }
5536   UNREACHABLE();
5537   return Heap::null_value();
5538 }
5539 
5540 
HasElementWithReceiver(JSObject * receiver,uint32_t index)5541 bool JSObject::HasElementWithReceiver(JSObject* receiver, uint32_t index) {
5542   // Check access rights if needed.
5543   if (IsAccessCheckNeeded() &&
5544       !Top::MayIndexedAccess(this, index, v8::ACCESS_HAS)) {
5545     Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
5546     return false;
5547   }
5548 
5549   // Check for lookup interceptor
5550   if (HasIndexedInterceptor()) {
5551     return HasElementWithInterceptor(receiver, index);
5552   }
5553 
5554   switch (GetElementsKind()) {
5555     case FAST_ELEMENTS: {
5556       uint32_t length = IsJSArray() ?
5557           static_cast<uint32_t>
5558               (Smi::cast(JSArray::cast(this)->length())->value()) :
5559           static_cast<uint32_t>(FixedArray::cast(elements())->length());
5560       if ((index < length) &&
5561           !FixedArray::cast(elements())->get(index)->IsTheHole()) return true;
5562       break;
5563     }
5564     case PIXEL_ELEMENTS: {
5565       PixelArray* pixels = PixelArray::cast(elements());
5566       if (index < static_cast<uint32_t>(pixels->length())) {
5567         return true;
5568       }
5569       break;
5570     }
5571     case DICTIONARY_ELEMENTS: {
5572       if (element_dictionary()->FindEntry(index)
5573           != NumberDictionary::kNotFound) {
5574         return true;
5575       }
5576       break;
5577     }
5578     default:
5579       UNREACHABLE();
5580       break;
5581   }
5582 
5583   // Handle [] on String objects.
5584   if (this->IsStringObjectWithCharacterAt(index)) return true;
5585 
5586   Object* pt = GetPrototype();
5587   if (pt == Heap::null_value()) return false;
5588   return JSObject::cast(pt)->HasElementWithReceiver(receiver, index);
5589 }
5590 
5591 
SetElementWithInterceptor(uint32_t index,Object * value)5592 Object* JSObject::SetElementWithInterceptor(uint32_t index, Object* value) {
5593   // Make sure that the top context does not change when doing
5594   // callbacks or interceptor calls.
5595   AssertNoContextChange ncc;
5596   HandleScope scope;
5597   Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
5598   Handle<JSObject> this_handle(this);
5599   Handle<Object> value_handle(value);
5600   if (!interceptor->setter()->IsUndefined()) {
5601     v8::IndexedPropertySetter setter =
5602         v8::ToCData<v8::IndexedPropertySetter>(interceptor->setter());
5603     Handle<Object> data_handle(interceptor->data());
5604     LOG(ApiIndexedPropertyAccess("interceptor-indexed-set", this, index));
5605     v8::AccessorInfo info(v8::Utils::ToLocal(this_handle),
5606                           v8::Utils::ToLocal(data_handle),
5607                           v8::Utils::ToLocal(this_handle));
5608     v8::Handle<v8::Value> result;
5609     {
5610       // Leaving JavaScript.
5611       VMState state(EXTERNAL);
5612       result = setter(index, v8::Utils::ToLocal(value_handle), info);
5613     }
5614     RETURN_IF_SCHEDULED_EXCEPTION();
5615     if (!result.IsEmpty()) return *value_handle;
5616   }
5617   Object* raw_result =
5618       this_handle->SetElementWithoutInterceptor(index, *value_handle);
5619   RETURN_IF_SCHEDULED_EXCEPTION();
5620   return raw_result;
5621 }
5622 
5623 
5624 // Adding n elements in fast case is O(n*n).
5625 // Note: revisit design to have dual undefined values to capture absent
5626 // elements.
SetFastElement(uint32_t index,Object * value)5627 Object* JSObject::SetFastElement(uint32_t index, Object* value) {
5628   ASSERT(HasFastElements());
5629 
5630   FixedArray* elms = FixedArray::cast(elements());
5631   uint32_t elms_length = static_cast<uint32_t>(elms->length());
5632 
5633   if (!IsJSArray() && (index >= elms_length || elms->get(index)->IsTheHole())) {
5634     Object* setter = LookupCallbackSetterInPrototypes(index);
5635     if (setter->IsJSFunction()) {
5636       return SetPropertyWithDefinedSetter(JSFunction::cast(setter), value);
5637     }
5638   }
5639 
5640   // Check whether there is extra space in fixed array..
5641   if (index < elms_length) {
5642     elms->set(index, value);
5643     if (IsJSArray()) {
5644       // Update the length of the array if needed.
5645       uint32_t array_length = 0;
5646       CHECK(Array::IndexFromObject(JSArray::cast(this)->length(),
5647                                    &array_length));
5648       if (index >= array_length) {
5649         JSArray::cast(this)->set_length(Smi::FromInt(index + 1),
5650                                         SKIP_WRITE_BARRIER);
5651       }
5652     }
5653     return value;
5654   }
5655 
5656   // Allow gap in fast case.
5657   if ((index - elms_length) < kMaxGap) {
5658     // Try allocating extra space.
5659     int new_capacity = NewElementsCapacity(index+1);
5660     if (new_capacity <= kMaxFastElementsLength ||
5661         !ShouldConvertToSlowElements(new_capacity)) {
5662       ASSERT(static_cast<uint32_t>(new_capacity) > index);
5663       Object* obj = Heap::AllocateFixedArrayWithHoles(new_capacity);
5664       if (obj->IsFailure()) return obj;
5665       SetFastElements(FixedArray::cast(obj));
5666       if (IsJSArray()) JSArray::cast(this)->set_length(Smi::FromInt(index + 1),
5667                                                        SKIP_WRITE_BARRIER);
5668       FixedArray::cast(elements())->set(index, value);
5669       return value;
5670     }
5671   }
5672 
5673   // Otherwise default to slow case.
5674   Object* obj = NormalizeElements();
5675   if (obj->IsFailure()) return obj;
5676   ASSERT(HasDictionaryElements());
5677   return SetElement(index, value);
5678 }
5679 
SetElement(uint32_t index,Object * value)5680 Object* JSObject::SetElement(uint32_t index, Object* value) {
5681   // Check access rights if needed.
5682   if (IsAccessCheckNeeded() &&
5683       !Top::MayIndexedAccess(this, index, v8::ACCESS_SET)) {
5684     Top::ReportFailedAccessCheck(this, v8::ACCESS_SET);
5685     return value;
5686   }
5687 
5688   if (IsJSGlobalProxy()) {
5689     Object* proto = GetPrototype();
5690     if (proto->IsNull()) return value;
5691     ASSERT(proto->IsJSGlobalObject());
5692     return JSObject::cast(proto)->SetElement(index, value);
5693   }
5694 
5695   // Check for lookup interceptor
5696   if (HasIndexedInterceptor()) {
5697     return SetElementWithInterceptor(index, value);
5698   }
5699 
5700   return SetElementWithoutInterceptor(index, value);
5701 }
5702 
5703 
SetElementWithoutInterceptor(uint32_t index,Object * value)5704 Object* JSObject::SetElementWithoutInterceptor(uint32_t index, Object* value) {
5705   switch (GetElementsKind()) {
5706     case FAST_ELEMENTS:
5707       // Fast case.
5708       return SetFastElement(index, value);
5709     case PIXEL_ELEMENTS: {
5710       PixelArray* pixels = PixelArray::cast(elements());
5711       return pixels->SetValue(index, value);
5712     }
5713     case DICTIONARY_ELEMENTS: {
5714       // Insert element in the dictionary.
5715       FixedArray* elms = FixedArray::cast(elements());
5716       NumberDictionary* dictionary = NumberDictionary::cast(elms);
5717 
5718       int entry = dictionary->FindEntry(index);
5719       if (entry != NumberDictionary::kNotFound) {
5720         Object* element = dictionary->ValueAt(entry);
5721         PropertyDetails details = dictionary->DetailsAt(entry);
5722         if (details.type() == CALLBACKS) {
5723           // Only accessors allowed as elements.
5724           FixedArray* structure = FixedArray::cast(element);
5725           if (structure->get(kSetterIndex)->IsJSFunction()) {
5726             JSFunction* setter = JSFunction::cast(structure->get(kSetterIndex));
5727             return SetPropertyWithDefinedSetter(setter, value);
5728           } else {
5729             Handle<Object> self(this);
5730             Handle<Object> key(Factory::NewNumberFromUint(index));
5731             Handle<Object> args[2] = { key, self };
5732             return Top::Throw(*Factory::NewTypeError("no_setter_in_callback",
5733                                                      HandleVector(args, 2)));
5734           }
5735         } else {
5736           dictionary->UpdateMaxNumberKey(index);
5737           dictionary->ValueAtPut(entry, value);
5738         }
5739       } else {
5740         // Index not already used. Look for an accessor in the prototype chain.
5741         if (!IsJSArray()) {
5742           Object* setter = LookupCallbackSetterInPrototypes(index);
5743           if (setter->IsJSFunction()) {
5744             return SetPropertyWithDefinedSetter(JSFunction::cast(setter),
5745                                                 value);
5746           }
5747         }
5748         Object* result = dictionary->AtNumberPut(index, value);
5749         if (result->IsFailure()) return result;
5750         if (elms != FixedArray::cast(result)) {
5751           set_elements(FixedArray::cast(result));
5752         }
5753       }
5754 
5755       // Update the array length if this JSObject is an array.
5756       if (IsJSArray()) {
5757         JSArray* array = JSArray::cast(this);
5758         Object* return_value = array->JSArrayUpdateLengthFromIndex(index,
5759                                                                    value);
5760         if (return_value->IsFailure()) return return_value;
5761       }
5762 
5763       // Attempt to put this object back in fast case.
5764       if (ShouldConvertToFastElements()) {
5765         uint32_t new_length = 0;
5766         if (IsJSArray()) {
5767           CHECK(Array::IndexFromObject(JSArray::cast(this)->length(),
5768                                        &new_length));
5769           JSArray::cast(this)->set_length(Smi::FromInt(new_length));
5770         } else {
5771           new_length = NumberDictionary::cast(elements())->max_number_key() + 1;
5772         }
5773         Object* obj = Heap::AllocateFixedArrayWithHoles(new_length);
5774         if (obj->IsFailure()) return obj;
5775         SetFastElements(FixedArray::cast(obj));
5776 #ifdef DEBUG
5777         if (FLAG_trace_normalization) {
5778           PrintF("Object elements are fast case again:\n");
5779           Print();
5780         }
5781 #endif
5782       }
5783 
5784       return value;
5785     }
5786     default:
5787       UNREACHABLE();
5788       break;
5789   }
5790   // All possible cases have been handled above. Add a return to avoid the
5791   // complaints from the compiler.
5792   UNREACHABLE();
5793   return Heap::null_value();
5794 }
5795 
5796 
JSArrayUpdateLengthFromIndex(uint32_t index,Object * value)5797 Object* JSArray::JSArrayUpdateLengthFromIndex(uint32_t index, Object* value) {
5798   uint32_t old_len = 0;
5799   CHECK(Array::IndexFromObject(length(), &old_len));
5800   // Check to see if we need to update the length. For now, we make
5801   // sure that the length stays within 32-bits (unsigned).
5802   if (index >= old_len && index != 0xffffffff) {
5803     Object* len =
5804         Heap::NumberFromDouble(static_cast<double>(index) + 1);
5805     if (len->IsFailure()) return len;
5806     set_length(len);
5807   }
5808   return value;
5809 }
5810 
5811 
GetElementPostInterceptor(JSObject * receiver,uint32_t index)5812 Object* JSObject::GetElementPostInterceptor(JSObject* receiver,
5813                                             uint32_t index) {
5814   // Get element works for both JSObject and JSArray since
5815   // JSArray::length cannot change.
5816   switch (GetElementsKind()) {
5817     case FAST_ELEMENTS: {
5818       FixedArray* elms = FixedArray::cast(elements());
5819       if (index < static_cast<uint32_t>(elms->length())) {
5820         Object* value = elms->get(index);
5821         if (!value->IsTheHole()) return value;
5822       }
5823       break;
5824     }
5825     case PIXEL_ELEMENTS: {
5826       // TODO(iposva): Add testcase and implement.
5827       UNIMPLEMENTED();
5828       break;
5829     }
5830     case DICTIONARY_ELEMENTS: {
5831       NumberDictionary* dictionary = element_dictionary();
5832       int entry = dictionary->FindEntry(index);
5833       if (entry != NumberDictionary::kNotFound) {
5834         Object* element = dictionary->ValueAt(entry);
5835         PropertyDetails details = dictionary->DetailsAt(entry);
5836         if (details.type() == CALLBACKS) {
5837           // Only accessors allowed as elements.
5838           FixedArray* structure = FixedArray::cast(element);
5839           Object* getter = structure->get(kGetterIndex);
5840           if (getter->IsJSFunction()) {
5841             return GetPropertyWithDefinedGetter(receiver,
5842                                                 JSFunction::cast(getter));
5843           } else {
5844             // Getter is not a function.
5845             return Heap::undefined_value();
5846           }
5847         }
5848         return element;
5849       }
5850       break;
5851     }
5852     default:
5853       UNREACHABLE();
5854       break;
5855   }
5856 
5857   // Continue searching via the prototype chain.
5858   Object* pt = GetPrototype();
5859   if (pt == Heap::null_value()) return Heap::undefined_value();
5860   return pt->GetElementWithReceiver(receiver, index);
5861 }
5862 
5863 
GetElementWithInterceptor(JSObject * receiver,uint32_t index)5864 Object* JSObject::GetElementWithInterceptor(JSObject* receiver,
5865                                             uint32_t index) {
5866   // Make sure that the top context does not change when doing
5867   // callbacks or interceptor calls.
5868   AssertNoContextChange ncc;
5869   HandleScope scope;
5870   Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
5871   Handle<JSObject> this_handle(receiver);
5872   Handle<JSObject> holder_handle(this);
5873 
5874   if (!interceptor->getter()->IsUndefined()) {
5875     Handle<Object> data_handle(interceptor->data());
5876     v8::IndexedPropertyGetter getter =
5877         v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter());
5878     LOG(ApiIndexedPropertyAccess("interceptor-indexed-get", this, index));
5879     v8::AccessorInfo info(v8::Utils::ToLocal(this_handle),
5880                           v8::Utils::ToLocal(data_handle),
5881                           v8::Utils::ToLocal(holder_handle));
5882     v8::Handle<v8::Value> result;
5883     {
5884       // Leaving JavaScript.
5885       VMState state(EXTERNAL);
5886       result = getter(index, info);
5887     }
5888     RETURN_IF_SCHEDULED_EXCEPTION();
5889     if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
5890   }
5891 
5892   Object* raw_result =
5893       holder_handle->GetElementPostInterceptor(*this_handle, index);
5894   RETURN_IF_SCHEDULED_EXCEPTION();
5895   return raw_result;
5896 }
5897 
5898 
GetElementWithReceiver(JSObject * receiver,uint32_t index)5899 Object* JSObject::GetElementWithReceiver(JSObject* receiver, uint32_t index) {
5900   // Check access rights if needed.
5901   if (IsAccessCheckNeeded() &&
5902       !Top::MayIndexedAccess(this, index, v8::ACCESS_GET)) {
5903     Top::ReportFailedAccessCheck(this, v8::ACCESS_GET);
5904     return Heap::undefined_value();
5905   }
5906 
5907   if (HasIndexedInterceptor()) {
5908     return GetElementWithInterceptor(receiver, index);
5909   }
5910 
5911   // Get element works for both JSObject and JSArray since
5912   // JSArray::length cannot change.
5913   switch (GetElementsKind()) {
5914     case FAST_ELEMENTS: {
5915       FixedArray* elms = FixedArray::cast(elements());
5916       if (index < static_cast<uint32_t>(elms->length())) {
5917         Object* value = elms->get(index);
5918         if (!value->IsTheHole()) return value;
5919       }
5920       break;
5921     }
5922     case PIXEL_ELEMENTS: {
5923       PixelArray* pixels = PixelArray::cast(elements());
5924       if (index < static_cast<uint32_t>(pixels->length())) {
5925         uint8_t value = pixels->get(index);
5926         return Smi::FromInt(value);
5927       }
5928       break;
5929     }
5930     case DICTIONARY_ELEMENTS: {
5931       NumberDictionary* dictionary = element_dictionary();
5932       int entry = dictionary->FindEntry(index);
5933       if (entry != NumberDictionary::kNotFound) {
5934         Object* element = dictionary->ValueAt(entry);
5935         PropertyDetails details = dictionary->DetailsAt(entry);
5936         if (details.type() == CALLBACKS) {
5937           // Only accessors allowed as elements.
5938           FixedArray* structure = FixedArray::cast(element);
5939           Object* getter = structure->get(kGetterIndex);
5940           if (getter->IsJSFunction()) {
5941             return GetPropertyWithDefinedGetter(receiver,
5942                                                 JSFunction::cast(getter));
5943           } else {
5944             // Getter is not a function.
5945             return Heap::undefined_value();
5946           }
5947         }
5948         return element;
5949       }
5950       break;
5951     }
5952   }
5953 
5954   Object* pt = GetPrototype();
5955   if (pt == Heap::null_value()) return Heap::undefined_value();
5956   return pt->GetElementWithReceiver(receiver, index);
5957 }
5958 
5959 
HasDenseElements()5960 bool JSObject::HasDenseElements() {
5961   int capacity = 0;
5962   int number_of_elements = 0;
5963 
5964   switch (GetElementsKind()) {
5965     case FAST_ELEMENTS: {
5966       FixedArray* elms = FixedArray::cast(elements());
5967       capacity = elms->length();
5968       for (int i = 0; i < capacity; i++) {
5969         if (!elms->get(i)->IsTheHole()) number_of_elements++;
5970       }
5971       break;
5972     }
5973     case PIXEL_ELEMENTS: {
5974       return true;
5975     }
5976     case DICTIONARY_ELEMENTS: {
5977       NumberDictionary* dictionary = NumberDictionary::cast(elements());
5978       capacity = dictionary->Capacity();
5979       number_of_elements = dictionary->NumberOfElements();
5980       break;
5981     }
5982     default:
5983       UNREACHABLE();
5984       break;
5985   }
5986 
5987   if (capacity == 0) return true;
5988   return (number_of_elements > (capacity / 2));
5989 }
5990 
5991 
ShouldConvertToSlowElements(int new_capacity)5992 bool JSObject::ShouldConvertToSlowElements(int new_capacity) {
5993   ASSERT(HasFastElements());
5994   // Keep the array in fast case if the current backing storage is
5995   // almost filled and if the new capacity is no more than twice the
5996   // old capacity.
5997   int elements_length = FixedArray::cast(elements())->length();
5998   return !HasDenseElements() || ((new_capacity / 2) > elements_length);
5999 }
6000 
6001 
ShouldConvertToFastElements()6002 bool JSObject::ShouldConvertToFastElements() {
6003   ASSERT(HasDictionaryElements());
6004   NumberDictionary* dictionary = NumberDictionary::cast(elements());
6005   // If the elements are sparse, we should not go back to fast case.
6006   if (!HasDenseElements()) return false;
6007   // If an element has been added at a very high index in the elements
6008   // dictionary, we cannot go back to fast case.
6009   if (dictionary->requires_slow_elements()) return false;
6010   // An object requiring access checks is never allowed to have fast
6011   // elements.  If it had fast elements we would skip security checks.
6012   if (IsAccessCheckNeeded()) return false;
6013   // If the dictionary backing storage takes up roughly half as much
6014   // space as a fast-case backing storage would the array should have
6015   // fast elements.
6016   uint32_t length = 0;
6017   if (IsJSArray()) {
6018     CHECK(Array::IndexFromObject(JSArray::cast(this)->length(), &length));
6019   } else {
6020     length = dictionary->max_number_key();
6021   }
6022   return static_cast<uint32_t>(dictionary->Capacity()) >=
6023       (length / (2 * NumberDictionary::kEntrySize));
6024 }
6025 
6026 
6027 // Certain compilers request function template instantiation when they
6028 // see the definition of the other template functions in the
6029 // class. This requires us to have the template functions put
6030 // together, so even though this function belongs in objects-debug.cc,
6031 // we keep it here instead to satisfy certain compilers.
6032 #ifdef DEBUG
6033 template<typename Shape, typename Key>
Print()6034 void Dictionary<Shape, Key>::Print() {
6035   int capacity = HashTable<Shape, Key>::Capacity();
6036   for (int i = 0; i < capacity; i++) {
6037     Object* k = HashTable<Shape, Key>::KeyAt(i);
6038     if (HashTable<Shape, Key>::IsKey(k)) {
6039       PrintF(" ");
6040       if (k->IsString()) {
6041         String::cast(k)->StringPrint();
6042       } else {
6043         k->ShortPrint();
6044       }
6045       PrintF(": ");
6046       ValueAt(i)->ShortPrint();
6047       PrintF("\n");
6048     }
6049   }
6050 }
6051 #endif
6052 
6053 
6054 template<typename Shape, typename Key>
CopyValuesTo(FixedArray * elements)6055 void Dictionary<Shape, Key>::CopyValuesTo(FixedArray* elements) {
6056   int pos = 0;
6057   int capacity = HashTable<Shape, Key>::Capacity();
6058   WriteBarrierMode mode = elements->GetWriteBarrierMode();
6059   for (int i = 0; i < capacity; i++) {
6060     Object* k =  Dictionary<Shape, Key>::KeyAt(i);
6061     if (Dictionary<Shape, Key>::IsKey(k)) {
6062       elements->set(pos++, ValueAt(i), mode);
6063     }
6064   }
6065   ASSERT(pos == elements->length());
6066 }
6067 
6068 
GetNamedInterceptor()6069 InterceptorInfo* JSObject::GetNamedInterceptor() {
6070   ASSERT(map()->has_named_interceptor());
6071   JSFunction* constructor = JSFunction::cast(map()->constructor());
6072   Object* template_info = constructor->shared()->function_data();
6073   Object* result =
6074       FunctionTemplateInfo::cast(template_info)->named_property_handler();
6075   return InterceptorInfo::cast(result);
6076 }
6077 
6078 
GetIndexedInterceptor()6079 InterceptorInfo* JSObject::GetIndexedInterceptor() {
6080   ASSERT(map()->has_indexed_interceptor());
6081   JSFunction* constructor = JSFunction::cast(map()->constructor());
6082   Object* template_info = constructor->shared()->function_data();
6083   Object* result =
6084       FunctionTemplateInfo::cast(template_info)->indexed_property_handler();
6085   return InterceptorInfo::cast(result);
6086 }
6087 
6088 
GetPropertyPostInterceptor(JSObject * receiver,String * name,PropertyAttributes * attributes)6089 Object* JSObject::GetPropertyPostInterceptor(JSObject* receiver,
6090                                              String* name,
6091                                              PropertyAttributes* attributes) {
6092   // Check local property in holder, ignore interceptor.
6093   LookupResult result;
6094   LocalLookupRealNamedProperty(name, &result);
6095   if (result.IsValid()) return GetProperty(receiver, &result, name, attributes);
6096   // Continue searching via the prototype chain.
6097   Object* pt = GetPrototype();
6098   *attributes = ABSENT;
6099   if (pt == Heap::null_value()) return Heap::undefined_value();
6100   return pt->GetPropertyWithReceiver(receiver, name, attributes);
6101 }
6102 
6103 
GetPropertyWithInterceptor(JSObject * receiver,String * name,PropertyAttributes * attributes)6104 Object* JSObject::GetPropertyWithInterceptor(
6105     JSObject* receiver,
6106     String* name,
6107     PropertyAttributes* attributes) {
6108   InterceptorInfo* interceptor = GetNamedInterceptor();
6109   HandleScope scope;
6110   Handle<JSObject> receiver_handle(receiver);
6111   Handle<JSObject> holder_handle(this);
6112   Handle<String> name_handle(name);
6113   Handle<Object> data_handle(interceptor->data());
6114 
6115   if (!interceptor->getter()->IsUndefined()) {
6116     v8::NamedPropertyGetter getter =
6117         v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter());
6118     LOG(ApiNamedPropertyAccess("interceptor-named-get", *holder_handle, name));
6119     v8::AccessorInfo info(v8::Utils::ToLocal(receiver_handle),
6120                           v8::Utils::ToLocal(data_handle),
6121                           v8::Utils::ToLocal(holder_handle));
6122     v8::Handle<v8::Value> result;
6123     {
6124       // Leaving JavaScript.
6125       VMState state(EXTERNAL);
6126       result = getter(v8::Utils::ToLocal(name_handle), info);
6127     }
6128     RETURN_IF_SCHEDULED_EXCEPTION();
6129     if (!result.IsEmpty()) {
6130       *attributes = NONE;
6131       return *v8::Utils::OpenHandle(*result);
6132     }
6133   }
6134 
6135   Object* result = holder_handle->GetPropertyPostInterceptor(
6136       *receiver_handle,
6137       *name_handle,
6138       attributes);
6139   RETURN_IF_SCHEDULED_EXCEPTION();
6140   return result;
6141 }
6142 
6143 
HasRealNamedProperty(String * key)6144 bool JSObject::HasRealNamedProperty(String* key) {
6145   // Check access rights if needed.
6146   if (IsAccessCheckNeeded() &&
6147       !Top::MayNamedAccess(this, key, v8::ACCESS_HAS)) {
6148     Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
6149     return false;
6150   }
6151 
6152   LookupResult result;
6153   LocalLookupRealNamedProperty(key, &result);
6154   if (result.IsValid()) {
6155     switch (result.type()) {
6156       case NORMAL:    // fall through.
6157       case FIELD:     // fall through.
6158       case CALLBACKS:  // fall through.
6159       case CONSTANT_FUNCTION:
6160         return true;
6161       case INTERCEPTOR:
6162       case MAP_TRANSITION:
6163       case CONSTANT_TRANSITION:
6164       case NULL_DESCRIPTOR:
6165         return false;
6166       default:
6167         UNREACHABLE();
6168     }
6169   }
6170 
6171   return false;
6172 }
6173 
6174 
HasRealElementProperty(uint32_t index)6175 bool JSObject::HasRealElementProperty(uint32_t index) {
6176   // Check access rights if needed.
6177   if (IsAccessCheckNeeded() &&
6178       !Top::MayIndexedAccess(this, index, v8::ACCESS_HAS)) {
6179     Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
6180     return false;
6181   }
6182 
6183   // Handle [] on String objects.
6184   if (this->IsStringObjectWithCharacterAt(index)) return true;
6185 
6186   switch (GetElementsKind()) {
6187     case FAST_ELEMENTS: {
6188       uint32_t length = IsJSArray() ?
6189           static_cast<uint32_t>(
6190               Smi::cast(JSArray::cast(this)->length())->value()) :
6191           static_cast<uint32_t>(FixedArray::cast(elements())->length());
6192       return (index < length) &&
6193           !FixedArray::cast(elements())->get(index)->IsTheHole();
6194     }
6195     case PIXEL_ELEMENTS: {
6196       PixelArray* pixels = PixelArray::cast(elements());
6197       return index < static_cast<uint32_t>(pixels->length());
6198     }
6199     case DICTIONARY_ELEMENTS: {
6200       return element_dictionary()->FindEntry(index)
6201           != NumberDictionary::kNotFound;
6202     }
6203     default:
6204       UNREACHABLE();
6205       break;
6206   }
6207   // All possibilities have been handled above already.
6208   UNREACHABLE();
6209   return Heap::null_value();
6210 }
6211 
6212 
HasRealNamedCallbackProperty(String * key)6213 bool JSObject::HasRealNamedCallbackProperty(String* key) {
6214   // Check access rights if needed.
6215   if (IsAccessCheckNeeded() &&
6216       !Top::MayNamedAccess(this, key, v8::ACCESS_HAS)) {
6217     Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS);
6218     return false;
6219   }
6220 
6221   LookupResult result;
6222   LocalLookupRealNamedProperty(key, &result);
6223   return result.IsValid() && (result.type() == CALLBACKS);
6224 }
6225 
6226 
NumberOfLocalProperties(PropertyAttributes filter)6227 int JSObject::NumberOfLocalProperties(PropertyAttributes filter) {
6228   if (HasFastProperties()) {
6229     DescriptorArray* descs = map()->instance_descriptors();
6230     int result = 0;
6231     for (int i = 0; i < descs->number_of_descriptors(); i++) {
6232       PropertyDetails details = descs->GetDetails(i);
6233       if (details.IsProperty() && (details.attributes() & filter) == 0) {
6234         result++;
6235       }
6236     }
6237     return result;
6238   } else {
6239     return property_dictionary()->NumberOfElementsFilterAttributes(filter);
6240   }
6241 }
6242 
6243 
NumberOfEnumProperties()6244 int JSObject::NumberOfEnumProperties() {
6245   return NumberOfLocalProperties(static_cast<PropertyAttributes>(DONT_ENUM));
6246 }
6247 
6248 
SwapPairs(FixedArray * numbers,int i,int j)6249 void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) {
6250   Object* temp = get(i);
6251   set(i, get(j));
6252   set(j, temp);
6253   if (this != numbers) {
6254     temp = numbers->get(i);
6255     numbers->set(i, numbers->get(j));
6256     numbers->set(j, temp);
6257   }
6258 }
6259 
6260 
InsertionSortPairs(FixedArray * content,FixedArray * numbers,int len)6261 static void InsertionSortPairs(FixedArray* content,
6262                                FixedArray* numbers,
6263                                int len) {
6264   for (int i = 1; i < len; i++) {
6265     int j = i;
6266     while (j > 0 &&
6267            (NumberToUint32(numbers->get(j - 1)) >
6268             NumberToUint32(numbers->get(j)))) {
6269       content->SwapPairs(numbers, j - 1, j);
6270       j--;
6271     }
6272   }
6273 }
6274 
6275 
HeapSortPairs(FixedArray * content,FixedArray * numbers,int len)6276 void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) {
6277   // In-place heap sort.
6278   ASSERT(content->length() == numbers->length());
6279 
6280   // Bottom-up max-heap construction.
6281   for (int i = 1; i < len; ++i) {
6282     int child_index = i;
6283     while (child_index > 0) {
6284       int parent_index = ((child_index + 1) >> 1) - 1;
6285       uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
6286       uint32_t child_value = NumberToUint32(numbers->get(child_index));
6287       if (parent_value < child_value) {
6288         content->SwapPairs(numbers, parent_index, child_index);
6289       } else {
6290         break;
6291       }
6292       child_index = parent_index;
6293     }
6294   }
6295 
6296   // Extract elements and create sorted array.
6297   for (int i = len - 1; i > 0; --i) {
6298     // Put max element at the back of the array.
6299     content->SwapPairs(numbers, 0, i);
6300     // Sift down the new top element.
6301     int parent_index = 0;
6302     while (true) {
6303       int child_index = ((parent_index + 1) << 1) - 1;
6304       if (child_index >= i) break;
6305       uint32_t child1_value = NumberToUint32(numbers->get(child_index));
6306       uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1));
6307       uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
6308       if (child_index + 1 >= i || child1_value > child2_value) {
6309         if (parent_value > child1_value) break;
6310         content->SwapPairs(numbers, parent_index, child_index);
6311         parent_index = child_index;
6312       } else {
6313         if (parent_value > child2_value) break;
6314         content->SwapPairs(numbers, parent_index, child_index + 1);
6315         parent_index = child_index + 1;
6316       }
6317     }
6318   }
6319 }
6320 
6321 
6322 // Sort this array and the numbers as pairs wrt. the (distinct) numbers.
SortPairs(FixedArray * numbers,uint32_t len)6323 void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) {
6324   ASSERT(this->length() == numbers->length());
6325   // For small arrays, simply use insertion sort.
6326   if (len <= 10) {
6327     InsertionSortPairs(this, numbers, len);
6328     return;
6329   }
6330   // Check the range of indices.
6331   uint32_t min_index = NumberToUint32(numbers->get(0));
6332   uint32_t max_index = min_index;
6333   uint32_t i;
6334   for (i = 1; i < len; i++) {
6335     if (NumberToUint32(numbers->get(i)) < min_index) {
6336       min_index = NumberToUint32(numbers->get(i));
6337     } else if (NumberToUint32(numbers->get(i)) > max_index) {
6338       max_index = NumberToUint32(numbers->get(i));
6339     }
6340   }
6341   if (max_index - min_index + 1 == len) {
6342     // Indices form a contiguous range, unless there are duplicates.
6343     // Do an in-place linear time sort assuming distinct numbers, but
6344     // avoid hanging in case they are not.
6345     for (i = 0; i < len; i++) {
6346       uint32_t p;
6347       uint32_t j = 0;
6348       // While the current element at i is not at its correct position p,
6349       // swap the elements at these two positions.
6350       while ((p = NumberToUint32(numbers->get(i)) - min_index) != i &&
6351              j++ < len) {
6352         SwapPairs(numbers, i, p);
6353       }
6354     }
6355   } else {
6356     HeapSortPairs(this, numbers, len);
6357     return;
6358   }
6359 }
6360 
6361 
6362 // Fill in the names of local properties into the supplied storage. The main
6363 // purpose of this function is to provide reflection information for the object
6364 // mirrors.
GetLocalPropertyNames(FixedArray * storage,int index)6365 void JSObject::GetLocalPropertyNames(FixedArray* storage, int index) {
6366   ASSERT(storage->length() >= (NumberOfLocalProperties(NONE) - index));
6367   if (HasFastProperties()) {
6368     DescriptorArray* descs = map()->instance_descriptors();
6369     for (int i = 0; i < descs->number_of_descriptors(); i++) {
6370       if (descs->IsProperty(i)) storage->set(index++, descs->GetKey(i));
6371     }
6372     ASSERT(storage->length() >= index);
6373   } else {
6374     property_dictionary()->CopyKeysTo(storage);
6375   }
6376 }
6377 
6378 
NumberOfLocalElements(PropertyAttributes filter)6379 int JSObject::NumberOfLocalElements(PropertyAttributes filter) {
6380   return GetLocalElementKeys(NULL, filter);
6381 }
6382 
6383 
NumberOfEnumElements()6384 int JSObject::NumberOfEnumElements() {
6385   return NumberOfLocalElements(static_cast<PropertyAttributes>(DONT_ENUM));
6386 }
6387 
6388 
GetLocalElementKeys(FixedArray * storage,PropertyAttributes filter)6389 int JSObject::GetLocalElementKeys(FixedArray* storage,
6390                                   PropertyAttributes filter) {
6391   int counter = 0;
6392   switch (GetElementsKind()) {
6393     case FAST_ELEMENTS: {
6394       int length = IsJSArray() ?
6395           Smi::cast(JSArray::cast(this)->length())->value() :
6396           FixedArray::cast(elements())->length();
6397       for (int i = 0; i < length; i++) {
6398         if (!FixedArray::cast(elements())->get(i)->IsTheHole()) {
6399           if (storage != NULL) {
6400             storage->set(counter, Smi::FromInt(i), SKIP_WRITE_BARRIER);
6401           }
6402           counter++;
6403         }
6404       }
6405       ASSERT(!storage || storage->length() >= counter);
6406       break;
6407     }
6408     case PIXEL_ELEMENTS: {
6409       int length = PixelArray::cast(elements())->length();
6410       while (counter < length) {
6411         if (storage != NULL) {
6412           storage->set(counter, Smi::FromInt(counter), SKIP_WRITE_BARRIER);
6413         }
6414         counter++;
6415       }
6416       ASSERT(!storage || storage->length() >= counter);
6417       break;
6418     }
6419     case DICTIONARY_ELEMENTS: {
6420       if (storage != NULL) {
6421         element_dictionary()->CopyKeysTo(storage, filter);
6422       }
6423       counter = element_dictionary()->NumberOfElementsFilterAttributes(filter);
6424       break;
6425     }
6426     default:
6427       UNREACHABLE();
6428       break;
6429   }
6430 
6431   if (this->IsJSValue()) {
6432     Object* val = JSValue::cast(this)->value();
6433     if (val->IsString()) {
6434       String* str = String::cast(val);
6435       if (storage) {
6436         for (int i = 0; i < str->length(); i++) {
6437           storage->set(counter + i, Smi::FromInt(i), SKIP_WRITE_BARRIER);
6438         }
6439       }
6440       counter += str->length();
6441     }
6442   }
6443   ASSERT(!storage || storage->length() == counter);
6444   return counter;
6445 }
6446 
6447 
GetEnumElementKeys(FixedArray * storage)6448 int JSObject::GetEnumElementKeys(FixedArray* storage) {
6449   return GetLocalElementKeys(storage,
6450                              static_cast<PropertyAttributes>(DONT_ENUM));
6451 }
6452 
6453 
IsMatch(uint32_t key,Object * other)6454 bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) {
6455   ASSERT(other->IsNumber());
6456   return key == static_cast<uint32_t>(other->Number());
6457 }
6458 
6459 
Hash(uint32_t key)6460 uint32_t NumberDictionaryShape::Hash(uint32_t key) {
6461   return ComputeIntegerHash(key);
6462 }
6463 
6464 
HashForObject(uint32_t key,Object * other)6465 uint32_t NumberDictionaryShape::HashForObject(uint32_t key, Object* other) {
6466   ASSERT(other->IsNumber());
6467   return ComputeIntegerHash(static_cast<uint32_t>(other->Number()));
6468 }
6469 
6470 
AsObject(uint32_t key)6471 Object* NumberDictionaryShape::AsObject(uint32_t key) {
6472   return Heap::NumberFromUint32(key);
6473 }
6474 
6475 
IsMatch(String * key,Object * other)6476 bool StringDictionaryShape::IsMatch(String* key, Object* other) {
6477   // We know that all entries in a hash table had their hash keys created.
6478   // Use that knowledge to have fast failure.
6479   if (key->Hash() != String::cast(other)->Hash()) return false;
6480   return key->Equals(String::cast(other));
6481 }
6482 
6483 
Hash(String * key)6484 uint32_t StringDictionaryShape::Hash(String* key) {
6485   return key->Hash();
6486 }
6487 
6488 
HashForObject(String * key,Object * other)6489 uint32_t StringDictionaryShape::HashForObject(String* key, Object* other) {
6490   return String::cast(other)->Hash();
6491 }
6492 
6493 
AsObject(String * key)6494 Object* StringDictionaryShape::AsObject(String* key) {
6495   return key;
6496 }
6497 
6498 
6499 // StringKey simply carries a string object as key.
6500 class StringKey : public HashTableKey {
6501  public:
StringKey(String * string)6502   explicit StringKey(String* string) :
6503       string_(string),
6504       hash_(HashForObject(string)) { }
6505 
IsMatch(Object * string)6506   bool IsMatch(Object* string) {
6507     // We know that all entries in a hash table had their hash keys created.
6508     // Use that knowledge to have fast failure.
6509     if (hash_ != HashForObject(string)) {
6510       return false;
6511     }
6512     return string_->Equals(String::cast(string));
6513   }
6514 
Hash()6515   uint32_t Hash() { return hash_; }
6516 
HashForObject(Object * other)6517   uint32_t HashForObject(Object* other) { return String::cast(other)->Hash(); }
6518 
AsObject()6519   Object* AsObject() { return string_; }
6520 
6521   String* string_;
6522   uint32_t hash_;
6523 };
6524 
6525 
6526 // StringSharedKeys are used as keys in the eval cache.
6527 class StringSharedKey : public HashTableKey {
6528  public:
StringSharedKey(String * source,SharedFunctionInfo * shared)6529   StringSharedKey(String* source, SharedFunctionInfo* shared)
6530       : source_(source), shared_(shared) { }
6531 
IsMatch(Object * other)6532   bool IsMatch(Object* other) {
6533     if (!other->IsFixedArray()) return false;
6534     FixedArray* pair = FixedArray::cast(other);
6535     SharedFunctionInfo* shared = SharedFunctionInfo::cast(pair->get(0));
6536     if (shared != shared_) return false;
6537     String* source = String::cast(pair->get(1));
6538     return source->Equals(source_);
6539   }
6540 
StringSharedHashHelper(String * source,SharedFunctionInfo * shared)6541   static uint32_t StringSharedHashHelper(String* source,
6542                                          SharedFunctionInfo* shared) {
6543     uint32_t hash = source->Hash();
6544     if (shared->HasSourceCode()) {
6545       // Instead of using the SharedFunctionInfo pointer in the hash
6546       // code computation, we use a combination of the hash of the
6547       // script source code and the start and end positions.  We do
6548       // this to ensure that the cache entries can survive garbage
6549       // collection.
6550       Script* script = Script::cast(shared->script());
6551       hash ^= String::cast(script->source())->Hash();
6552       hash += shared->start_position();
6553     }
6554     return hash;
6555   }
6556 
Hash()6557   uint32_t Hash() {
6558     return StringSharedHashHelper(source_, shared_);
6559   }
6560 
HashForObject(Object * obj)6561   uint32_t HashForObject(Object* obj) {
6562     FixedArray* pair = FixedArray::cast(obj);
6563     SharedFunctionInfo* shared = SharedFunctionInfo::cast(pair->get(0));
6564     String* source = String::cast(pair->get(1));
6565     return StringSharedHashHelper(source, shared);
6566   }
6567 
AsObject()6568   Object* AsObject() {
6569     Object* obj = Heap::AllocateFixedArray(2);
6570     if (obj->IsFailure()) return obj;
6571     FixedArray* pair = FixedArray::cast(obj);
6572     pair->set(0, shared_);
6573     pair->set(1, source_);
6574     return pair;
6575   }
6576 
6577  private:
6578   String* source_;
6579   SharedFunctionInfo* shared_;
6580 };
6581 
6582 
6583 // RegExpKey carries the source and flags of a regular expression as key.
6584 class RegExpKey : public HashTableKey {
6585  public:
RegExpKey(String * string,JSRegExp::Flags flags)6586   RegExpKey(String* string, JSRegExp::Flags flags)
6587       : string_(string),
6588         flags_(Smi::FromInt(flags.value())) { }
6589 
IsMatch(Object * obj)6590   bool IsMatch(Object* obj) {
6591     FixedArray* val = FixedArray::cast(obj);
6592     return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex)))
6593         && (flags_ == val->get(JSRegExp::kFlagsIndex));
6594   }
6595 
Hash()6596   uint32_t Hash() { return RegExpHash(string_, flags_); }
6597 
AsObject()6598   Object* AsObject() {
6599     // Plain hash maps, which is where regexp keys are used, don't
6600     // use this function.
6601     UNREACHABLE();
6602     return NULL;
6603   }
6604 
HashForObject(Object * obj)6605   uint32_t HashForObject(Object* obj) {
6606     FixedArray* val = FixedArray::cast(obj);
6607     return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)),
6608                       Smi::cast(val->get(JSRegExp::kFlagsIndex)));
6609   }
6610 
RegExpHash(String * string,Smi * flags)6611   static uint32_t RegExpHash(String* string, Smi* flags) {
6612     return string->Hash() + flags->value();
6613   }
6614 
6615   String* string_;
6616   Smi* flags_;
6617 };
6618 
6619 // Utf8SymbolKey carries a vector of chars as key.
6620 class Utf8SymbolKey : public HashTableKey {
6621  public:
Utf8SymbolKey(Vector<const char> string)6622   explicit Utf8SymbolKey(Vector<const char> string)
6623       : string_(string), length_field_(0) { }
6624 
IsMatch(Object * string)6625   bool IsMatch(Object* string) {
6626     return String::cast(string)->IsEqualTo(string_);
6627   }
6628 
Hash()6629   uint32_t Hash() {
6630     if (length_field_ != 0) return length_field_ >> String::kHashShift;
6631     unibrow::Utf8InputBuffer<> buffer(string_.start(),
6632                                       static_cast<unsigned>(string_.length()));
6633     chars_ = buffer.Length();
6634     length_field_ = String::ComputeLengthAndHashField(&buffer, chars_);
6635     uint32_t result = length_field_ >> String::kHashShift;
6636     ASSERT(result != 0);  // Ensure that the hash value of 0 is never computed.
6637     return result;
6638   }
6639 
HashForObject(Object * other)6640   uint32_t HashForObject(Object* other) {
6641     return String::cast(other)->Hash();
6642   }
6643 
AsObject()6644   Object* AsObject() {
6645     if (length_field_ == 0) Hash();
6646     return Heap::AllocateSymbol(string_, chars_, length_field_);
6647   }
6648 
6649   Vector<const char> string_;
6650   uint32_t length_field_;
6651   int chars_;  // Caches the number of characters when computing the hash code.
6652 };
6653 
6654 
6655 // SymbolKey carries a string/symbol object as key.
6656 class SymbolKey : public HashTableKey {
6657  public:
SymbolKey(String * string)6658   explicit SymbolKey(String* string) : string_(string) { }
6659 
IsMatch(Object * string)6660   bool IsMatch(Object* string) {
6661     return String::cast(string)->Equals(string_);
6662   }
6663 
Hash()6664   uint32_t Hash() { return string_->Hash(); }
6665 
HashForObject(Object * other)6666   uint32_t HashForObject(Object* other) {
6667     return String::cast(other)->Hash();
6668   }
6669 
AsObject()6670   Object* AsObject() {
6671     // If the string is a cons string, attempt to flatten it so that
6672     // symbols will most often be flat strings.
6673     if (StringShape(string_).IsCons()) {
6674       ConsString* cons_string = ConsString::cast(string_);
6675       cons_string->TryFlatten();
6676       if (cons_string->second()->length() == 0) {
6677         string_ = cons_string->first();
6678       }
6679     }
6680     // Transform string to symbol if possible.
6681     Map* map = Heap::SymbolMapForString(string_);
6682     if (map != NULL) {
6683       string_->set_map(map);
6684       ASSERT(string_->IsSymbol());
6685       return string_;
6686     }
6687     // Otherwise allocate a new symbol.
6688     StringInputBuffer buffer(string_);
6689     return Heap::AllocateInternalSymbol(&buffer,
6690                                         string_->length(),
6691                                         string_->length_field());
6692   }
6693 
StringHash(Object * obj)6694   static uint32_t StringHash(Object* obj) {
6695     return String::cast(obj)->Hash();
6696   }
6697 
6698   String* string_;
6699 };
6700 
6701 
6702 template<typename Shape, typename Key>
IteratePrefix(ObjectVisitor * v)6703 void HashTable<Shape, Key>::IteratePrefix(ObjectVisitor* v) {
6704   IteratePointers(v, 0, kElementsStartOffset);
6705 }
6706 
6707 
6708 template<typename Shape, typename Key>
IterateElements(ObjectVisitor * v)6709 void HashTable<Shape, Key>::IterateElements(ObjectVisitor* v) {
6710   IteratePointers(v,
6711                   kElementsStartOffset,
6712                   kHeaderSize + length() * kPointerSize);
6713 }
6714 
6715 
6716 template<typename Shape, typename Key>
Allocate(int at_least_space_for)6717 Object* HashTable<Shape, Key>::Allocate(
6718     int at_least_space_for) {
6719   int capacity = RoundUpToPowerOf2(at_least_space_for);
6720   if (capacity < 4) capacity = 4;  // Guarantee min capacity.
6721   Object* obj = Heap::AllocateHashTable(EntryToIndex(capacity));
6722   if (!obj->IsFailure()) {
6723     HashTable::cast(obj)->SetNumberOfElements(0);
6724     HashTable::cast(obj)->SetCapacity(capacity);
6725   }
6726   return obj;
6727 }
6728 
6729 
6730 
6731 // Find entry for key otherwise return -1.
6732 template<typename Shape, typename Key>
FindEntry(Key key)6733 int HashTable<Shape, Key>::FindEntry(Key key) {
6734   uint32_t nof = NumberOfElements();
6735   if (nof == 0) return kNotFound;  // Bail out if empty.
6736 
6737   uint32_t capacity = Capacity();
6738   uint32_t hash = Shape::Hash(key);
6739   uint32_t entry = GetProbe(hash, 0, capacity);
6740 
6741   Object* element = KeyAt(entry);
6742   uint32_t passed_elements = 0;
6743   if (!element->IsNull()) {
6744     if (!element->IsUndefined() && Shape::IsMatch(key, element)) return entry;
6745     if (++passed_elements == nof) return kNotFound;
6746   }
6747   for (uint32_t i = 1; !element->IsUndefined(); i++) {
6748     entry = GetProbe(hash, i, capacity);
6749     element = KeyAt(entry);
6750     if (!element->IsNull()) {
6751       if (!element->IsUndefined() && Shape::IsMatch(key, element)) return entry;
6752       if (++passed_elements == nof) return kNotFound;
6753     }
6754   }
6755   return kNotFound;
6756 }
6757 
6758 
6759 template<typename Shape, typename Key>
EnsureCapacity(int n,Key key)6760 Object* HashTable<Shape, Key>::EnsureCapacity(int n, Key key) {
6761   int capacity = Capacity();
6762   int nof = NumberOfElements() + n;
6763   // Make sure 50% is free
6764   if (nof + (nof >> 1) <= capacity) return this;
6765 
6766   Object* obj = Allocate(nof * 2);
6767   if (obj->IsFailure()) return obj;
6768   HashTable* table = HashTable::cast(obj);
6769   WriteBarrierMode mode = table->GetWriteBarrierMode();
6770 
6771   // Copy prefix to new array.
6772   for (int i = kPrefixStartIndex;
6773        i < kPrefixStartIndex + Shape::kPrefixSize;
6774        i++) {
6775     table->set(i, get(i), mode);
6776   }
6777   // Rehash the elements.
6778   for (int i = 0; i < capacity; i++) {
6779     uint32_t from_index = EntryToIndex(i);
6780     Object* k = get(from_index);
6781     if (IsKey(k)) {
6782       uint32_t hash = Shape::HashForObject(key, k);
6783       uint32_t insertion_index =
6784           EntryToIndex(table->FindInsertionEntry(hash));
6785       for (int j = 0; j < Shape::kEntrySize; j++) {
6786         table->set(insertion_index + j, get(from_index + j), mode);
6787       }
6788     }
6789   }
6790   table->SetNumberOfElements(NumberOfElements());
6791   return table;
6792 }
6793 
6794 
6795 template<typename Shape, typename Key>
FindInsertionEntry(uint32_t hash)6796 uint32_t HashTable<Shape, Key>::FindInsertionEntry(uint32_t hash) {
6797   uint32_t capacity = Capacity();
6798   uint32_t entry = GetProbe(hash, 0, capacity);
6799   Object* element = KeyAt(entry);
6800 
6801   for (uint32_t i = 1; !(element->IsUndefined() || element->IsNull()); i++) {
6802     entry = GetProbe(hash, i, capacity);
6803     element = KeyAt(entry);
6804   }
6805 
6806   return entry;
6807 }
6808 
6809 // Force instantiation of template instances class.
6810 // Please note this list is compiler dependent.
6811 
6812 template class HashTable<SymbolTableShape, HashTableKey*>;
6813 
6814 template class HashTable<CompilationCacheShape, HashTableKey*>;
6815 
6816 template class HashTable<MapCacheShape, HashTableKey*>;
6817 
6818 template class Dictionary<StringDictionaryShape, String*>;
6819 
6820 template class Dictionary<NumberDictionaryShape, uint32_t>;
6821 
6822 template Object* Dictionary<NumberDictionaryShape, uint32_t>::Allocate(
6823     int);
6824 
6825 template Object* Dictionary<StringDictionaryShape, String*>::Allocate(
6826     int);
6827 
6828 template Object* Dictionary<NumberDictionaryShape, uint32_t>::AtPut(
6829     uint32_t, Object*);
6830 
6831 template Object* Dictionary<NumberDictionaryShape, uint32_t>::SlowReverseLookup(
6832     Object*);
6833 
6834 template Object* Dictionary<StringDictionaryShape, String*>::SlowReverseLookup(
6835     Object*);
6836 
6837 template void Dictionary<NumberDictionaryShape, uint32_t>::CopyKeysTo(
6838     FixedArray*, PropertyAttributes);
6839 
6840 template Object* Dictionary<StringDictionaryShape, String*>::DeleteProperty(
6841     int, JSObject::DeleteMode);
6842 
6843 template Object* Dictionary<NumberDictionaryShape, uint32_t>::DeleteProperty(
6844     int, JSObject::DeleteMode);
6845 
6846 template void Dictionary<StringDictionaryShape, String*>::CopyKeysTo(
6847     FixedArray*);
6848 
6849 template int
6850 Dictionary<StringDictionaryShape, String*>::NumberOfElementsFilterAttributes(
6851     PropertyAttributes);
6852 
6853 template Object* Dictionary<StringDictionaryShape, String*>::Add(
6854     String*, Object*, PropertyDetails);
6855 
6856 template Object*
6857 Dictionary<StringDictionaryShape, String*>::GenerateNewEnumerationIndices();
6858 
6859 template int
6860 Dictionary<NumberDictionaryShape, uint32_t>::NumberOfElementsFilterAttributes(
6861     PropertyAttributes);
6862 
6863 template Object* Dictionary<NumberDictionaryShape, uint32_t>::Add(
6864     uint32_t, Object*, PropertyDetails);
6865 
6866 template Object* Dictionary<NumberDictionaryShape, uint32_t>::EnsureCapacity(
6867     int, uint32_t);
6868 
6869 template Object* Dictionary<StringDictionaryShape, String*>::EnsureCapacity(
6870     int, String*);
6871 
6872 template Object* Dictionary<NumberDictionaryShape, uint32_t>::AddEntry(
6873     uint32_t, Object*, PropertyDetails, uint32_t);
6874 
6875 template Object* Dictionary<StringDictionaryShape, String*>::AddEntry(
6876     String*, Object*, PropertyDetails, uint32_t);
6877 
6878 template
6879 int Dictionary<NumberDictionaryShape, uint32_t>::NumberOfEnumElements();
6880 
6881 template
6882 int Dictionary<StringDictionaryShape, String*>::NumberOfEnumElements();
6883 
6884 // Collates undefined and unexisting elements below limit from position
6885 // zero of the elements. The object stays in Dictionary mode.
PrepareSlowElementsForSort(uint32_t limit)6886 Object* JSObject::PrepareSlowElementsForSort(uint32_t limit) {
6887   ASSERT(HasDictionaryElements());
6888   // Must stay in dictionary mode, either because of requires_slow_elements,
6889   // or because we are not going to sort (and therefore compact) all of the
6890   // elements.
6891   NumberDictionary* dict = element_dictionary();
6892   HeapNumber* result_double = NULL;
6893   if (limit > static_cast<uint32_t>(Smi::kMaxValue)) {
6894     // Allocate space for result before we start mutating the object.
6895     Object* new_double = Heap::AllocateHeapNumber(0.0);
6896     if (new_double->IsFailure()) return new_double;
6897     result_double = HeapNumber::cast(new_double);
6898   }
6899 
6900   int capacity = dict->Capacity();
6901   Object* obj = NumberDictionary::Allocate(dict->Capacity());
6902   if (obj->IsFailure()) return obj;
6903   NumberDictionary* new_dict = NumberDictionary::cast(obj);
6904 
6905   AssertNoAllocation no_alloc;
6906 
6907   uint32_t pos = 0;
6908   uint32_t undefs = 0;
6909   for (int i = 0; i < capacity; i++) {
6910     Object* k = dict->KeyAt(i);
6911     if (dict->IsKey(k)) {
6912       ASSERT(k->IsNumber());
6913       ASSERT(!k->IsSmi() || Smi::cast(k)->value() >= 0);
6914       ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0);
6915       ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32);
6916       Object* value = dict->ValueAt(i);
6917       PropertyDetails details = dict->DetailsAt(i);
6918       if (details.type() == CALLBACKS) {
6919         // Bail out and do the sorting of undefineds and array holes in JS.
6920         return Smi::FromInt(-1);
6921       }
6922       uint32_t key = NumberToUint32(k);
6923       if (key < limit) {
6924         if (value->IsUndefined()) {
6925           undefs++;
6926         } else {
6927           new_dict->AddNumberEntry(pos, value, details);
6928           pos++;
6929         }
6930       } else {
6931         new_dict->AddNumberEntry(key, value, details);
6932       }
6933     }
6934   }
6935 
6936   uint32_t result = pos;
6937   PropertyDetails no_details = PropertyDetails(NONE, NORMAL);
6938   while (undefs > 0) {
6939     new_dict->AddNumberEntry(pos, Heap::undefined_value(), no_details);
6940     pos++;
6941     undefs--;
6942   }
6943 
6944   set_elements(new_dict);
6945 
6946   if (result <= static_cast<uint32_t>(Smi::kMaxValue)) {
6947     return Smi::FromInt(static_cast<int>(result));
6948   }
6949 
6950   ASSERT_NE(NULL, result_double);
6951   result_double->set_value(static_cast<double>(result));
6952   return result_double;
6953 }
6954 
6955 
6956 // Collects all defined (non-hole) and non-undefined (array) elements at
6957 // the start of the elements array.
6958 // If the object is in dictionary mode, it is converted to fast elements
6959 // mode.
PrepareElementsForSort(uint32_t limit)6960 Object* JSObject::PrepareElementsForSort(uint32_t limit) {
6961   ASSERT(!HasPixelElements());
6962 
6963   if (HasDictionaryElements()) {
6964     // Convert to fast elements containing only the existing properties.
6965     // Ordering is irrelevant, since we are going to sort anyway.
6966     NumberDictionary* dict = element_dictionary();
6967     if (IsJSArray() || dict->requires_slow_elements() ||
6968         dict->max_number_key() >= limit) {
6969       return PrepareSlowElementsForSort(limit);
6970     }
6971     // Convert to fast elements.
6972 
6973     PretenureFlag tenure = Heap::InNewSpace(this) ? NOT_TENURED: TENURED;
6974     Object* new_array =
6975         Heap::AllocateFixedArray(dict->NumberOfElements(), tenure);
6976     if (new_array->IsFailure()) {
6977       return new_array;
6978     }
6979     FixedArray* fast_elements = FixedArray::cast(new_array);
6980     dict->CopyValuesTo(fast_elements);
6981     set_elements(fast_elements);
6982   }
6983   ASSERT(HasFastElements());
6984 
6985   // Collect holes at the end, undefined before that and the rest at the
6986   // start, and return the number of non-hole, non-undefined values.
6987 
6988   FixedArray* elements = FixedArray::cast(this->elements());
6989   uint32_t elements_length = static_cast<uint32_t>(elements->length());
6990   if (limit > elements_length) {
6991     limit = elements_length ;
6992   }
6993   if (limit == 0) {
6994     return Smi::FromInt(0);
6995   }
6996 
6997   HeapNumber* result_double = NULL;
6998   if (limit > static_cast<uint32_t>(Smi::kMaxValue)) {
6999     // Pessimistically allocate space for return value before
7000     // we start mutating the array.
7001     Object* new_double = Heap::AllocateHeapNumber(0.0);
7002     if (new_double->IsFailure()) return new_double;
7003     result_double = HeapNumber::cast(new_double);
7004   }
7005 
7006   AssertNoAllocation no_alloc;
7007 
7008   // Split elements into defined, undefined and the_hole, in that order.
7009   // Only count locations for undefined and the hole, and fill them afterwards.
7010   WriteBarrierMode write_barrier = elements->GetWriteBarrierMode();
7011   unsigned int undefs = limit;
7012   unsigned int holes = limit;
7013   // Assume most arrays contain no holes and undefined values, so minimize the
7014   // number of stores of non-undefined, non-the-hole values.
7015   for (unsigned int i = 0; i < undefs; i++) {
7016     Object* current = elements->get(i);
7017     if (current->IsTheHole()) {
7018       holes--;
7019       undefs--;
7020     } else if (current->IsUndefined()) {
7021       undefs--;
7022     } else {
7023       continue;
7024     }
7025     // Position i needs to be filled.
7026     while (undefs > i) {
7027       current = elements->get(undefs);
7028       if (current->IsTheHole()) {
7029         holes--;
7030         undefs--;
7031       } else if (current->IsUndefined()) {
7032         undefs--;
7033       } else {
7034         elements->set(i, current, write_barrier);
7035         break;
7036       }
7037     }
7038   }
7039   uint32_t result = undefs;
7040   while (undefs < holes) {
7041     elements->set_undefined(undefs);
7042     undefs++;
7043   }
7044   while (holes < limit) {
7045     elements->set_the_hole(holes);
7046     holes++;
7047   }
7048 
7049   if (result <= static_cast<uint32_t>(Smi::kMaxValue)) {
7050     return Smi::FromInt(static_cast<int>(result));
7051   }
7052   ASSERT_NE(NULL, result_double);
7053   result_double->set_value(static_cast<double>(result));
7054   return result_double;
7055 }
7056 
7057 
SetValue(uint32_t index,Object * value)7058 Object* PixelArray::SetValue(uint32_t index, Object* value) {
7059   uint8_t clamped_value = 0;
7060   if (index < static_cast<uint32_t>(length())) {
7061     if (value->IsSmi()) {
7062       int int_value = Smi::cast(value)->value();
7063       if (int_value < 0) {
7064         clamped_value = 0;
7065       } else if (int_value > 255) {
7066         clamped_value = 255;
7067       } else {
7068         clamped_value = static_cast<uint8_t>(int_value);
7069       }
7070     } else if (value->IsHeapNumber()) {
7071       double double_value = HeapNumber::cast(value)->value();
7072       if (!(double_value > 0)) {
7073         // NaN and less than zero clamp to zero.
7074         clamped_value = 0;
7075       } else if (double_value > 255) {
7076         // Greater than 255 clamp to 255.
7077         clamped_value = 255;
7078       } else {
7079         // Other doubles are rounded to the nearest integer.
7080         clamped_value = static_cast<uint8_t>(double_value + 0.5);
7081       }
7082     } else {
7083       // Clamp undefined to zero (default). All other types have been
7084       // converted to a number type further up in the call chain.
7085       ASSERT(value->IsUndefined());
7086     }
7087     set(index, clamped_value);
7088   }
7089   return Smi::FromInt(clamped_value);
7090 }
7091 
7092 
GetPropertyCell(LookupResult * result)7093 Object* GlobalObject::GetPropertyCell(LookupResult* result) {
7094   ASSERT(!HasFastProperties());
7095   Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry());
7096   ASSERT(value->IsJSGlobalPropertyCell());
7097   return value;
7098 }
7099 
7100 
EnsurePropertyCell(String * name)7101 Object* GlobalObject::EnsurePropertyCell(String* name) {
7102   ASSERT(!HasFastProperties());
7103   int entry = property_dictionary()->FindEntry(name);
7104   if (entry == StringDictionary::kNotFound) {
7105     Object* cell = Heap::AllocateJSGlobalPropertyCell(Heap::the_hole_value());
7106     if (cell->IsFailure()) return cell;
7107     PropertyDetails details(NONE, NORMAL);
7108     details = details.AsDeleted();
7109     Object* dictionary = property_dictionary()->Add(name, cell, details);
7110     if (dictionary->IsFailure()) return dictionary;
7111     set_properties(StringDictionary::cast(dictionary));
7112     return cell;
7113   } else {
7114     Object* value = property_dictionary()->ValueAt(entry);
7115     ASSERT(value->IsJSGlobalPropertyCell());
7116     return value;
7117   }
7118 }
7119 
7120 
LookupString(String * string,Object ** s)7121 Object* SymbolTable::LookupString(String* string, Object** s) {
7122   SymbolKey key(string);
7123   return LookupKey(&key, s);
7124 }
7125 
7126 
LookupSymbolIfExists(String * string,String ** symbol)7127 bool SymbolTable::LookupSymbolIfExists(String* string, String** symbol) {
7128   SymbolKey key(string);
7129   int entry = FindEntry(&key);
7130   if (entry == kNotFound) {
7131     return false;
7132   } else {
7133     String* result = String::cast(KeyAt(entry));
7134     ASSERT(StringShape(result).IsSymbol());
7135     *symbol = result;
7136     return true;
7137   }
7138 }
7139 
7140 
LookupSymbol(Vector<const char> str,Object ** s)7141 Object* SymbolTable::LookupSymbol(Vector<const char> str, Object** s) {
7142   Utf8SymbolKey key(str);
7143   return LookupKey(&key, s);
7144 }
7145 
7146 
LookupKey(HashTableKey * key,Object ** s)7147 Object* SymbolTable::LookupKey(HashTableKey* key, Object** s) {
7148   int entry = FindEntry(key);
7149 
7150   // Symbol already in table.
7151   if (entry != kNotFound) {
7152     *s = KeyAt(entry);
7153     return this;
7154   }
7155 
7156   // Adding new symbol. Grow table if needed.
7157   Object* obj = EnsureCapacity(1, key);
7158   if (obj->IsFailure()) return obj;
7159 
7160   // Create symbol object.
7161   Object* symbol = key->AsObject();
7162   if (symbol->IsFailure()) return symbol;
7163 
7164   // If the symbol table grew as part of EnsureCapacity, obj is not
7165   // the current symbol table and therefore we cannot use
7166   // SymbolTable::cast here.
7167   SymbolTable* table = reinterpret_cast<SymbolTable*>(obj);
7168 
7169   // Add the new symbol and return it along with the symbol table.
7170   entry = table->FindInsertionEntry(key->Hash());
7171   table->set(EntryToIndex(entry), symbol);
7172   table->ElementAdded();
7173   *s = symbol;
7174   return table;
7175 }
7176 
7177 
Lookup(String * src)7178 Object* CompilationCacheTable::Lookup(String* src) {
7179   StringKey key(src);
7180   int entry = FindEntry(&key);
7181   if (entry == kNotFound) return Heap::undefined_value();
7182   return get(EntryToIndex(entry) + 1);
7183 }
7184 
7185 
LookupEval(String * src,Context * context)7186 Object* CompilationCacheTable::LookupEval(String* src, Context* context) {
7187   StringSharedKey key(src, context->closure()->shared());
7188   int entry = FindEntry(&key);
7189   if (entry == kNotFound) return Heap::undefined_value();
7190   return get(EntryToIndex(entry) + 1);
7191 }
7192 
7193 
LookupRegExp(String * src,JSRegExp::Flags flags)7194 Object* CompilationCacheTable::LookupRegExp(String* src,
7195                                             JSRegExp::Flags flags) {
7196   RegExpKey key(src, flags);
7197   int entry = FindEntry(&key);
7198   if (entry == kNotFound) return Heap::undefined_value();
7199   return get(EntryToIndex(entry) + 1);
7200 }
7201 
7202 
Put(String * src,Object * value)7203 Object* CompilationCacheTable::Put(String* src, Object* value) {
7204   StringKey key(src);
7205   Object* obj = EnsureCapacity(1, &key);
7206   if (obj->IsFailure()) return obj;
7207 
7208   CompilationCacheTable* cache =
7209       reinterpret_cast<CompilationCacheTable*>(obj);
7210   int entry = cache->FindInsertionEntry(key.Hash());
7211   cache->set(EntryToIndex(entry), src);
7212   cache->set(EntryToIndex(entry) + 1, value);
7213   cache->ElementAdded();
7214   return cache;
7215 }
7216 
7217 
PutEval(String * src,Context * context,Object * value)7218 Object* CompilationCacheTable::PutEval(String* src,
7219                                        Context* context,
7220                                        Object* value) {
7221   StringSharedKey key(src, context->closure()->shared());
7222   Object* obj = EnsureCapacity(1, &key);
7223   if (obj->IsFailure()) return obj;
7224 
7225   CompilationCacheTable* cache =
7226       reinterpret_cast<CompilationCacheTable*>(obj);
7227   int entry = cache->FindInsertionEntry(key.Hash());
7228 
7229   Object* k = key.AsObject();
7230   if (k->IsFailure()) return k;
7231 
7232   cache->set(EntryToIndex(entry), k);
7233   cache->set(EntryToIndex(entry) + 1, value);
7234   cache->ElementAdded();
7235   return cache;
7236 }
7237 
7238 
PutRegExp(String * src,JSRegExp::Flags flags,FixedArray * value)7239 Object* CompilationCacheTable::PutRegExp(String* src,
7240                                          JSRegExp::Flags flags,
7241                                          FixedArray* value) {
7242   RegExpKey key(src, flags);
7243   Object* obj = EnsureCapacity(1, &key);
7244   if (obj->IsFailure()) return obj;
7245 
7246   CompilationCacheTable* cache =
7247       reinterpret_cast<CompilationCacheTable*>(obj);
7248   int entry = cache->FindInsertionEntry(key.Hash());
7249   cache->set(EntryToIndex(entry), value);
7250   cache->set(EntryToIndex(entry) + 1, value);
7251   cache->ElementAdded();
7252   return cache;
7253 }
7254 
7255 
7256 // SymbolsKey used for HashTable where key is array of symbols.
7257 class SymbolsKey : public HashTableKey {
7258  public:
SymbolsKey(FixedArray * symbols)7259   explicit SymbolsKey(FixedArray* symbols) : symbols_(symbols) { }
7260 
IsMatch(Object * symbols)7261   bool IsMatch(Object* symbols) {
7262     FixedArray* o = FixedArray::cast(symbols);
7263     int len = symbols_->length();
7264     if (o->length() != len) return false;
7265     for (int i = 0; i < len; i++) {
7266       if (o->get(i) != symbols_->get(i)) return false;
7267     }
7268     return true;
7269   }
7270 
Hash()7271   uint32_t Hash() { return HashForObject(symbols_); }
7272 
HashForObject(Object * obj)7273   uint32_t HashForObject(Object* obj) {
7274     FixedArray* symbols = FixedArray::cast(obj);
7275     int len = symbols->length();
7276     uint32_t hash = 0;
7277     for (int i = 0; i < len; i++) {
7278       hash ^= String::cast(symbols->get(i))->Hash();
7279     }
7280     return hash;
7281   }
7282 
AsObject()7283   Object* AsObject() { return symbols_; }
7284 
7285  private:
7286   FixedArray* symbols_;
7287 };
7288 
7289 
Lookup(FixedArray * array)7290 Object* MapCache::Lookup(FixedArray* array) {
7291   SymbolsKey key(array);
7292   int entry = FindEntry(&key);
7293   if (entry == kNotFound) return Heap::undefined_value();
7294   return get(EntryToIndex(entry) + 1);
7295 }
7296 
7297 
Put(FixedArray * array,Map * value)7298 Object* MapCache::Put(FixedArray* array, Map* value) {
7299   SymbolsKey key(array);
7300   Object* obj = EnsureCapacity(1, &key);
7301   if (obj->IsFailure()) return obj;
7302 
7303   MapCache* cache = reinterpret_cast<MapCache*>(obj);
7304   int entry = cache->FindInsertionEntry(key.Hash());
7305   cache->set(EntryToIndex(entry), array);
7306   cache->set(EntryToIndex(entry) + 1, value);
7307   cache->ElementAdded();
7308   return cache;
7309 }
7310 
7311 
7312 template<typename Shape, typename Key>
Allocate(int at_least_space_for)7313 Object* Dictionary<Shape, Key>::Allocate(int at_least_space_for) {
7314   Object* obj = HashTable<Shape, Key>::Allocate(at_least_space_for);
7315   // Initialize the next enumeration index.
7316   if (!obj->IsFailure()) {
7317     Dictionary<Shape, Key>::cast(obj)->
7318         SetNextEnumerationIndex(PropertyDetails::kInitialIndex);
7319   }
7320   return obj;
7321 }
7322 
7323 
7324 template<typename Shape, typename Key>
GenerateNewEnumerationIndices()7325 Object* Dictionary<Shape, Key>::GenerateNewEnumerationIndices() {
7326   int length = HashTable<Shape, Key>::NumberOfElements();
7327 
7328   // Allocate and initialize iteration order array.
7329   Object* obj = Heap::AllocateFixedArray(length);
7330   if (obj->IsFailure()) return obj;
7331   FixedArray* iteration_order = FixedArray::cast(obj);
7332   for (int i = 0; i < length; i++) {
7333     iteration_order->set(i, Smi::FromInt(i), SKIP_WRITE_BARRIER);
7334   }
7335 
7336   // Allocate array with enumeration order.
7337   obj = Heap::AllocateFixedArray(length);
7338   if (obj->IsFailure()) return obj;
7339   FixedArray* enumeration_order = FixedArray::cast(obj);
7340 
7341   // Fill the enumeration order array with property details.
7342   int capacity = HashTable<Shape, Key>::Capacity();
7343   int pos = 0;
7344   for (int i = 0; i < capacity; i++) {
7345     if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) {
7346       enumeration_order->set(pos++,
7347                              Smi::FromInt(DetailsAt(i).index()),
7348                              SKIP_WRITE_BARRIER);
7349     }
7350   }
7351 
7352   // Sort the arrays wrt. enumeration order.
7353   iteration_order->SortPairs(enumeration_order, enumeration_order->length());
7354 
7355   // Overwrite the enumeration_order with the enumeration indices.
7356   for (int i = 0; i < length; i++) {
7357     int index = Smi::cast(iteration_order->get(i))->value();
7358     int enum_index = PropertyDetails::kInitialIndex + i;
7359     enumeration_order->set(index,
7360                            Smi::FromInt(enum_index),
7361                            SKIP_WRITE_BARRIER);
7362   }
7363 
7364   // Update the dictionary with new indices.
7365   capacity = HashTable<Shape, Key>::Capacity();
7366   pos = 0;
7367   for (int i = 0; i < capacity; i++) {
7368     if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) {
7369       int enum_index = Smi::cast(enumeration_order->get(pos++))->value();
7370       PropertyDetails details = DetailsAt(i);
7371       PropertyDetails new_details =
7372           PropertyDetails(details.attributes(), details.type(), enum_index);
7373       DetailsAtPut(i, new_details);
7374     }
7375   }
7376 
7377   // Set the next enumeration index.
7378   SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length);
7379   return this;
7380 }
7381 
7382 template<typename Shape, typename Key>
EnsureCapacity(int n,Key key)7383 Object* Dictionary<Shape, Key>::EnsureCapacity(int n, Key key) {
7384   // Check whether there are enough enumeration indices to add n elements.
7385   if (Shape::kIsEnumerable &&
7386       !PropertyDetails::IsValidIndex(NextEnumerationIndex() + n)) {
7387     // If not, we generate new indices for the properties.
7388     Object* result = GenerateNewEnumerationIndices();
7389     if (result->IsFailure()) return result;
7390   }
7391   return HashTable<Shape, Key>::EnsureCapacity(n, key);
7392 }
7393 
7394 
RemoveNumberEntries(uint32_t from,uint32_t to)7395 void NumberDictionary::RemoveNumberEntries(uint32_t from, uint32_t to) {
7396   // Do nothing if the interval [from, to) is empty.
7397   if (from >= to) return;
7398 
7399   int removed_entries = 0;
7400   Object* sentinel = Heap::null_value();
7401   int capacity = Capacity();
7402   for (int i = 0; i < capacity; i++) {
7403     Object* key = KeyAt(i);
7404     if (key->IsNumber()) {
7405       uint32_t number = static_cast<uint32_t>(key->Number());
7406       if (from <= number && number < to) {
7407         SetEntry(i, sentinel, sentinel, Smi::FromInt(0));
7408         removed_entries++;
7409       }
7410     }
7411   }
7412 
7413   // Update the number of elements.
7414   SetNumberOfElements(NumberOfElements() - removed_entries);
7415 }
7416 
7417 
7418 template<typename Shape, typename Key>
DeleteProperty(int entry,JSObject::DeleteMode mode)7419 Object* Dictionary<Shape, Key>::DeleteProperty(int entry,
7420                                                JSObject::DeleteMode mode) {
7421   PropertyDetails details = DetailsAt(entry);
7422   // Ignore attributes if forcing a deletion.
7423   if (details.IsDontDelete() && mode == JSObject::NORMAL_DELETION) {
7424     return Heap::false_value();
7425   }
7426   SetEntry(entry, Heap::null_value(), Heap::null_value(), Smi::FromInt(0));
7427   HashTable<Shape, Key>::ElementRemoved();
7428   return Heap::true_value();
7429 }
7430 
7431 
7432 template<typename Shape, typename Key>
AtPut(Key key,Object * value)7433 Object* Dictionary<Shape, Key>::AtPut(Key key, Object* value) {
7434   int entry = FindEntry(key);
7435 
7436   // If the entry is present set the value;
7437   if (entry != Dictionary<Shape, Key>::kNotFound) {
7438     ValueAtPut(entry, value);
7439     return this;
7440   }
7441 
7442   // Check whether the dictionary should be extended.
7443   Object* obj = EnsureCapacity(1, key);
7444   if (obj->IsFailure()) return obj;
7445 
7446   Object* k = Shape::AsObject(key);
7447   if (k->IsFailure()) return k;
7448   PropertyDetails details = PropertyDetails(NONE, NORMAL);
7449   return Dictionary<Shape, Key>::cast(obj)->
7450       AddEntry(key, value, details, Shape::Hash(key));
7451 }
7452 
7453 
7454 template<typename Shape, typename Key>
Add(Key key,Object * value,PropertyDetails details)7455 Object* Dictionary<Shape, Key>::Add(Key key,
7456                                     Object* value,
7457                                     PropertyDetails details) {
7458   // Valdate key is absent.
7459   SLOW_ASSERT((FindEntry(key) == Dictionary<Shape, Key>::kNotFound));
7460   // Check whether the dictionary should be extended.
7461   Object* obj = EnsureCapacity(1, key);
7462   if (obj->IsFailure()) return obj;
7463   return Dictionary<Shape, Key>::cast(obj)->
7464       AddEntry(key, value, details, Shape::Hash(key));
7465 }
7466 
7467 
7468 // Add a key, value pair to the dictionary.
7469 template<typename Shape, typename Key>
AddEntry(Key key,Object * value,PropertyDetails details,uint32_t hash)7470 Object* Dictionary<Shape, Key>::AddEntry(Key key,
7471                                          Object* value,
7472                                          PropertyDetails details,
7473                                          uint32_t hash) {
7474   // Compute the key object.
7475   Object* k = Shape::AsObject(key);
7476   if (k->IsFailure()) return k;
7477 
7478   uint32_t entry = Dictionary<Shape, Key>::FindInsertionEntry(hash);
7479   // Insert element at empty or deleted entry
7480   if (!details.IsDeleted() && details.index() == 0 && Shape::kIsEnumerable) {
7481     // Assign an enumeration index to the property and update
7482     // SetNextEnumerationIndex.
7483     int index = NextEnumerationIndex();
7484     details = PropertyDetails(details.attributes(), details.type(), index);
7485     SetNextEnumerationIndex(index + 1);
7486   }
7487   SetEntry(entry, k, value, details);
7488   ASSERT((Dictionary<Shape, Key>::KeyAt(entry)->IsNumber()
7489           || Dictionary<Shape, Key>::KeyAt(entry)->IsString()));
7490   HashTable<Shape, Key>::ElementAdded();
7491   return this;
7492 }
7493 
7494 
UpdateMaxNumberKey(uint32_t key)7495 void NumberDictionary::UpdateMaxNumberKey(uint32_t key) {
7496   // If the dictionary requires slow elements an element has already
7497   // been added at a high index.
7498   if (requires_slow_elements()) return;
7499   // Check if this index is high enough that we should require slow
7500   // elements.
7501   if (key > kRequiresSlowElementsLimit) {
7502     set_requires_slow_elements();
7503     return;
7504   }
7505   // Update max key value.
7506   Object* max_index_object = get(kMaxNumberKeyIndex);
7507   if (!max_index_object->IsSmi() || max_number_key() < key) {
7508     FixedArray::set(kMaxNumberKeyIndex,
7509                     Smi::FromInt(key << kRequiresSlowElementsTagSize),
7510                     SKIP_WRITE_BARRIER);
7511   }
7512 }
7513 
7514 
AddNumberEntry(uint32_t key,Object * value,PropertyDetails details)7515 Object* NumberDictionary::AddNumberEntry(uint32_t key,
7516                                          Object* value,
7517                                          PropertyDetails details) {
7518   UpdateMaxNumberKey(key);
7519   SLOW_ASSERT(FindEntry(key) == kNotFound);
7520   return Add(key, value, details);
7521 }
7522 
7523 
AtNumberPut(uint32_t key,Object * value)7524 Object* NumberDictionary::AtNumberPut(uint32_t key, Object* value) {
7525   UpdateMaxNumberKey(key);
7526   return AtPut(key, value);
7527 }
7528 
7529 
Set(uint32_t key,Object * value,PropertyDetails details)7530 Object* NumberDictionary::Set(uint32_t key,
7531                               Object* value,
7532                               PropertyDetails details) {
7533   int entry = FindEntry(key);
7534   if (entry == kNotFound) return AddNumberEntry(key, value, details);
7535   // Preserve enumeration index.
7536   details = PropertyDetails(details.attributes(),
7537                             details.type(),
7538                             DetailsAt(entry).index());
7539   SetEntry(entry, NumberDictionaryShape::AsObject(key), value, details);
7540   return this;
7541 }
7542 
7543 
7544 
7545 template<typename Shape, typename Key>
NumberOfElementsFilterAttributes(PropertyAttributes filter)7546 int Dictionary<Shape, Key>::NumberOfElementsFilterAttributes(
7547     PropertyAttributes filter) {
7548   int capacity = HashTable<Shape, Key>::Capacity();
7549   int result = 0;
7550   for (int i = 0; i < capacity; i++) {
7551     Object* k = HashTable<Shape, Key>::KeyAt(i);
7552     if (HashTable<Shape, Key>::IsKey(k)) {
7553       PropertyDetails details = DetailsAt(i);
7554       if (details.IsDeleted()) continue;
7555       PropertyAttributes attr = details.attributes();
7556       if ((attr & filter) == 0) result++;
7557     }
7558   }
7559   return result;
7560 }
7561 
7562 
7563 template<typename Shape, typename Key>
NumberOfEnumElements()7564 int Dictionary<Shape, Key>::NumberOfEnumElements() {
7565   return NumberOfElementsFilterAttributes(
7566       static_cast<PropertyAttributes>(DONT_ENUM));
7567 }
7568 
7569 
7570 template<typename Shape, typename Key>
CopyKeysTo(FixedArray * storage,PropertyAttributes filter)7571 void Dictionary<Shape, Key>::CopyKeysTo(FixedArray* storage,
7572                                         PropertyAttributes filter) {
7573   ASSERT(storage->length() >= NumberOfEnumElements());
7574   int capacity = HashTable<Shape, Key>::Capacity();
7575   int index = 0;
7576   for (int i = 0; i < capacity; i++) {
7577      Object* k = HashTable<Shape, Key>::KeyAt(i);
7578      if (HashTable<Shape, Key>::IsKey(k)) {
7579        PropertyDetails details = DetailsAt(i);
7580        if (details.IsDeleted()) continue;
7581        PropertyAttributes attr = details.attributes();
7582        if ((attr & filter) == 0) storage->set(index++, k);
7583      }
7584   }
7585   storage->SortPairs(storage, index);
7586   ASSERT(storage->length() >= index);
7587 }
7588 
7589 
CopyEnumKeysTo(FixedArray * storage,FixedArray * sort_array)7590 void StringDictionary::CopyEnumKeysTo(FixedArray* storage,
7591                                       FixedArray* sort_array) {
7592   ASSERT(storage->length() >= NumberOfEnumElements());
7593   int capacity = Capacity();
7594   int index = 0;
7595   for (int i = 0; i < capacity; i++) {
7596      Object* k = KeyAt(i);
7597      if (IsKey(k)) {
7598        PropertyDetails details = DetailsAt(i);
7599        if (details.IsDeleted() || details.IsDontEnum()) continue;
7600        storage->set(index, k);
7601        sort_array->set(index,
7602                        Smi::FromInt(details.index()),
7603                        SKIP_WRITE_BARRIER);
7604        index++;
7605      }
7606   }
7607   storage->SortPairs(sort_array, sort_array->length());
7608   ASSERT(storage->length() >= index);
7609 }
7610 
7611 
7612 template<typename Shape, typename Key>
CopyKeysTo(FixedArray * storage)7613 void Dictionary<Shape, Key>::CopyKeysTo(FixedArray* storage) {
7614   ASSERT(storage->length() >= NumberOfElementsFilterAttributes(
7615       static_cast<PropertyAttributes>(NONE)));
7616   int capacity = HashTable<Shape, Key>::Capacity();
7617   int index = 0;
7618   for (int i = 0; i < capacity; i++) {
7619     Object* k = HashTable<Shape, Key>::KeyAt(i);
7620     if (HashTable<Shape, Key>::IsKey(k)) {
7621       PropertyDetails details = DetailsAt(i);
7622       if (details.IsDeleted()) continue;
7623       storage->set(index++, k);
7624     }
7625   }
7626   ASSERT(storage->length() >= index);
7627 }
7628 
7629 
7630 // Backwards lookup (slow).
7631 template<typename Shape, typename Key>
SlowReverseLookup(Object * value)7632 Object* Dictionary<Shape, Key>::SlowReverseLookup(Object* value) {
7633   int capacity = HashTable<Shape, Key>::Capacity();
7634   for (int i = 0; i < capacity; i++) {
7635     Object* k =  HashTable<Shape, Key>::KeyAt(i);
7636     if (Dictionary<Shape, Key>::IsKey(k)) {
7637       Object* e = ValueAt(i);
7638       if (e->IsJSGlobalPropertyCell()) {
7639         e = JSGlobalPropertyCell::cast(e)->value();
7640       }
7641       if (e == value) return k;
7642     }
7643   }
7644   return Heap::undefined_value();
7645 }
7646 
7647 
TransformPropertiesToFastFor(JSObject * obj,int unused_property_fields)7648 Object* StringDictionary::TransformPropertiesToFastFor(
7649     JSObject* obj, int unused_property_fields) {
7650   // Make sure we preserve dictionary representation if there are too many
7651   // descriptors.
7652   if (NumberOfElements() > DescriptorArray::kMaxNumberOfDescriptors) return obj;
7653 
7654   // Figure out if it is necessary to generate new enumeration indices.
7655   int max_enumeration_index =
7656       NextEnumerationIndex() +
7657           (DescriptorArray::kMaxNumberOfDescriptors -
7658            NumberOfElements());
7659   if (!PropertyDetails::IsValidIndex(max_enumeration_index)) {
7660     Object* result = GenerateNewEnumerationIndices();
7661     if (result->IsFailure()) return result;
7662   }
7663 
7664   int instance_descriptor_length = 0;
7665   int number_of_fields = 0;
7666 
7667   // Compute the length of the instance descriptor.
7668   int capacity = Capacity();
7669   for (int i = 0; i < capacity; i++) {
7670     Object* k = KeyAt(i);
7671     if (IsKey(k)) {
7672       Object* value = ValueAt(i);
7673       PropertyType type = DetailsAt(i).type();
7674       ASSERT(type != FIELD);
7675       instance_descriptor_length++;
7676       if (type == NORMAL && !value->IsJSFunction()) number_of_fields += 1;
7677     }
7678   }
7679 
7680   // Allocate the instance descriptor.
7681   Object* descriptors_unchecked =
7682       DescriptorArray::Allocate(instance_descriptor_length);
7683   if (descriptors_unchecked->IsFailure()) return descriptors_unchecked;
7684   DescriptorArray* descriptors = DescriptorArray::cast(descriptors_unchecked);
7685 
7686   int inobject_props = obj->map()->inobject_properties();
7687   int number_of_allocated_fields =
7688       number_of_fields + unused_property_fields - inobject_props;
7689 
7690   // Allocate the fixed array for the fields.
7691   Object* fields = Heap::AllocateFixedArray(number_of_allocated_fields);
7692   if (fields->IsFailure()) return fields;
7693 
7694   // Fill in the instance descriptor and the fields.
7695   int next_descriptor = 0;
7696   int current_offset = 0;
7697   for (int i = 0; i < capacity; i++) {
7698     Object* k = KeyAt(i);
7699     if (IsKey(k)) {
7700       Object* value = ValueAt(i);
7701       // Ensure the key is a symbol before writing into the instance descriptor.
7702       Object* key = Heap::LookupSymbol(String::cast(k));
7703       if (key->IsFailure()) return key;
7704       PropertyDetails details = DetailsAt(i);
7705       PropertyType type = details.type();
7706 
7707       if (value->IsJSFunction()) {
7708         ConstantFunctionDescriptor d(String::cast(key),
7709                                      JSFunction::cast(value),
7710                                      details.attributes(),
7711                                      details.index());
7712         descriptors->Set(next_descriptor++, &d);
7713       } else if (type == NORMAL) {
7714         if (current_offset < inobject_props) {
7715           obj->InObjectPropertyAtPut(current_offset,
7716                                      value,
7717                                      UPDATE_WRITE_BARRIER);
7718         } else {
7719           int offset = current_offset - inobject_props;
7720           FixedArray::cast(fields)->set(offset, value);
7721         }
7722         FieldDescriptor d(String::cast(key),
7723                           current_offset++,
7724                           details.attributes(),
7725                           details.index());
7726         descriptors->Set(next_descriptor++, &d);
7727       } else if (type == CALLBACKS) {
7728         CallbacksDescriptor d(String::cast(key),
7729                               value,
7730                               details.attributes(),
7731                               details.index());
7732         descriptors->Set(next_descriptor++, &d);
7733       } else {
7734         UNREACHABLE();
7735       }
7736     }
7737   }
7738   ASSERT(current_offset == number_of_fields);
7739 
7740   descriptors->Sort();
7741   // Allocate new map.
7742   Object* new_map = obj->map()->CopyDropDescriptors();
7743   if (new_map->IsFailure()) return new_map;
7744 
7745   // Transform the object.
7746   obj->set_map(Map::cast(new_map));
7747   obj->map()->set_instance_descriptors(descriptors);
7748   obj->map()->set_unused_property_fields(unused_property_fields);
7749 
7750   obj->set_properties(FixedArray::cast(fields));
7751   ASSERT(obj->IsJSObject());
7752 
7753   descriptors->SetNextEnumerationIndex(NextEnumerationIndex());
7754   // Check that it really works.
7755   ASSERT(obj->HasFastProperties());
7756 
7757   return obj;
7758 }
7759 
7760 
7761 #ifdef ENABLE_DEBUGGER_SUPPORT
7762 // Check if there is a break point at this code position.
HasBreakPoint(int code_position)7763 bool DebugInfo::HasBreakPoint(int code_position) {
7764   // Get the break point info object for this code position.
7765   Object* break_point_info = GetBreakPointInfo(code_position);
7766 
7767   // If there is no break point info object or no break points in the break
7768   // point info object there is no break point at this code position.
7769   if (break_point_info->IsUndefined()) return false;
7770   return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0;
7771 }
7772 
7773 
7774 // Get the break point info object for this code position.
GetBreakPointInfo(int code_position)7775 Object* DebugInfo::GetBreakPointInfo(int code_position) {
7776   // Find the index of the break point info object for this code position.
7777   int index = GetBreakPointInfoIndex(code_position);
7778 
7779   // Return the break point info object if any.
7780   if (index == kNoBreakPointInfo) return Heap::undefined_value();
7781   return BreakPointInfo::cast(break_points()->get(index));
7782 }
7783 
7784 
7785 // Clear a break point at the specified code position.
ClearBreakPoint(Handle<DebugInfo> debug_info,int code_position,Handle<Object> break_point_object)7786 void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info,
7787                                 int code_position,
7788                                 Handle<Object> break_point_object) {
7789   Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position));
7790   if (break_point_info->IsUndefined()) return;
7791   BreakPointInfo::ClearBreakPoint(
7792       Handle<BreakPointInfo>::cast(break_point_info),
7793       break_point_object);
7794 }
7795 
7796 
SetBreakPoint(Handle<DebugInfo> debug_info,int code_position,int source_position,int statement_position,Handle<Object> break_point_object)7797 void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info,
7798                               int code_position,
7799                               int source_position,
7800                               int statement_position,
7801                               Handle<Object> break_point_object) {
7802   Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position));
7803   if (!break_point_info->IsUndefined()) {
7804     BreakPointInfo::SetBreakPoint(
7805         Handle<BreakPointInfo>::cast(break_point_info),
7806         break_point_object);
7807     return;
7808   }
7809 
7810   // Adding a new break point for a code position which did not have any
7811   // break points before. Try to find a free slot.
7812   int index = kNoBreakPointInfo;
7813   for (int i = 0; i < debug_info->break_points()->length(); i++) {
7814     if (debug_info->break_points()->get(i)->IsUndefined()) {
7815       index = i;
7816       break;
7817     }
7818   }
7819   if (index == kNoBreakPointInfo) {
7820     // No free slot - extend break point info array.
7821     Handle<FixedArray> old_break_points =
7822         Handle<FixedArray>(FixedArray::cast(debug_info->break_points()));
7823     debug_info->set_break_points(*Factory::NewFixedArray(
7824         old_break_points->length() +
7825             Debug::kEstimatedNofBreakPointsInFunction));
7826     Handle<FixedArray> new_break_points =
7827         Handle<FixedArray>(FixedArray::cast(debug_info->break_points()));
7828     for (int i = 0; i < old_break_points->length(); i++) {
7829       new_break_points->set(i, old_break_points->get(i));
7830     }
7831     index = old_break_points->length();
7832   }
7833   ASSERT(index != kNoBreakPointInfo);
7834 
7835   // Allocate new BreakPointInfo object and set the break point.
7836   Handle<BreakPointInfo> new_break_point_info =
7837       Handle<BreakPointInfo>::cast(Factory::NewStruct(BREAK_POINT_INFO_TYPE));
7838   new_break_point_info->set_code_position(Smi::FromInt(code_position));
7839   new_break_point_info->set_source_position(Smi::FromInt(source_position));
7840   new_break_point_info->
7841       set_statement_position(Smi::FromInt(statement_position));
7842   new_break_point_info->set_break_point_objects(Heap::undefined_value());
7843   BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object);
7844   debug_info->break_points()->set(index, *new_break_point_info);
7845 }
7846 
7847 
7848 // Get the break point objects for a code position.
GetBreakPointObjects(int code_position)7849 Object* DebugInfo::GetBreakPointObjects(int code_position) {
7850   Object* break_point_info = GetBreakPointInfo(code_position);
7851   if (break_point_info->IsUndefined()) {
7852     return Heap::undefined_value();
7853   }
7854   return BreakPointInfo::cast(break_point_info)->break_point_objects();
7855 }
7856 
7857 
7858 // Get the total number of break points.
GetBreakPointCount()7859 int DebugInfo::GetBreakPointCount() {
7860   if (break_points()->IsUndefined()) return 0;
7861   int count = 0;
7862   for (int i = 0; i < break_points()->length(); i++) {
7863     if (!break_points()->get(i)->IsUndefined()) {
7864       BreakPointInfo* break_point_info =
7865           BreakPointInfo::cast(break_points()->get(i));
7866       count += break_point_info->GetBreakPointCount();
7867     }
7868   }
7869   return count;
7870 }
7871 
7872 
FindBreakPointInfo(Handle<DebugInfo> debug_info,Handle<Object> break_point_object)7873 Object* DebugInfo::FindBreakPointInfo(Handle<DebugInfo> debug_info,
7874                                       Handle<Object> break_point_object) {
7875   if (debug_info->break_points()->IsUndefined()) return Heap::undefined_value();
7876   for (int i = 0; i < debug_info->break_points()->length(); i++) {
7877     if (!debug_info->break_points()->get(i)->IsUndefined()) {
7878       Handle<BreakPointInfo> break_point_info =
7879           Handle<BreakPointInfo>(BreakPointInfo::cast(
7880               debug_info->break_points()->get(i)));
7881       if (BreakPointInfo::HasBreakPointObject(break_point_info,
7882                                               break_point_object)) {
7883         return *break_point_info;
7884       }
7885     }
7886   }
7887   return Heap::undefined_value();
7888 }
7889 
7890 
7891 // Find the index of the break point info object for the specified code
7892 // position.
GetBreakPointInfoIndex(int code_position)7893 int DebugInfo::GetBreakPointInfoIndex(int code_position) {
7894   if (break_points()->IsUndefined()) return kNoBreakPointInfo;
7895   for (int i = 0; i < break_points()->length(); i++) {
7896     if (!break_points()->get(i)->IsUndefined()) {
7897       BreakPointInfo* break_point_info =
7898           BreakPointInfo::cast(break_points()->get(i));
7899       if (break_point_info->code_position()->value() == code_position) {
7900         return i;
7901       }
7902     }
7903   }
7904   return kNoBreakPointInfo;
7905 }
7906 
7907 
7908 // Remove the specified break point object.
ClearBreakPoint(Handle<BreakPointInfo> break_point_info,Handle<Object> break_point_object)7909 void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info,
7910                                      Handle<Object> break_point_object) {
7911   // If there are no break points just ignore.
7912   if (break_point_info->break_point_objects()->IsUndefined()) return;
7913   // If there is a single break point clear it if it is the same.
7914   if (!break_point_info->break_point_objects()->IsFixedArray()) {
7915     if (break_point_info->break_point_objects() == *break_point_object) {
7916       break_point_info->set_break_point_objects(Heap::undefined_value());
7917     }
7918     return;
7919   }
7920   // If there are multiple break points shrink the array
7921   ASSERT(break_point_info->break_point_objects()->IsFixedArray());
7922   Handle<FixedArray> old_array =
7923       Handle<FixedArray>(
7924           FixedArray::cast(break_point_info->break_point_objects()));
7925   Handle<FixedArray> new_array =
7926       Factory::NewFixedArray(old_array->length() - 1);
7927   int found_count = 0;
7928   for (int i = 0; i < old_array->length(); i++) {
7929     if (old_array->get(i) == *break_point_object) {
7930       ASSERT(found_count == 0);
7931       found_count++;
7932     } else {
7933       new_array->set(i - found_count, old_array->get(i));
7934     }
7935   }
7936   // If the break point was found in the list change it.
7937   if (found_count > 0) break_point_info->set_break_point_objects(*new_array);
7938 }
7939 
7940 
7941 // Add the specified break point object.
SetBreakPoint(Handle<BreakPointInfo> break_point_info,Handle<Object> break_point_object)7942 void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info,
7943                                    Handle<Object> break_point_object) {
7944   // If there was no break point objects before just set it.
7945   if (break_point_info->break_point_objects()->IsUndefined()) {
7946     break_point_info->set_break_point_objects(*break_point_object);
7947     return;
7948   }
7949   // If the break point object is the same as before just ignore.
7950   if (break_point_info->break_point_objects() == *break_point_object) return;
7951   // If there was one break point object before replace with array.
7952   if (!break_point_info->break_point_objects()->IsFixedArray()) {
7953     Handle<FixedArray> array = Factory::NewFixedArray(2);
7954     array->set(0, break_point_info->break_point_objects());
7955     array->set(1, *break_point_object);
7956     break_point_info->set_break_point_objects(*array);
7957     return;
7958   }
7959   // If there was more than one break point before extend array.
7960   Handle<FixedArray> old_array =
7961       Handle<FixedArray>(
7962           FixedArray::cast(break_point_info->break_point_objects()));
7963   Handle<FixedArray> new_array =
7964       Factory::NewFixedArray(old_array->length() + 1);
7965   for (int i = 0; i < old_array->length(); i++) {
7966     // If the break point was there before just ignore.
7967     if (old_array->get(i) == *break_point_object) return;
7968     new_array->set(i, old_array->get(i));
7969   }
7970   // Add the new break point.
7971   new_array->set(old_array->length(), *break_point_object);
7972   break_point_info->set_break_point_objects(*new_array);
7973 }
7974 
7975 
HasBreakPointObject(Handle<BreakPointInfo> break_point_info,Handle<Object> break_point_object)7976 bool BreakPointInfo::HasBreakPointObject(
7977     Handle<BreakPointInfo> break_point_info,
7978     Handle<Object> break_point_object) {
7979   // No break point.
7980   if (break_point_info->break_point_objects()->IsUndefined()) return false;
7981   // Single beak point.
7982   if (!break_point_info->break_point_objects()->IsFixedArray()) {
7983     return break_point_info->break_point_objects() == *break_point_object;
7984   }
7985   // Multiple break points.
7986   FixedArray* array = FixedArray::cast(break_point_info->break_point_objects());
7987   for (int i = 0; i < array->length(); i++) {
7988     if (array->get(i) == *break_point_object) {
7989       return true;
7990     }
7991   }
7992   return false;
7993 }
7994 
7995 
7996 // Get the number of break points.
GetBreakPointCount()7997 int BreakPointInfo::GetBreakPointCount() {
7998   // No break point.
7999   if (break_point_objects()->IsUndefined()) return 0;
8000   // Single beak point.
8001   if (!break_point_objects()->IsFixedArray()) return 1;
8002   // Multiple break points.
8003   return FixedArray::cast(break_point_objects())->length();
8004 }
8005 #endif
8006 
8007 
8008 } }  // namespace v8::internal
8009