1 /*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // #define LOG_NDEBUG 0
18 #define LOG_TAG "libutils.threads"
19
20 #include <utils/threads.h>
21 #include <utils/Log.h>
22
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <memory.h>
26 #include <errno.h>
27 #include <assert.h>
28 #include <unistd.h>
29
30 #if defined(HAVE_PTHREADS)
31 # include <pthread.h>
32 # include <sched.h>
33 # include <sys/resource.h>
34 #elif defined(HAVE_WIN32_THREADS)
35 # include <windows.h>
36 # include <stdint.h>
37 # include <process.h>
38 # define HAVE_CREATETHREAD // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
39 #endif
40
41 #if defined(HAVE_PRCTL)
42 #include <sys/prctl.h>
43 #endif
44
45 /*
46 * ===========================================================================
47 * Thread wrappers
48 * ===========================================================================
49 */
50
51 using namespace android;
52
53 // ----------------------------------------------------------------------------
54 #if defined(HAVE_PTHREADS)
55 // ----------------------------------------------------------------------------
56
57 /*
58 * Create and run a new thead.
59 *
60 * We create it "detached", so it cleans up after itself.
61 */
62
63 typedef void* (*android_pthread_entry)(void*);
64
65 struct thread_data_t {
66 thread_func_t entryFunction;
67 void* userData;
68 int priority;
69 char * threadName;
70
71 // we use this trampoline when we need to set the priority with
72 // nice/setpriority.
trampolinethread_data_t73 static int trampoline(const thread_data_t* t) {
74 thread_func_t f = t->entryFunction;
75 void* u = t->userData;
76 int prio = t->priority;
77 char * name = t->threadName;
78 delete t;
79 setpriority(PRIO_PROCESS, 0, prio);
80 if (name) {
81 #if defined(HAVE_PRCTL)
82 // Mac OS doesn't have this, and we build libutil for the host too
83 int hasAt = 0;
84 int hasDot = 0;
85 char *s = name;
86 while (*s) {
87 if (*s == '.') hasDot = 1;
88 else if (*s == '@') hasAt = 1;
89 s++;
90 }
91 int len = s - name;
92 if (len < 15 || hasAt || !hasDot) {
93 s = name;
94 } else {
95 s = name + len - 15;
96 }
97 prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
98 #endif
99 free(name);
100 }
101 return f(u);
102 }
103 };
104
androidCreateRawThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)105 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
106 void *userData,
107 const char* threadName,
108 int32_t threadPriority,
109 size_t threadStackSize,
110 android_thread_id_t *threadId)
111 {
112 pthread_attr_t attr;
113 pthread_attr_init(&attr);
114 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
115
116 #ifdef HAVE_ANDROID_OS /* valgrind is rejecting RT-priority create reqs */
117 if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
118 // We could avoid the trampoline if there was a way to get to the
119 // android_thread_id_t (pid) from pthread_t
120 thread_data_t* t = new thread_data_t;
121 t->priority = threadPriority;
122 t->threadName = threadName ? strdup(threadName) : NULL;
123 t->entryFunction = entryFunction;
124 t->userData = userData;
125 entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
126 userData = t;
127 }
128 #endif
129
130 if (threadStackSize) {
131 pthread_attr_setstacksize(&attr, threadStackSize);
132 }
133
134 errno = 0;
135 pthread_t thread;
136 int result = pthread_create(&thread, &attr,
137 (android_pthread_entry)entryFunction, userData);
138 if (result != 0) {
139 LOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
140 "(android threadPriority=%d)",
141 entryFunction, result, errno, threadPriority);
142 return 0;
143 }
144
145 if (threadId != NULL) {
146 *threadId = (android_thread_id_t)thread; // XXX: this is not portable
147 }
148 return 1;
149 }
150
androidGetThreadId()151 android_thread_id_t androidGetThreadId()
152 {
153 return (android_thread_id_t)pthread_self();
154 }
155
156 // ----------------------------------------------------------------------------
157 #elif defined(HAVE_WIN32_THREADS)
158 // ----------------------------------------------------------------------------
159
160 /*
161 * Trampoline to make us __stdcall-compliant.
162 *
163 * We're expected to delete "vDetails" when we're done.
164 */
165 struct threadDetails {
166 int (*func)(void*);
167 void* arg;
168 };
threadIntermediary(void * vDetails)169 static __stdcall unsigned int threadIntermediary(void* vDetails)
170 {
171 struct threadDetails* pDetails = (struct threadDetails*) vDetails;
172 int result;
173
174 result = (*(pDetails->func))(pDetails->arg);
175
176 delete pDetails;
177
178 LOG(LOG_VERBOSE, "thread", "thread exiting\n");
179 return (unsigned int) result;
180 }
181
182 /*
183 * Create and run a new thread.
184 */
doCreateThread(android_thread_func_t fn,void * arg,android_thread_id_t * id)185 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
186 {
187 HANDLE hThread;
188 struct threadDetails* pDetails = new threadDetails; // must be on heap
189 unsigned int thrdaddr;
190
191 pDetails->func = fn;
192 pDetails->arg = arg;
193
194 #if defined(HAVE__BEGINTHREADEX)
195 hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
196 &thrdaddr);
197 if (hThread == 0)
198 #elif defined(HAVE_CREATETHREAD)
199 hThread = CreateThread(NULL, 0,
200 (LPTHREAD_START_ROUTINE) threadIntermediary,
201 (void*) pDetails, 0, (DWORD*) &thrdaddr);
202 if (hThread == NULL)
203 #endif
204 {
205 LOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
206 return false;
207 }
208
209 #if defined(HAVE_CREATETHREAD)
210 /* close the management handle */
211 CloseHandle(hThread);
212 #endif
213
214 if (id != NULL) {
215 *id = (android_thread_id_t)thrdaddr;
216 }
217
218 return true;
219 }
220
androidCreateRawThreadEtc(android_thread_func_t fn,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)221 int androidCreateRawThreadEtc(android_thread_func_t fn,
222 void *userData,
223 const char* threadName,
224 int32_t threadPriority,
225 size_t threadStackSize,
226 android_thread_id_t *threadId)
227 {
228 return doCreateThread( fn, userData, threadId);
229 }
230
androidGetThreadId()231 android_thread_id_t androidGetThreadId()
232 {
233 return (android_thread_id_t)GetCurrentThreadId();
234 }
235
236 // ----------------------------------------------------------------------------
237 #else
238 #error "Threads not supported"
239 #endif
240
241 // ----------------------------------------------------------------------------
242
androidCreateThread(android_thread_func_t fn,void * arg)243 int androidCreateThread(android_thread_func_t fn, void* arg)
244 {
245 return createThreadEtc(fn, arg);
246 }
247
androidCreateThreadGetID(android_thread_func_t fn,void * arg,android_thread_id_t * id)248 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
249 {
250 return createThreadEtc(fn, arg, "android:unnamed_thread",
251 PRIORITY_DEFAULT, 0, id);
252 }
253
254 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
255
androidCreateThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)256 int androidCreateThreadEtc(android_thread_func_t entryFunction,
257 void *userData,
258 const char* threadName,
259 int32_t threadPriority,
260 size_t threadStackSize,
261 android_thread_id_t *threadId)
262 {
263 return gCreateThreadFn(entryFunction, userData, threadName,
264 threadPriority, threadStackSize, threadId);
265 }
266
androidSetCreateThreadFunc(android_create_thread_fn func)267 void androidSetCreateThreadFunc(android_create_thread_fn func)
268 {
269 gCreateThreadFn = func;
270 }
271
272 namespace android {
273
274 /*
275 * ===========================================================================
276 * Mutex class
277 * ===========================================================================
278 */
279
280 #if defined(HAVE_PTHREADS)
281 // implemented as inlines in threads.h
282 #elif defined(HAVE_WIN32_THREADS)
283
284 Mutex::Mutex()
285 {
286 HANDLE hMutex;
287
288 assert(sizeof(hMutex) == sizeof(mState));
289
290 hMutex = CreateMutex(NULL, FALSE, NULL);
291 mState = (void*) hMutex;
292 }
293
294 Mutex::Mutex(const char* name)
295 {
296 // XXX: name not used for now
297 HANDLE hMutex;
298
299 assert(sizeof(hMutex) == sizeof(mState));
300
301 hMutex = CreateMutex(NULL, FALSE, NULL);
302 mState = (void*) hMutex;
303 }
304
305 Mutex::Mutex(int type, const char* name)
306 {
307 // XXX: type and name not used for now
308 HANDLE hMutex;
309
310 assert(sizeof(hMutex) == sizeof(mState));
311
312 hMutex = CreateMutex(NULL, FALSE, NULL);
313 mState = (void*) hMutex;
314 }
315
316 Mutex::~Mutex()
317 {
318 CloseHandle((HANDLE) mState);
319 }
320
321 status_t Mutex::lock()
322 {
323 DWORD dwWaitResult;
324 dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
325 return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
326 }
327
328 void Mutex::unlock()
329 {
330 if (!ReleaseMutex((HANDLE) mState))
331 LOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
332 }
333
334 status_t Mutex::tryLock()
335 {
336 DWORD dwWaitResult;
337
338 dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
339 if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
340 LOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
341 return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
342 }
343
344 #else
345 #error "Somebody forgot to implement threads for this platform."
346 #endif
347
348
349 /*
350 * ===========================================================================
351 * Condition class
352 * ===========================================================================
353 */
354
355 #if defined(HAVE_PTHREADS)
356 // implemented as inlines in threads.h
357 #elif defined(HAVE_WIN32_THREADS)
358
359 /*
360 * Windows doesn't have a condition variable solution. It's possible
361 * to create one, but it's easy to get it wrong. For a discussion, and
362 * the origin of this implementation, see:
363 *
364 * http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
365 *
366 * The implementation shown on the page does NOT follow POSIX semantics.
367 * As an optimization they require acquiring the external mutex before
368 * calling signal() and broadcast(), whereas POSIX only requires grabbing
369 * it before calling wait(). The implementation here has been un-optimized
370 * to have the correct behavior.
371 */
372 typedef struct WinCondition {
373 // Number of waiting threads.
374 int waitersCount;
375
376 // Serialize access to waitersCount.
377 CRITICAL_SECTION waitersCountLock;
378
379 // Semaphore used to queue up threads waiting for the condition to
380 // become signaled.
381 HANDLE sema;
382
383 // An auto-reset event used by the broadcast/signal thread to wait
384 // for all the waiting thread(s) to wake up and be released from
385 // the semaphore.
386 HANDLE waitersDone;
387
388 // This mutex wouldn't be necessary if we required that the caller
389 // lock the external mutex before calling signal() and broadcast().
390 // I'm trying to mimic pthread semantics though.
391 HANDLE internalMutex;
392
393 // Keeps track of whether we were broadcasting or signaling. This
394 // allows us to optimize the code if we're just signaling.
395 bool wasBroadcast;
396
397 status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
398 {
399 // Increment the wait count, avoiding race conditions.
400 EnterCriticalSection(&condState->waitersCountLock);
401 condState->waitersCount++;
402 //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
403 // condState->waitersCount, getThreadId());
404 LeaveCriticalSection(&condState->waitersCountLock);
405
406 DWORD timeout = INFINITE;
407 if (abstime) {
408 nsecs_t reltime = *abstime - systemTime();
409 if (reltime < 0)
410 reltime = 0;
411 timeout = reltime/1000000;
412 }
413
414 // Atomically release the external mutex and wait on the semaphore.
415 DWORD res =
416 SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
417
418 //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
419
420 // Reacquire lock to avoid race conditions.
421 EnterCriticalSection(&condState->waitersCountLock);
422
423 // No longer waiting.
424 condState->waitersCount--;
425
426 // Check to see if we're the last waiter after a broadcast.
427 bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
428
429 //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
430 // lastWaiter, condState->wasBroadcast, condState->waitersCount);
431
432 LeaveCriticalSection(&condState->waitersCountLock);
433
434 // If we're the last waiter thread during this particular broadcast
435 // then signal broadcast() that we're all awake. It'll drop the
436 // internal mutex.
437 if (lastWaiter) {
438 // Atomically signal the "waitersDone" event and wait until we
439 // can acquire the internal mutex. We want to do this in one step
440 // because it ensures that everybody is in the mutex FIFO before
441 // any thread has a chance to run. Without it, another thread
442 // could wake up, do work, and hop back in ahead of us.
443 SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
444 INFINITE, FALSE);
445 } else {
446 // Grab the internal mutex.
447 WaitForSingleObject(condState->internalMutex, INFINITE);
448 }
449
450 // Release the internal and grab the external.
451 ReleaseMutex(condState->internalMutex);
452 WaitForSingleObject(hMutex, INFINITE);
453
454 return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
455 }
456 } WinCondition;
457
458 /*
459 * Constructor. Set up the WinCondition stuff.
460 */
461 Condition::Condition()
462 {
463 WinCondition* condState = new WinCondition;
464
465 condState->waitersCount = 0;
466 condState->wasBroadcast = false;
467 // semaphore: no security, initial value of 0
468 condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
469 InitializeCriticalSection(&condState->waitersCountLock);
470 // auto-reset event, not signaled initially
471 condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
472 // used so we don't have to lock external mutex on signal/broadcast
473 condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
474
475 mState = condState;
476 }
477
478 /*
479 * Destructor. Free Windows resources as well as our allocated storage.
480 */
481 Condition::~Condition()
482 {
483 WinCondition* condState = (WinCondition*) mState;
484 if (condState != NULL) {
485 CloseHandle(condState->sema);
486 CloseHandle(condState->waitersDone);
487 delete condState;
488 }
489 }
490
491
492 status_t Condition::wait(Mutex& mutex)
493 {
494 WinCondition* condState = (WinCondition*) mState;
495 HANDLE hMutex = (HANDLE) mutex.mState;
496
497 return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
498 }
499
500 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
501 {
502 WinCondition* condState = (WinCondition*) mState;
503 HANDLE hMutex = (HANDLE) mutex.mState;
504 nsecs_t absTime = systemTime()+reltime;
505
506 return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
507 }
508
509 /*
510 * Signal the condition variable, allowing one thread to continue.
511 */
512 void Condition::signal()
513 {
514 WinCondition* condState = (WinCondition*) mState;
515
516 // Lock the internal mutex. This ensures that we don't clash with
517 // broadcast().
518 WaitForSingleObject(condState->internalMutex, INFINITE);
519
520 EnterCriticalSection(&condState->waitersCountLock);
521 bool haveWaiters = (condState->waitersCount > 0);
522 LeaveCriticalSection(&condState->waitersCountLock);
523
524 // If no waiters, then this is a no-op. Otherwise, knock the semaphore
525 // down a notch.
526 if (haveWaiters)
527 ReleaseSemaphore(condState->sema, 1, 0);
528
529 // Release internal mutex.
530 ReleaseMutex(condState->internalMutex);
531 }
532
533 /*
534 * Signal the condition variable, allowing all threads to continue.
535 *
536 * First we have to wake up all threads waiting on the semaphore, then
537 * we wait until all of the threads have actually been woken before
538 * releasing the internal mutex. This ensures that all threads are woken.
539 */
540 void Condition::broadcast()
541 {
542 WinCondition* condState = (WinCondition*) mState;
543
544 // Lock the internal mutex. This keeps the guys we're waking up
545 // from getting too far.
546 WaitForSingleObject(condState->internalMutex, INFINITE);
547
548 EnterCriticalSection(&condState->waitersCountLock);
549 bool haveWaiters = false;
550
551 if (condState->waitersCount > 0) {
552 haveWaiters = true;
553 condState->wasBroadcast = true;
554 }
555
556 if (haveWaiters) {
557 // Wake up all the waiters.
558 ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
559
560 LeaveCriticalSection(&condState->waitersCountLock);
561
562 // Wait for all awakened threads to acquire the counting semaphore.
563 // The last guy who was waiting sets this.
564 WaitForSingleObject(condState->waitersDone, INFINITE);
565
566 // Reset wasBroadcast. (No crit section needed because nobody
567 // else can wake up to poke at it.)
568 condState->wasBroadcast = 0;
569 } else {
570 // nothing to do
571 LeaveCriticalSection(&condState->waitersCountLock);
572 }
573
574 // Release internal mutex.
575 ReleaseMutex(condState->internalMutex);
576 }
577
578 #else
579 #error "condition variables not supported on this platform"
580 #endif
581
582 // ----------------------------------------------------------------------------
583
584 /*
585 * This is our thread object!
586 */
587
Thread(bool canCallJava)588 Thread::Thread(bool canCallJava)
589 : mCanCallJava(canCallJava),
590 mThread(thread_id_t(-1)),
591 mLock("Thread::mLock"),
592 mStatus(NO_ERROR),
593 mExitPending(false), mRunning(false)
594 {
595 }
596
~Thread()597 Thread::~Thread()
598 {
599 }
600
readyToRun()601 status_t Thread::readyToRun()
602 {
603 return NO_ERROR;
604 }
605
run(const char * name,int32_t priority,size_t stack)606 status_t Thread::run(const char* name, int32_t priority, size_t stack)
607 {
608 Mutex::Autolock _l(mLock);
609
610 if (mRunning) {
611 // thread already started
612 return INVALID_OPERATION;
613 }
614
615 // reset status and exitPending to their default value, so we can
616 // try again after an error happened (either below, or in readyToRun())
617 mStatus = NO_ERROR;
618 mExitPending = false;
619 mThread = thread_id_t(-1);
620
621 // hold a strong reference on ourself
622 mHoldSelf = this;
623
624 mRunning = true;
625
626 bool res;
627 if (mCanCallJava) {
628 res = createThreadEtc(_threadLoop,
629 this, name, priority, stack, &mThread);
630 } else {
631 res = androidCreateRawThreadEtc(_threadLoop,
632 this, name, priority, stack, &mThread);
633 }
634
635 if (res == false) {
636 mStatus = UNKNOWN_ERROR; // something happened!
637 mRunning = false;
638 mThread = thread_id_t(-1);
639 mHoldSelf.clear(); // "this" may have gone away after this.
640
641 return UNKNOWN_ERROR;
642 }
643
644 // Do not refer to mStatus here: The thread is already running (may, in fact
645 // already have exited with a valid mStatus result). The NO_ERROR indication
646 // here merely indicates successfully starting the thread and does not
647 // imply successful termination/execution.
648 return NO_ERROR;
649 }
650
_threadLoop(void * user)651 int Thread::_threadLoop(void* user)
652 {
653 Thread* const self = static_cast<Thread*>(user);
654 sp<Thread> strong(self->mHoldSelf);
655 wp<Thread> weak(strong);
656 self->mHoldSelf.clear();
657
658 #if HAVE_ANDROID_OS
659 // this is very useful for debugging with gdb
660 self->mTid = gettid();
661 #endif
662
663 bool first = true;
664
665 do {
666 bool result;
667 if (first) {
668 first = false;
669 self->mStatus = self->readyToRun();
670 result = (self->mStatus == NO_ERROR);
671
672 if (result && !self->mExitPending) {
673 // Binder threads (and maybe others) rely on threadLoop
674 // running at least once after a successful ::readyToRun()
675 // (unless, of course, the thread has already been asked to exit
676 // at that point).
677 // This is because threads are essentially used like this:
678 // (new ThreadSubclass())->run();
679 // The caller therefore does not retain a strong reference to
680 // the thread and the thread would simply disappear after the
681 // successful ::readyToRun() call instead of entering the
682 // threadLoop at least once.
683 result = self->threadLoop();
684 }
685 } else {
686 result = self->threadLoop();
687 }
688
689 if (result == false || self->mExitPending) {
690 self->mExitPending = true;
691 self->mLock.lock();
692 self->mRunning = false;
693 self->mThreadExitedCondition.broadcast();
694 self->mLock.unlock();
695 break;
696 }
697
698 // Release our strong reference, to let a chance to the thread
699 // to die a peaceful death.
700 strong.clear();
701 // And immediately, re-acquire a strong reference for the next loop
702 strong = weak.promote();
703 } while(strong != 0);
704
705 return 0;
706 }
707
requestExit()708 void Thread::requestExit()
709 {
710 mExitPending = true;
711 }
712
requestExitAndWait()713 status_t Thread::requestExitAndWait()
714 {
715 if (mThread == getThreadId()) {
716 LOGW(
717 "Thread (this=%p): don't call waitForExit() from this "
718 "Thread object's thread. It's a guaranteed deadlock!",
719 this);
720
721 return WOULD_BLOCK;
722 }
723
724 requestExit();
725
726 Mutex::Autolock _l(mLock);
727 while (mRunning == true) {
728 mThreadExitedCondition.wait(mLock);
729 }
730 mExitPending = false;
731
732 return mStatus;
733 }
734
exitPending() const735 bool Thread::exitPending() const
736 {
737 return mExitPending;
738 }
739
740
741
742 }; // namespace android
743