• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // #define LOG_NDEBUG 0
18 #define LOG_TAG "libutils.threads"
19 
20 #include <utils/threads.h>
21 #include <utils/Log.h>
22 
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <memory.h>
26 #include <errno.h>
27 #include <assert.h>
28 #include <unistd.h>
29 
30 #if defined(HAVE_PTHREADS)
31 # include <pthread.h>
32 # include <sched.h>
33 # include <sys/resource.h>
34 #elif defined(HAVE_WIN32_THREADS)
35 # include <windows.h>
36 # include <stdint.h>
37 # include <process.h>
38 # define HAVE_CREATETHREAD  // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
39 #endif
40 
41 #if defined(HAVE_PRCTL)
42 #include <sys/prctl.h>
43 #endif
44 
45 /*
46  * ===========================================================================
47  *      Thread wrappers
48  * ===========================================================================
49  */
50 
51 using namespace android;
52 
53 // ----------------------------------------------------------------------------
54 #if defined(HAVE_PTHREADS)
55 // ----------------------------------------------------------------------------
56 
57 /*
58  * Create and run a new thead.
59  *
60  * We create it "detached", so it cleans up after itself.
61  */
62 
63 typedef void* (*android_pthread_entry)(void*);
64 
65 struct thread_data_t {
66     thread_func_t   entryFunction;
67     void*           userData;
68     int             priority;
69     char *          threadName;
70 
71     // we use this trampoline when we need to set the priority with
72     // nice/setpriority.
trampolinethread_data_t73     static int trampoline(const thread_data_t* t) {
74         thread_func_t f = t->entryFunction;
75         void* u = t->userData;
76         int prio = t->priority;
77         char * name = t->threadName;
78         delete t;
79         setpriority(PRIO_PROCESS, 0, prio);
80         if (name) {
81 #if defined(HAVE_PRCTL)
82             // Mac OS doesn't have this, and we build libutil for the host too
83             int hasAt = 0;
84             int hasDot = 0;
85             char *s = name;
86             while (*s) {
87                 if (*s == '.') hasDot = 1;
88                 else if (*s == '@') hasAt = 1;
89                 s++;
90             }
91             int len = s - name;
92             if (len < 15 || hasAt || !hasDot) {
93                 s = name;
94             } else {
95                 s = name + len - 15;
96             }
97             prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
98 #endif
99             free(name);
100         }
101         return f(u);
102     }
103 };
104 
androidCreateRawThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)105 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
106                                void *userData,
107                                const char* threadName,
108                                int32_t threadPriority,
109                                size_t threadStackSize,
110                                android_thread_id_t *threadId)
111 {
112     pthread_attr_t attr;
113     pthread_attr_init(&attr);
114     pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
115 
116 #ifdef HAVE_ANDROID_OS  /* valgrind is rejecting RT-priority create reqs */
117     if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
118         // We could avoid the trampoline if there was a way to get to the
119         // android_thread_id_t (pid) from pthread_t
120         thread_data_t* t = new thread_data_t;
121         t->priority = threadPriority;
122         t->threadName = threadName ? strdup(threadName) : NULL;
123         t->entryFunction = entryFunction;
124         t->userData = userData;
125         entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
126         userData = t;
127     }
128 #endif
129 
130     if (threadStackSize) {
131         pthread_attr_setstacksize(&attr, threadStackSize);
132     }
133 
134     errno = 0;
135     pthread_t thread;
136     int result = pthread_create(&thread, &attr,
137                     (android_pthread_entry)entryFunction, userData);
138     if (result != 0) {
139         LOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
140              "(android threadPriority=%d)",
141             entryFunction, result, errno, threadPriority);
142         return 0;
143     }
144 
145     if (threadId != NULL) {
146         *threadId = (android_thread_id_t)thread; // XXX: this is not portable
147     }
148     return 1;
149 }
150 
androidGetThreadId()151 android_thread_id_t androidGetThreadId()
152 {
153     return (android_thread_id_t)pthread_self();
154 }
155 
156 // ----------------------------------------------------------------------------
157 #elif defined(HAVE_WIN32_THREADS)
158 // ----------------------------------------------------------------------------
159 
160 /*
161  * Trampoline to make us __stdcall-compliant.
162  *
163  * We're expected to delete "vDetails" when we're done.
164  */
165 struct threadDetails {
166     int (*func)(void*);
167     void* arg;
168 };
threadIntermediary(void * vDetails)169 static __stdcall unsigned int threadIntermediary(void* vDetails)
170 {
171     struct threadDetails* pDetails = (struct threadDetails*) vDetails;
172     int result;
173 
174     result = (*(pDetails->func))(pDetails->arg);
175 
176     delete pDetails;
177 
178     LOG(LOG_VERBOSE, "thread", "thread exiting\n");
179     return (unsigned int) result;
180 }
181 
182 /*
183  * Create and run a new thread.
184  */
doCreateThread(android_thread_func_t fn,void * arg,android_thread_id_t * id)185 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
186 {
187     HANDLE hThread;
188     struct threadDetails* pDetails = new threadDetails; // must be on heap
189     unsigned int thrdaddr;
190 
191     pDetails->func = fn;
192     pDetails->arg = arg;
193 
194 #if defined(HAVE__BEGINTHREADEX)
195     hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
196                     &thrdaddr);
197     if (hThread == 0)
198 #elif defined(HAVE_CREATETHREAD)
199     hThread = CreateThread(NULL, 0,
200                     (LPTHREAD_START_ROUTINE) threadIntermediary,
201                     (void*) pDetails, 0, (DWORD*) &thrdaddr);
202     if (hThread == NULL)
203 #endif
204     {
205         LOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
206         return false;
207     }
208 
209 #if defined(HAVE_CREATETHREAD)
210     /* close the management handle */
211     CloseHandle(hThread);
212 #endif
213 
214     if (id != NULL) {
215       	*id = (android_thread_id_t)thrdaddr;
216     }
217 
218     return true;
219 }
220 
androidCreateRawThreadEtc(android_thread_func_t fn,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)221 int androidCreateRawThreadEtc(android_thread_func_t fn,
222                                void *userData,
223                                const char* threadName,
224                                int32_t threadPriority,
225                                size_t threadStackSize,
226                                android_thread_id_t *threadId)
227 {
228     return doCreateThread(  fn, userData, threadId);
229 }
230 
androidGetThreadId()231 android_thread_id_t androidGetThreadId()
232 {
233     return (android_thread_id_t)GetCurrentThreadId();
234 }
235 
236 // ----------------------------------------------------------------------------
237 #else
238 #error "Threads not supported"
239 #endif
240 
241 // ----------------------------------------------------------------------------
242 
androidCreateThread(android_thread_func_t fn,void * arg)243 int androidCreateThread(android_thread_func_t fn, void* arg)
244 {
245     return createThreadEtc(fn, arg);
246 }
247 
androidCreateThreadGetID(android_thread_func_t fn,void * arg,android_thread_id_t * id)248 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
249 {
250     return createThreadEtc(fn, arg, "android:unnamed_thread",
251                            PRIORITY_DEFAULT, 0, id);
252 }
253 
254 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
255 
androidCreateThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)256 int androidCreateThreadEtc(android_thread_func_t entryFunction,
257                             void *userData,
258                             const char* threadName,
259                             int32_t threadPriority,
260                             size_t threadStackSize,
261                             android_thread_id_t *threadId)
262 {
263     return gCreateThreadFn(entryFunction, userData, threadName,
264         threadPriority, threadStackSize, threadId);
265 }
266 
androidSetCreateThreadFunc(android_create_thread_fn func)267 void androidSetCreateThreadFunc(android_create_thread_fn func)
268 {
269     gCreateThreadFn = func;
270 }
271 
272 namespace android {
273 
274 /*
275  * ===========================================================================
276  *      Mutex class
277  * ===========================================================================
278  */
279 
280 #if defined(HAVE_PTHREADS)
281 // implemented as inlines in threads.h
282 #elif defined(HAVE_WIN32_THREADS)
283 
284 Mutex::Mutex()
285 {
286     HANDLE hMutex;
287 
288     assert(sizeof(hMutex) == sizeof(mState));
289 
290     hMutex = CreateMutex(NULL, FALSE, NULL);
291     mState = (void*) hMutex;
292 }
293 
294 Mutex::Mutex(const char* name)
295 {
296     // XXX: name not used for now
297     HANDLE hMutex;
298 
299     assert(sizeof(hMutex) == sizeof(mState));
300 
301     hMutex = CreateMutex(NULL, FALSE, NULL);
302     mState = (void*) hMutex;
303 }
304 
305 Mutex::Mutex(int type, const char* name)
306 {
307     // XXX: type and name not used for now
308     HANDLE hMutex;
309 
310     assert(sizeof(hMutex) == sizeof(mState));
311 
312     hMutex = CreateMutex(NULL, FALSE, NULL);
313     mState = (void*) hMutex;
314 }
315 
316 Mutex::~Mutex()
317 {
318     CloseHandle((HANDLE) mState);
319 }
320 
321 status_t Mutex::lock()
322 {
323     DWORD dwWaitResult;
324     dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
325     return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
326 }
327 
328 void Mutex::unlock()
329 {
330     if (!ReleaseMutex((HANDLE) mState))
331         LOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
332 }
333 
334 status_t Mutex::tryLock()
335 {
336     DWORD dwWaitResult;
337 
338     dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
339     if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
340         LOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
341     return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
342 }
343 
344 #else
345 #error "Somebody forgot to implement threads for this platform."
346 #endif
347 
348 
349 /*
350  * ===========================================================================
351  *      Condition class
352  * ===========================================================================
353  */
354 
355 #if defined(HAVE_PTHREADS)
356 // implemented as inlines in threads.h
357 #elif defined(HAVE_WIN32_THREADS)
358 
359 /*
360  * Windows doesn't have a condition variable solution.  It's possible
361  * to create one, but it's easy to get it wrong.  For a discussion, and
362  * the origin of this implementation, see:
363  *
364  *  http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
365  *
366  * The implementation shown on the page does NOT follow POSIX semantics.
367  * As an optimization they require acquiring the external mutex before
368  * calling signal() and broadcast(), whereas POSIX only requires grabbing
369  * it before calling wait().  The implementation here has been un-optimized
370  * to have the correct behavior.
371  */
372 typedef struct WinCondition {
373     // Number of waiting threads.
374     int                 waitersCount;
375 
376     // Serialize access to waitersCount.
377     CRITICAL_SECTION    waitersCountLock;
378 
379     // Semaphore used to queue up threads waiting for the condition to
380     // become signaled.
381     HANDLE              sema;
382 
383     // An auto-reset event used by the broadcast/signal thread to wait
384     // for all the waiting thread(s) to wake up and be released from
385     // the semaphore.
386     HANDLE              waitersDone;
387 
388     // This mutex wouldn't be necessary if we required that the caller
389     // lock the external mutex before calling signal() and broadcast().
390     // I'm trying to mimic pthread semantics though.
391     HANDLE              internalMutex;
392 
393     // Keeps track of whether we were broadcasting or signaling.  This
394     // allows us to optimize the code if we're just signaling.
395     bool                wasBroadcast;
396 
397     status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
398     {
399         // Increment the wait count, avoiding race conditions.
400         EnterCriticalSection(&condState->waitersCountLock);
401         condState->waitersCount++;
402         //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
403         //    condState->waitersCount, getThreadId());
404         LeaveCriticalSection(&condState->waitersCountLock);
405 
406         DWORD timeout = INFINITE;
407         if (abstime) {
408             nsecs_t reltime = *abstime - systemTime();
409             if (reltime < 0)
410                 reltime = 0;
411             timeout = reltime/1000000;
412         }
413 
414         // Atomically release the external mutex and wait on the semaphore.
415         DWORD res =
416             SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
417 
418         //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
419 
420         // Reacquire lock to avoid race conditions.
421         EnterCriticalSection(&condState->waitersCountLock);
422 
423         // No longer waiting.
424         condState->waitersCount--;
425 
426         // Check to see if we're the last waiter after a broadcast.
427         bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
428 
429         //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
430         //    lastWaiter, condState->wasBroadcast, condState->waitersCount);
431 
432         LeaveCriticalSection(&condState->waitersCountLock);
433 
434         // If we're the last waiter thread during this particular broadcast
435         // then signal broadcast() that we're all awake.  It'll drop the
436         // internal mutex.
437         if (lastWaiter) {
438             // Atomically signal the "waitersDone" event and wait until we
439             // can acquire the internal mutex.  We want to do this in one step
440             // because it ensures that everybody is in the mutex FIFO before
441             // any thread has a chance to run.  Without it, another thread
442             // could wake up, do work, and hop back in ahead of us.
443             SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
444                 INFINITE, FALSE);
445         } else {
446             // Grab the internal mutex.
447             WaitForSingleObject(condState->internalMutex, INFINITE);
448         }
449 
450         // Release the internal and grab the external.
451         ReleaseMutex(condState->internalMutex);
452         WaitForSingleObject(hMutex, INFINITE);
453 
454         return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
455     }
456 } WinCondition;
457 
458 /*
459  * Constructor.  Set up the WinCondition stuff.
460  */
461 Condition::Condition()
462 {
463     WinCondition* condState = new WinCondition;
464 
465     condState->waitersCount = 0;
466     condState->wasBroadcast = false;
467     // semaphore: no security, initial value of 0
468     condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
469     InitializeCriticalSection(&condState->waitersCountLock);
470     // auto-reset event, not signaled initially
471     condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
472     // used so we don't have to lock external mutex on signal/broadcast
473     condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
474 
475     mState = condState;
476 }
477 
478 /*
479  * Destructor.  Free Windows resources as well as our allocated storage.
480  */
481 Condition::~Condition()
482 {
483     WinCondition* condState = (WinCondition*) mState;
484     if (condState != NULL) {
485         CloseHandle(condState->sema);
486         CloseHandle(condState->waitersDone);
487         delete condState;
488     }
489 }
490 
491 
492 status_t Condition::wait(Mutex& mutex)
493 {
494     WinCondition* condState = (WinCondition*) mState;
495     HANDLE hMutex = (HANDLE) mutex.mState;
496 
497     return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
498 }
499 
500 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
501 {
502     WinCondition* condState = (WinCondition*) mState;
503     HANDLE hMutex = (HANDLE) mutex.mState;
504     nsecs_t absTime = systemTime()+reltime;
505 
506     return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
507 }
508 
509 /*
510  * Signal the condition variable, allowing one thread to continue.
511  */
512 void Condition::signal()
513 {
514     WinCondition* condState = (WinCondition*) mState;
515 
516     // Lock the internal mutex.  This ensures that we don't clash with
517     // broadcast().
518     WaitForSingleObject(condState->internalMutex, INFINITE);
519 
520     EnterCriticalSection(&condState->waitersCountLock);
521     bool haveWaiters = (condState->waitersCount > 0);
522     LeaveCriticalSection(&condState->waitersCountLock);
523 
524     // If no waiters, then this is a no-op.  Otherwise, knock the semaphore
525     // down a notch.
526     if (haveWaiters)
527         ReleaseSemaphore(condState->sema, 1, 0);
528 
529     // Release internal mutex.
530     ReleaseMutex(condState->internalMutex);
531 }
532 
533 /*
534  * Signal the condition variable, allowing all threads to continue.
535  *
536  * First we have to wake up all threads waiting on the semaphore, then
537  * we wait until all of the threads have actually been woken before
538  * releasing the internal mutex.  This ensures that all threads are woken.
539  */
540 void Condition::broadcast()
541 {
542     WinCondition* condState = (WinCondition*) mState;
543 
544     // Lock the internal mutex.  This keeps the guys we're waking up
545     // from getting too far.
546     WaitForSingleObject(condState->internalMutex, INFINITE);
547 
548     EnterCriticalSection(&condState->waitersCountLock);
549     bool haveWaiters = false;
550 
551     if (condState->waitersCount > 0) {
552         haveWaiters = true;
553         condState->wasBroadcast = true;
554     }
555 
556     if (haveWaiters) {
557         // Wake up all the waiters.
558         ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
559 
560         LeaveCriticalSection(&condState->waitersCountLock);
561 
562         // Wait for all awakened threads to acquire the counting semaphore.
563         // The last guy who was waiting sets this.
564         WaitForSingleObject(condState->waitersDone, INFINITE);
565 
566         // Reset wasBroadcast.  (No crit section needed because nobody
567         // else can wake up to poke at it.)
568         condState->wasBroadcast = 0;
569     } else {
570         // nothing to do
571         LeaveCriticalSection(&condState->waitersCountLock);
572     }
573 
574     // Release internal mutex.
575     ReleaseMutex(condState->internalMutex);
576 }
577 
578 #else
579 #error "condition variables not supported on this platform"
580 #endif
581 
582 // ----------------------------------------------------------------------------
583 
584 /*
585  * This is our thread object!
586  */
587 
Thread(bool canCallJava)588 Thread::Thread(bool canCallJava)
589     :   mCanCallJava(canCallJava),
590         mThread(thread_id_t(-1)),
591         mLock("Thread::mLock"),
592         mStatus(NO_ERROR),
593         mExitPending(false), mRunning(false)
594 {
595 }
596 
~Thread()597 Thread::~Thread()
598 {
599 }
600 
readyToRun()601 status_t Thread::readyToRun()
602 {
603     return NO_ERROR;
604 }
605 
run(const char * name,int32_t priority,size_t stack)606 status_t Thread::run(const char* name, int32_t priority, size_t stack)
607 {
608     Mutex::Autolock _l(mLock);
609 
610     if (mRunning) {
611         // thread already started
612         return INVALID_OPERATION;
613     }
614 
615     // reset status and exitPending to their default value, so we can
616     // try again after an error happened (either below, or in readyToRun())
617     mStatus = NO_ERROR;
618     mExitPending = false;
619     mThread = thread_id_t(-1);
620 
621     // hold a strong reference on ourself
622     mHoldSelf = this;
623 
624     mRunning = true;
625 
626     bool res;
627     if (mCanCallJava) {
628         res = createThreadEtc(_threadLoop,
629                 this, name, priority, stack, &mThread);
630     } else {
631         res = androidCreateRawThreadEtc(_threadLoop,
632                 this, name, priority, stack, &mThread);
633     }
634 
635     if (res == false) {
636         mStatus = UNKNOWN_ERROR;   // something happened!
637         mRunning = false;
638         mThread = thread_id_t(-1);
639         mHoldSelf.clear();  // "this" may have gone away after this.
640 
641         return UNKNOWN_ERROR;
642     }
643 
644     // Do not refer to mStatus here: The thread is already running (may, in fact
645     // already have exited with a valid mStatus result). The NO_ERROR indication
646     // here merely indicates successfully starting the thread and does not
647     // imply successful termination/execution.
648     return NO_ERROR;
649 }
650 
_threadLoop(void * user)651 int Thread::_threadLoop(void* user)
652 {
653     Thread* const self = static_cast<Thread*>(user);
654     sp<Thread> strong(self->mHoldSelf);
655     wp<Thread> weak(strong);
656     self->mHoldSelf.clear();
657 
658 #if HAVE_ANDROID_OS
659     // this is very useful for debugging with gdb
660     self->mTid = gettid();
661 #endif
662 
663     bool first = true;
664 
665     do {
666         bool result;
667         if (first) {
668             first = false;
669             self->mStatus = self->readyToRun();
670             result = (self->mStatus == NO_ERROR);
671 
672             if (result && !self->mExitPending) {
673                 // Binder threads (and maybe others) rely on threadLoop
674                 // running at least once after a successful ::readyToRun()
675                 // (unless, of course, the thread has already been asked to exit
676                 // at that point).
677                 // This is because threads are essentially used like this:
678                 //   (new ThreadSubclass())->run();
679                 // The caller therefore does not retain a strong reference to
680                 // the thread and the thread would simply disappear after the
681                 // successful ::readyToRun() call instead of entering the
682                 // threadLoop at least once.
683                 result = self->threadLoop();
684             }
685         } else {
686             result = self->threadLoop();
687         }
688 
689         if (result == false || self->mExitPending) {
690             self->mExitPending = true;
691             self->mLock.lock();
692             self->mRunning = false;
693             self->mThreadExitedCondition.broadcast();
694             self->mLock.unlock();
695             break;
696         }
697 
698         // Release our strong reference, to let a chance to the thread
699         // to die a peaceful death.
700         strong.clear();
701         // And immediately, re-acquire a strong reference for the next loop
702         strong = weak.promote();
703     } while(strong != 0);
704 
705     return 0;
706 }
707 
requestExit()708 void Thread::requestExit()
709 {
710     mExitPending = true;
711 }
712 
requestExitAndWait()713 status_t Thread::requestExitAndWait()
714 {
715     if (mThread == getThreadId()) {
716         LOGW(
717         "Thread (this=%p): don't call waitForExit() from this "
718         "Thread object's thread. It's a guaranteed deadlock!",
719         this);
720 
721         return WOULD_BLOCK;
722     }
723 
724     requestExit();
725 
726     Mutex::Autolock _l(mLock);
727     while (mRunning == true) {
728         mThreadExitedCondition.wait(mLock);
729     }
730     mExitPending = false;
731 
732     return mStatus;
733 }
734 
exitPending() const735 bool Thread::exitPending() const
736 {
737     return mExitPending;
738 }
739 
740 
741 
742 };  // namespace android
743