1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 /*
17 * Miscellaneous utility functions.
18 */
19 #include "Dalvik.h"
20
21 #include <stdlib.h>
22 #include <stddef.h>
23 #include <string.h>
24 #include <ctype.h>
25 #include <time.h>
26 #include <sys/time.h>
27 #include <fcntl.h>
28
29
30 /*
31 * Print a hex dump in this format:
32 *
33 01234567: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff 0123456789abcdef\n
34 *
35 * If "mode" is kHexDumpLocal, we start at offset zero, and show a full
36 * 16 bytes on the first line. If it's kHexDumpMem, we make this look
37 * like a memory dump, using the actual address, outputting a partial line
38 * if "vaddr" isn't aligned on a 16-byte boundary.
39 *
40 * "priority" and "tag" determine the values passed to the log calls.
41 *
42 * Does not use printf() or other string-formatting calls.
43 */
dvmPrintHexDumpEx(int priority,const char * tag,const void * vaddr,size_t length,HexDumpMode mode)44 void dvmPrintHexDumpEx(int priority, const char* tag, const void* vaddr,
45 size_t length, HexDumpMode mode)
46 {
47 static const char gHexDigit[] = "0123456789abcdef";
48 const unsigned char* addr = vaddr;
49 char out[77]; /* exact fit */
50 unsigned int offset; /* offset to show while printing */
51 char* hex;
52 char* asc;
53 int gap;
54 //int trickle = 0;
55
56 if (mode == kHexDumpLocal)
57 offset = 0;
58 else
59 offset = (int) addr;
60
61 memset(out, ' ', sizeof(out)-1);
62 out[8] = ':';
63 out[sizeof(out)-2] = '\n';
64 out[sizeof(out)-1] = '\0';
65
66 gap = (int) offset & 0x0f;
67 while (length) {
68 unsigned int lineOffset = offset & ~0x0f;
69 int i, count;
70
71 hex = out;
72 asc = out + 59;
73
74 for (i = 0; i < 8; i++) {
75 *hex++ = gHexDigit[lineOffset >> 28];
76 lineOffset <<= 4;
77 }
78 hex++;
79 hex++;
80
81 count = ((int)length > 16-gap) ? 16-gap : (int)length; /* cap length */
82 assert(count != 0);
83 assert(count+gap <= 16);
84
85 if (gap) {
86 /* only on first line */
87 hex += gap * 3;
88 asc += gap;
89 }
90
91 for (i = gap ; i < count+gap; i++) {
92 *hex++ = gHexDigit[*addr >> 4];
93 *hex++ = gHexDigit[*addr & 0x0f];
94 hex++;
95 if (*addr >= 0x20 && *addr < 0x7f /*isprint(*addr)*/)
96 *asc++ = *addr;
97 else
98 *asc++ = '.';
99 addr++;
100 }
101 for ( ; i < 16; i++) {
102 /* erase extra stuff; only happens on last line */
103 *hex++ = ' ';
104 *hex++ = ' ';
105 hex++;
106 *asc++ = ' ';
107 }
108
109 LOG_PRI(priority, tag, "%s", out);
110 #if 0 //def HAVE_ANDROID_OS
111 /*
112 * We can overrun logcat easily by writing at full speed. On the
113 * other hand, we can make Eclipse time out if we're showing
114 * packet dumps while debugging JDWP.
115 */
116 {
117 if (trickle++ == 8) {
118 trickle = 0;
119 usleep(20000);
120 }
121 }
122 #endif
123
124 gap = 0;
125 length -= count;
126 offset += count;
127 }
128 }
129
130
131 /*
132 * Fill out a DebugOutputTarget, suitable for printing to the log.
133 */
dvmCreateLogOutputTarget(DebugOutputTarget * target,int priority,const char * tag)134 void dvmCreateLogOutputTarget(DebugOutputTarget* target, int priority,
135 const char* tag)
136 {
137 assert(target != NULL);
138 assert(tag != NULL);
139
140 target->which = kDebugTargetLog;
141 target->data.log.priority = priority;
142 target->data.log.tag = tag;
143 }
144
145 /*
146 * Fill out a DebugOutputTarget suitable for printing to a file pointer.
147 */
dvmCreateFileOutputTarget(DebugOutputTarget * target,FILE * fp)148 void dvmCreateFileOutputTarget(DebugOutputTarget* target, FILE* fp)
149 {
150 assert(target != NULL);
151 assert(fp != NULL);
152
153 target->which = kDebugTargetFile;
154 target->data.file.fp = fp;
155 }
156
157 /*
158 * Free "target" and any associated data.
159 */
dvmFreeOutputTarget(DebugOutputTarget * target)160 void dvmFreeOutputTarget(DebugOutputTarget* target)
161 {
162 free(target);
163 }
164
165 /*
166 * Print a debug message, to either a file or the log.
167 */
dvmPrintDebugMessage(const DebugOutputTarget * target,const char * format,...)168 void dvmPrintDebugMessage(const DebugOutputTarget* target, const char* format,
169 ...)
170 {
171 va_list args;
172
173 va_start(args, format);
174
175 switch (target->which) {
176 case kDebugTargetLog:
177 LOG_PRI_VA(target->data.log.priority, target->data.log.tag,
178 format, args);
179 break;
180 case kDebugTargetFile:
181 vfprintf(target->data.file.fp, format, args);
182 break;
183 default:
184 LOGE("unexpected 'which' %d\n", target->which);
185 break;
186 }
187
188 va_end(args);
189 }
190
191
192 /*
193 * Allocate a bit vector with enough space to hold at least the specified
194 * number of bits.
195 */
dvmAllocBitVector(int startBits,bool expandable)196 BitVector* dvmAllocBitVector(int startBits, bool expandable)
197 {
198 BitVector* bv;
199 int count;
200
201 assert(sizeof(bv->storage[0]) == 4); /* assuming 32-bit units */
202 assert(startBits >= 0);
203
204 bv = (BitVector*) malloc(sizeof(BitVector));
205
206 count = (startBits + 31) >> 5;
207
208 bv->storageSize = count;
209 bv->expandable = expandable;
210 bv->storage = (u4*) malloc(count * sizeof(u4));
211 memset(bv->storage, 0x00, count * sizeof(u4));
212 return bv;
213 }
214
215 /*
216 * Free a BitVector.
217 */
dvmFreeBitVector(BitVector * pBits)218 void dvmFreeBitVector(BitVector* pBits)
219 {
220 if (pBits == NULL)
221 return;
222
223 free(pBits->storage);
224 free(pBits);
225 }
226
227 /*
228 * "Allocate" the first-available bit in the bitmap.
229 *
230 * This is not synchronized. The caller is expected to hold some sort of
231 * lock that prevents multiple threads from executing simultaneously in
232 * dvmAllocBit/dvmFreeBit.
233 */
dvmAllocBit(BitVector * pBits)234 int dvmAllocBit(BitVector* pBits)
235 {
236 int word, bit;
237
238 retry:
239 for (word = 0; word < pBits->storageSize; word++) {
240 if (pBits->storage[word] != 0xffffffff) {
241 /*
242 * There are unallocated bits in this word. Return the first.
243 */
244 bit = ffs(~(pBits->storage[word])) -1;
245 assert(bit >= 0 && bit < 32);
246 pBits->storage[word] |= 1 << bit;
247 return (word << 5) | bit;
248 }
249 }
250
251 /*
252 * Ran out of space, allocate more if we're allowed to.
253 */
254 if (!pBits->expandable)
255 return -1;
256
257 pBits->storage = realloc(pBits->storage,
258 (pBits->storageSize + kBitVectorGrowth) * sizeof(u4));
259 memset(&pBits->storage[pBits->storageSize], 0x00,
260 kBitVectorGrowth * sizeof(u4));
261 pBits->storageSize += kBitVectorGrowth;
262 goto retry;
263 }
264
265 /*
266 * Mark the specified bit as "set".
267 *
268 * Returns "false" if the bit is outside the range of the vector and we're
269 * not allowed to expand.
270 */
dvmSetBit(BitVector * pBits,int num)271 bool dvmSetBit(BitVector* pBits, int num)
272 {
273 assert(num >= 0);
274 if (num >= pBits->storageSize * (int)sizeof(u4) * 8) {
275 if (!pBits->expandable)
276 return false;
277
278 int newSize = (num + 31) >> 5;
279 assert(newSize > pBits->storageSize);
280 pBits->storage = realloc(pBits->storage, newSize * sizeof(u4));
281 memset(&pBits->storage[pBits->storageSize], 0x00,
282 (newSize - pBits->storageSize) * sizeof(u4));
283 pBits->storageSize = newSize;
284 }
285
286 pBits->storage[num >> 5] |= 1 << (num & 0x1f);
287 return true;
288 }
289
290 /*
291 * Mark the specified bit as "clear".
292 */
dvmClearBit(BitVector * pBits,int num)293 void dvmClearBit(BitVector* pBits, int num)
294 {
295 assert(num >= 0 && num < (int) pBits->storageSize * (int)sizeof(u4) * 8);
296
297 pBits->storage[num >> 5] &= ~(1 << (num & 0x1f));
298 }
299
300 /*
301 * Mark all bits bit as "clear".
302 */
dvmClearAllBits(BitVector * pBits)303 void dvmClearAllBits(BitVector* pBits)
304 {
305 int count = pBits->storageSize;
306 memset(pBits->storage, 0, count * sizeof(u4));
307 }
308
309 /*
310 * Determine whether or not the specified bit is set.
311 */
dvmIsBitSet(const BitVector * pBits,int num)312 bool dvmIsBitSet(const BitVector* pBits, int num)
313 {
314 assert(num >= 0 && num < (int) pBits->storageSize * (int)sizeof(u4) * 8);
315
316 int val = pBits->storage[num >> 5] & (1 << (num & 0x1f));
317 return (val != 0);
318 }
319
320 /*
321 * Count the number of bits that are set.
322 */
dvmCountSetBits(const BitVector * pBits)323 int dvmCountSetBits(const BitVector* pBits)
324 {
325 int word, bit;
326 int count = 0;
327
328 for (word = 0; word < pBits->storageSize; word++) {
329 u4 val = pBits->storage[word];
330
331 if (val != 0) {
332 if (val == 0xffffffff) {
333 count += 32;
334 } else {
335 /* count the number of '1' bits */
336 while (val != 0) {
337 val &= val - 1;
338 count++;
339 }
340 }
341 }
342 }
343
344 return count;
345 }
346
347 /*
348 * Return a newly-allocated string in which all occurrences of '.' have
349 * been changed to '/'. If we find a '/' in the original string, NULL
350 * is returned to avoid ambiguity.
351 */
dvmDotToSlash(const char * str)352 char* dvmDotToSlash(const char* str)
353 {
354 char* newStr = strdup(str);
355 char* cp = newStr;
356
357 while (*cp != '\0') {
358 if (*cp == '/') {
359 assert(false);
360 return NULL;
361 }
362 if (*cp == '.')
363 *cp = '/';
364 cp++;
365 }
366
367 return newStr;
368 }
369
370 /*
371 * Return a newly-allocated string for the "dot version" of the class
372 * name for the given type descriptor. That is, The initial "L" and
373 * final ";" (if any) have been removed and all occurrences of '/'
374 * have been changed to '.'.
375 */
dvmDescriptorToDot(const char * str)376 char* dvmDescriptorToDot(const char* str)
377 {
378 size_t at = strlen(str);
379 char* newStr;
380
381 if ((at >= 2) && (str[0] == 'L') && (str[at - 1] == ';')) {
382 at -= 2; /* Two fewer chars to copy. */
383 str++; /* Skip the 'L'. */
384 }
385
386 newStr = malloc(at + 1); /* Add one for the '\0'. */
387 newStr[at] = '\0';
388
389 while (at > 0) {
390 at--;
391 newStr[at] = (str[at] == '/') ? '.' : str[at];
392 }
393
394 return newStr;
395 }
396
397 /*
398 * Return a newly-allocated string for the type descriptor
399 * corresponding to the "dot version" of the given class name. That
400 * is, non-array names are surrounded by "L" and ";", and all
401 * occurrences of '.' are changed to '/'.
402 */
dvmDotToDescriptor(const char * str)403 char* dvmDotToDescriptor(const char* str)
404 {
405 size_t length = strlen(str);
406 int wrapElSemi = 0;
407 char* newStr;
408 char* at;
409
410 if (str[0] != '[') {
411 length += 2; /* for "L" and ";" */
412 wrapElSemi = 1;
413 }
414
415 newStr = at = malloc(length + 1); /* + 1 for the '\0' */
416
417 if (newStr == NULL) {
418 return NULL;
419 }
420
421 if (wrapElSemi) {
422 *(at++) = 'L';
423 }
424
425 while (*str) {
426 char c = *(str++);
427 if (c == '.') {
428 c = '/';
429 }
430 *(at++) = c;
431 }
432
433 if (wrapElSemi) {
434 *(at++) = ';';
435 }
436
437 *at = '\0';
438 return newStr;
439 }
440
441 /*
442 * Return a newly-allocated string for the internal-form class name for
443 * the given type descriptor. That is, the initial "L" and final ";" (if
444 * any) have been removed.
445 */
dvmDescriptorToName(const char * str)446 char* dvmDescriptorToName(const char* str)
447 {
448 if (str[0] == 'L') {
449 size_t length = strlen(str) - 1;
450 char* newStr = malloc(length);
451
452 if (newStr == NULL) {
453 return NULL;
454 }
455
456 strlcpy(newStr, str + 1, length);
457 return newStr;
458 }
459
460 return strdup(str);
461 }
462
463 /*
464 * Return a newly-allocated string for the type descriptor for the given
465 * internal-form class name. That is, a non-array class name will get
466 * surrounded by "L" and ";", while array names are left as-is.
467 */
dvmNameToDescriptor(const char * str)468 char* dvmNameToDescriptor(const char* str)
469 {
470 if (str[0] != '[') {
471 size_t length = strlen(str);
472 char* descriptor = malloc(length + 3);
473
474 if (descriptor == NULL) {
475 return NULL;
476 }
477
478 descriptor[0] = 'L';
479 strcpy(descriptor + 1, str);
480 descriptor[length + 1] = ';';
481 descriptor[length + 2] = '\0';
482
483 return descriptor;
484 }
485
486 return strdup(str);
487 }
488
489 /*
490 * Get a notion of the current time, in nanoseconds. This is meant for
491 * computing durations (e.g. "operation X took 52nsec"), so the result
492 * should not be used to get the current date/time.
493 */
dvmGetRelativeTimeNsec(void)494 u8 dvmGetRelativeTimeNsec(void)
495 {
496 #ifdef HAVE_POSIX_CLOCKS
497 struct timespec now;
498 clock_gettime(CLOCK_MONOTONIC, &now);
499 return (u8)now.tv_sec*1000000000LL + now.tv_nsec;
500 #else
501 struct timeval now;
502 gettimeofday(&now, NULL);
503 return (u8)now.tv_sec*1000000000LL + now.tv_usec * 1000LL;
504 #endif
505 }
506
507 /*
508 * Get the per-thread CPU time, in nanoseconds.
509 *
510 * Only useful for time deltas.
511 */
dvmGetThreadCpuTimeNsec(void)512 u8 dvmGetThreadCpuTimeNsec(void)
513 {
514 #ifdef HAVE_POSIX_CLOCKS
515 struct timespec now;
516 clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
517 return (u8)now.tv_sec*1000000000LL + now.tv_nsec;
518 #else
519 return (u8) -1;
520 #endif
521 }
522
523 /*
524 * Get the per-thread CPU time, in nanoseconds, for the specified thread.
525 */
dvmGetOtherThreadCpuTimeNsec(pthread_t thread)526 u8 dvmGetOtherThreadCpuTimeNsec(pthread_t thread)
527 {
528 #if 0 /*def HAVE_POSIX_CLOCKS*/
529 int clockId;
530
531 if (pthread_getcpuclockid(thread, &clockId) != 0)
532 return (u8) -1;
533
534 struct timespec now;
535 clock_gettime(clockId, &now);
536 return (u8)now.tv_sec*1000000000LL + now.tv_nsec;
537 #else
538 return (u8) -1;
539 #endif
540 }
541
542
543 /*
544 * Call this repeatedly, with successively higher values for "iteration",
545 * to sleep for a period of time not to exceed "maxTotalSleep".
546 *
547 * For example, when called with iteration==0 we will sleep for a very
548 * brief time. On the next call we will sleep for a longer time. When
549 * the sum total of all sleeps reaches "maxTotalSleep", this returns false.
550 *
551 * The initial start time value for "relStartTime" MUST come from the
552 * dvmGetRelativeTimeUsec call. On the device this must come from the
553 * monotonic clock source, not the wall clock.
554 *
555 * This should be used wherever you might be tempted to call sched_yield()
556 * in a loop. The problem with sched_yield is that, for a high-priority
557 * thread, the kernel might not actually transfer control elsewhere.
558 *
559 * Returns "false" if we were unable to sleep because our time was up.
560 */
dvmIterativeSleep(int iteration,int maxTotalSleep,u8 relStartTime)561 bool dvmIterativeSleep(int iteration, int maxTotalSleep, u8 relStartTime)
562 {
563 const int minSleep = 10000;
564 u8 curTime;
565 int curDelay;
566
567 /*
568 * Get current time, and see if we've already exceeded the limit.
569 */
570 curTime = dvmGetRelativeTimeUsec();
571 if (curTime >= relStartTime + maxTotalSleep) {
572 LOGVV("exsl: sleep exceeded (start=%llu max=%d now=%llu)\n",
573 relStartTime, maxTotalSleep, curTime);
574 return false;
575 }
576
577 /*
578 * Compute current delay. We're bounded by "maxTotalSleep", so no
579 * real risk of overflow assuming "usleep" isn't returning early.
580 * (Besides, 2^30 usec is about 18 minutes by itself.)
581 *
582 * For iteration==0 we just call sched_yield(), so the first sleep
583 * at iteration==1 is actually (minSleep * 2).
584 */
585 curDelay = minSleep;
586 while (iteration-- > 0)
587 curDelay *= 2;
588 assert(curDelay > 0);
589
590 if (curTime + curDelay >= relStartTime + maxTotalSleep) {
591 LOGVV("exsl: reduced delay from %d to %d\n",
592 curDelay, (int) ((relStartTime + maxTotalSleep) - curTime));
593 curDelay = (int) ((relStartTime + maxTotalSleep) - curTime);
594 }
595
596 if (iteration == 0) {
597 LOGVV("exsl: yield\n");
598 sched_yield();
599 } else {
600 LOGVV("exsl: sleep for %d\n", curDelay);
601 usleep(curDelay);
602 }
603 return true;
604 }
605
606
607 /*
608 * Set the "close on exec" flag so we don't expose our file descriptors
609 * to processes launched by us.
610 */
dvmSetCloseOnExec(int fd)611 bool dvmSetCloseOnExec(int fd)
612 {
613 int flags;
614
615 /*
616 * There's presently only one flag defined, so getting the previous
617 * value of the fd flags is probably unnecessary.
618 */
619 flags = fcntl(fd, F_GETFD);
620 if (flags < 0) {
621 LOGW("Unable to get fd flags for fd %d\n", fd);
622 return false;
623 }
624 if (fcntl(fd, F_SETFD, flags | FD_CLOEXEC) < 0) {
625 LOGW("Unable to set close-on-exec for fd %d\n", fd);
626 return false;
627 }
628 return true;
629 }
630
631 #if (!HAVE_STRLCPY)
632 /* Implementation of strlcpy() for platforms that don't already have it. */
strlcpy(char * dst,const char * src,size_t size)633 size_t strlcpy(char *dst, const char *src, size_t size) {
634 size_t srcLength = strlen(src);
635 size_t copyLength = srcLength;
636
637 if (srcLength > (size - 1)) {
638 copyLength = size - 1;
639 }
640
641 if (size != 0) {
642 strncpy(dst, src, copyLength);
643 dst[copyLength] = '\0';
644 }
645
646 return srcLength;
647 }
648 #endif
649