1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "Dalvik.h"
18 #include "HeapBitmap.h"
19 #include "clz.h"
20 #include <limits.h> // for ULONG_MAX
21 #include <sys/mman.h> // for madvise(), mmap()
22 #include <cutils/ashmem.h>
23
24 #define HB_ASHMEM_NAME "dalvik-heap-bitmap"
25
26 #ifndef PAGE_SIZE
27 #define PAGE_SIZE 4096
28 #endif
29 #define ALIGN_UP_TO_PAGE_SIZE(p) \
30 (((size_t)(p) + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1))
31
32 #define LIKELY(exp) (__builtin_expect((exp) != 0, true))
33 #define UNLIKELY(exp) (__builtin_expect((exp) != 0, false))
34
35 /*
36 * Initialize a HeapBitmap so that it points to a bitmap large
37 * enough to cover a heap at <base> of <maxSize> bytes, where
38 * objects are guaranteed to be HB_OBJECT_ALIGNMENT-aligned.
39 */
40 bool
dvmHeapBitmapInit(HeapBitmap * hb,const void * base,size_t maxSize,const char * name)41 dvmHeapBitmapInit(HeapBitmap *hb, const void *base, size_t maxSize,
42 const char *name)
43 {
44 void *bits;
45 size_t bitsLen;
46 size_t allocLen;
47 int fd;
48 char nameBuf[ASHMEM_NAME_LEN] = HB_ASHMEM_NAME;
49
50 assert(hb != NULL);
51
52 bitsLen = HB_OFFSET_TO_INDEX(maxSize) * sizeof(*hb->bits);
53 allocLen = ALIGN_UP_TO_PAGE_SIZE(bitsLen); // required by ashmem
54
55 if (name != NULL) {
56 snprintf(nameBuf, sizeof(nameBuf), HB_ASHMEM_NAME "/%s", name);
57 }
58 fd = ashmem_create_region(nameBuf, allocLen);
59 if (fd < 0) {
60 LOGE("Could not create %zu-byte ashmem region \"%s\" to cover "
61 "%zu-byte heap (%d)\n",
62 allocLen, nameBuf, maxSize, fd);
63 return false;
64 }
65
66 bits = mmap(NULL, bitsLen, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
67 close(fd);
68 if (bits == MAP_FAILED) {
69 LOGE("Could not mmap %d-byte ashmem region \"%s\"\n",
70 bitsLen, nameBuf);
71 return false;
72 }
73
74 memset(hb, 0, sizeof(*hb));
75 hb->bits = bits;
76 hb->bitsLen = bitsLen;
77 hb->base = (uintptr_t)base;
78 hb->max = hb->base - 1;
79
80 return true;
81 }
82
83 /*
84 * Initialize <hb> so that it covers the same extent as <templateBitmap>.
85 */
86 bool
dvmHeapBitmapInitFromTemplate(HeapBitmap * hb,const HeapBitmap * templateBitmap,const char * name)87 dvmHeapBitmapInitFromTemplate(HeapBitmap *hb, const HeapBitmap *templateBitmap,
88 const char *name)
89 {
90 return dvmHeapBitmapInit(hb,
91 (void *)templateBitmap->base, HB_MAX_OFFSET(templateBitmap), name);
92 }
93
94 /*
95 * Initialize the bitmaps in <out> so that they cover the same extent as
96 * the corresponding bitmaps in <templates>.
97 */
98 bool
dvmHeapBitmapInitListFromTemplates(HeapBitmap out[],HeapBitmap templates[],size_t numBitmaps,const char * name)99 dvmHeapBitmapInitListFromTemplates(HeapBitmap out[], HeapBitmap templates[],
100 size_t numBitmaps, const char *name)
101 {
102 size_t i;
103 char fullName[PATH_MAX];
104
105 fullName[sizeof(fullName)-1] = '\0';
106 for (i = 0; i < numBitmaps; i++) {
107 bool ok;
108
109 /* If two ashmem regions have the same name, only one gets
110 * the name when looking at the maps.
111 */
112 snprintf(fullName, sizeof(fullName)-1, "%s/%zd", name, i);
113
114 ok = dvmHeapBitmapInitFromTemplate(&out[i], &templates[i], fullName);
115 if (!ok) {
116 dvmHeapBitmapDeleteList(out, i);
117 return false;
118 }
119 }
120 return true;
121 }
122
123 /*
124 * Clean up any resources associated with the bitmap.
125 */
126 void
dvmHeapBitmapDelete(HeapBitmap * hb)127 dvmHeapBitmapDelete(HeapBitmap *hb)
128 {
129 assert(hb != NULL);
130
131 if (hb->bits != NULL) {
132 // Re-calculate the size we passed to mmap().
133 size_t allocLen = ALIGN_UP_TO_PAGE_SIZE(hb->bitsLen);
134 munmap((char *)hb->bits, allocLen);
135 }
136 memset(hb, 0, sizeof(*hb));
137 }
138
139 /*
140 * Clean up any resources associated with the bitmaps.
141 */
142 void
dvmHeapBitmapDeleteList(HeapBitmap hbs[],size_t numBitmaps)143 dvmHeapBitmapDeleteList(HeapBitmap hbs[], size_t numBitmaps)
144 {
145 size_t i;
146
147 for (i = 0; i < numBitmaps; i++) {
148 dvmHeapBitmapDelete(&hbs[i]);
149 }
150 }
151
152 /*
153 * Fill the bitmap with zeroes. Returns the bitmap's memory to
154 * the system as a side-effect.
155 */
156 void
dvmHeapBitmapZero(HeapBitmap * hb)157 dvmHeapBitmapZero(HeapBitmap *hb)
158 {
159 assert(hb != NULL);
160
161 if (hb->bits != NULL) {
162 /* This returns the memory to the system.
163 * Successive page faults will return zeroed memory.
164 */
165 madvise(hb->bits, hb->bitsLen, MADV_DONTNEED);
166 hb->max = hb->base - 1;
167 }
168 }
169
170 /*
171 * Walk through the bitmaps in increasing address order, and find the
172 * object pointers that correspond to places where the bitmaps differ.
173 * Call <callback> zero or more times with lists of these object pointers.
174 *
175 * The <finger> argument to the callback indicates the next-highest
176 * address that hasn't been visited yet; setting bits for objects whose
177 * addresses are less than <finger> are not guaranteed to be seen by
178 * the current XorWalk. <finger> will be set to ULONG_MAX when the
179 * end of the bitmap is reached.
180 */
181 bool
dvmHeapBitmapXorWalk(const HeapBitmap * hb1,const HeapBitmap * hb2,bool (* callback)(size_t numPtrs,void ** ptrs,const void * finger,void * arg),void * callbackArg)182 dvmHeapBitmapXorWalk(const HeapBitmap *hb1, const HeapBitmap *hb2,
183 bool (*callback)(size_t numPtrs, void **ptrs,
184 const void *finger, void *arg),
185 void *callbackArg)
186 {
187 static const size_t kPointerBufSize = 128;
188 void *pointerBuf[kPointerBufSize];
189 void **pb = pointerBuf;
190 size_t index;
191 size_t i;
192
193 #define FLUSH_POINTERBUF(finger_) \
194 do { \
195 if (!callback(pb - pointerBuf, (void **)pointerBuf, \
196 (void *)(finger_), callbackArg)) \
197 { \
198 LOGW("dvmHeapBitmapXorWalk: callback failed\n"); \
199 return false; \
200 } \
201 pb = pointerBuf; \
202 } while (false)
203
204 #define DECODE_BITS(hb_, bits_, update_index_) \
205 do { \
206 if (UNLIKELY(bits_ != 0)) { \
207 static const unsigned long kHighBit = \
208 (unsigned long)1 << (HB_BITS_PER_WORD - 1); \
209 const uintptr_t ptrBase = HB_INDEX_TO_OFFSET(i) + hb_->base; \
210 /*TODO: hold onto ptrBase so we can shrink max later if possible */ \
211 /*TODO: see if this is likely or unlikely */ \
212 while (bits_ != 0) { \
213 const int rshift = CLZ(bits_); \
214 bits_ &= ~(kHighBit >> rshift); \
215 *pb++ = (void *)(ptrBase + rshift * HB_OBJECT_ALIGNMENT); \
216 } \
217 /* Make sure that there are always enough slots available */ \
218 /* for an entire word of 1s. */ \
219 if (kPointerBufSize - (pb - pointerBuf) < HB_BITS_PER_WORD) { \
220 FLUSH_POINTERBUF(ptrBase + \
221 HB_BITS_PER_WORD * HB_OBJECT_ALIGNMENT); \
222 if (update_index_) { \
223 /* The callback may have caused hb_->max to grow. */ \
224 index = HB_OFFSET_TO_INDEX(hb_->max - hb_->base); \
225 } \
226 } \
227 } \
228 } while (false)
229
230 assert(hb1 != NULL);
231 assert(hb1->bits != NULL);
232 assert(hb2 != NULL);
233 assert(hb2->bits != NULL);
234 assert(callback != NULL);
235
236 if (hb1->base != hb2->base) {
237 LOGW("dvmHeapBitmapXorWalk: bitmaps cover different heaps "
238 "(0x%08x != 0x%08x)\n",
239 (uintptr_t)hb1->base, (uintptr_t)hb2->base);
240 return false;
241 }
242 if (hb1->bitsLen != hb2->bitsLen) {
243 LOGW("dvmHeapBitmapXorWalk: size of bitmaps differ (%zd != %zd)\n",
244 hb1->bitsLen, hb2->bitsLen);
245 return false;
246 }
247 if (hb1->max < hb1->base && hb2->max < hb2->base) {
248 /* Easy case; both are obviously empty.
249 */
250 return true;
251 }
252
253 /* First, walk along the section of the bitmaps that may be the same.
254 */
255 if (hb1->max >= hb1->base && hb2->max >= hb2->base) {
256 unsigned long int *p1, *p2;
257 uintptr_t offset;
258
259 offset = ((hb1->max < hb2->max) ? hb1->max : hb2->max) - hb1->base;
260 //TODO: keep track of which (and whether) one is longer for later
261 index = HB_OFFSET_TO_INDEX(offset);
262
263 p1 = hb1->bits;
264 p2 = hb2->bits;
265 for (i = 0; i <= index; i++) {
266 //TODO: unroll this. pile up a few in locals?
267 unsigned long int diff = *p1++ ^ *p2++;
268 DECODE_BITS(hb1, diff, false);
269 //BUG: if the callback was called, either max could have changed.
270 }
271 /* The next index to look at.
272 */
273 index++;
274 } else {
275 /* One of the bitmaps is empty.
276 */
277 index = 0;
278 }
279
280 /* If one bitmap's max is larger, walk through the rest of the
281 * set bits.
282 */
283 const HeapBitmap *longHb;
284 unsigned long int *p;
285 //TODO: may be the same size, in which case this is wasted work
286 longHb = (hb1->max > hb2->max) ? hb1 : hb2;
287 i = index;
288 index = HB_OFFSET_TO_INDEX(longHb->max - longHb->base);
289 p = longHb->bits + i;
290 for (/* i = i */; i <= index; i++) {
291 //TODO: unroll this
292 unsigned long bits = *p++;
293 DECODE_BITS(longHb, bits, true);
294 }
295
296 if (pb > pointerBuf) {
297 /* Set the finger to the end of the heap (rather than longHb->max)
298 * so that the callback doesn't expect to be called again
299 * if it happens to change the current max.
300 */
301 FLUSH_POINTERBUF(longHb->base + HB_MAX_OFFSET(longHb));
302 }
303
304 return true;
305
306 #undef FLUSH_POINTERBUF
307 #undef DECODE_BITS
308 }
309
310 /*
311 * Fills outIndexList with indices so that for all i:
312 *
313 * hb[outIndexList[i]].base < hb[outIndexList[i+1]].base
314 */
315 static void
createSortedBitmapIndexList(const HeapBitmap hbs[],size_t numBitmaps,size_t outIndexList[])316 createSortedBitmapIndexList(const HeapBitmap hbs[], size_t numBitmaps,
317 size_t outIndexList[])
318 {
319 int i, j;
320
321 /* numBitmaps is usually 2 or 3, so use a simple sort */
322 for (i = 0; i < (int) numBitmaps; i++) {
323 outIndexList[i] = i;
324 for (j = 0; j < i; j++) {
325 if (hbs[j].base > hbs[i].base) {
326 int tmp = outIndexList[i];
327 outIndexList[i] = outIndexList[j];
328 outIndexList[j] = tmp;
329 }
330 }
331 }
332 }
333
334 /*
335 * Similar to dvmHeapBitmapXorWalk(), but compare multiple bitmaps.
336 * Regardless of the order of the arrays, the bitmaps will be visited
337 * in address order, so that finger will increase monotonically.
338 */
339 bool
dvmHeapBitmapXorWalkLists(const HeapBitmap hbs1[],const HeapBitmap hbs2[],size_t numBitmaps,bool (* callback)(size_t numPtrs,void ** ptrs,const void * finger,void * arg),void * callbackArg)340 dvmHeapBitmapXorWalkLists(const HeapBitmap hbs1[], const HeapBitmap hbs2[],
341 size_t numBitmaps,
342 bool (*callback)(size_t numPtrs, void **ptrs,
343 const void *finger, void *arg),
344 void *callbackArg)
345 {
346 size_t indexList[numBitmaps];
347 size_t i;
348
349 /* Sort the bitmaps by address. Assume that the two lists contain
350 * congruent bitmaps.
351 */
352 createSortedBitmapIndexList(hbs1, numBitmaps, indexList);
353
354 /* Walk each pair of bitmaps, lowest address first.
355 */
356 for (i = 0; i < numBitmaps; i++) {
357 bool ok;
358
359 ok = dvmHeapBitmapXorWalk(&hbs1[indexList[i]], &hbs2[indexList[i]],
360 callback, callbackArg);
361 if (!ok) {
362 return false;
363 }
364 }
365
366 return true;
367 }
368
369 /*
370 * Similar to dvmHeapBitmapXorWalk(), but visit the set bits
371 * in a single bitmap.
372 */
373 bool
dvmHeapBitmapWalk(const HeapBitmap * hb,bool (* callback)(size_t numPtrs,void ** ptrs,const void * finger,void * arg),void * callbackArg)374 dvmHeapBitmapWalk(const HeapBitmap *hb,
375 bool (*callback)(size_t numPtrs, void **ptrs,
376 const void *finger, void *arg),
377 void *callbackArg)
378 {
379 /* Create an empty bitmap with the same extent as <hb>.
380 * Don't actually allocate any memory.
381 */
382 HeapBitmap emptyHb = *hb;
383 emptyHb.max = emptyHb.base - 1; // empty
384 emptyHb.bits = (void *)1; // non-NULL but intentionally bad
385
386 return dvmHeapBitmapXorWalk(hb, &emptyHb, callback, callbackArg);
387 }
388
389 /*
390 * Similar to dvmHeapBitmapXorWalkList(), but visit the set bits
391 * in a single list of bitmaps. Regardless of the order of the array,
392 * the bitmaps will be visited in address order, so that finger will
393 * increase monotonically.
394 */
dvmHeapBitmapWalkList(const HeapBitmap hbs[],size_t numBitmaps,bool (* callback)(size_t numPtrs,void ** ptrs,const void * finger,void * arg),void * callbackArg)395 bool dvmHeapBitmapWalkList(const HeapBitmap hbs[], size_t numBitmaps,
396 bool (*callback)(size_t numPtrs, void **ptrs,
397 const void *finger, void *arg),
398 void *callbackArg)
399 {
400 size_t indexList[numBitmaps];
401 size_t i;
402
403 /* Sort the bitmaps by address.
404 */
405 createSortedBitmapIndexList(hbs, numBitmaps, indexList);
406
407 /* Walk each bitmap, lowest address first.
408 */
409 for (i = 0; i < numBitmaps; i++) {
410 bool ok;
411
412 ok = dvmHeapBitmapWalk(&hbs[indexList[i]], callback, callbackArg);
413 if (!ok) {
414 return false;
415 }
416 }
417
418 return true;
419 }
420