• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* libs/pixelflinger/scanline.cpp
2 **
3 ** Copyright 2006, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 **     http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17 
18 
19 #define LOG_TAG "pixelflinger"
20 
21 #include <assert.h>
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <string.h>
25 
26 #include <cutils/memory.h>
27 #include <cutils/log.h>
28 
29 #include "buffer.h"
30 #include "scanline.h"
31 
32 #include "codeflinger/CodeCache.h"
33 #include "codeflinger/GGLAssembler.h"
34 #include "codeflinger/ARMAssembler.h"
35 //#include "codeflinger/ARMAssemblerOptimizer.h"
36 
37 // ----------------------------------------------------------------------------
38 
39 #define ANDROID_CODEGEN_GENERIC     0   // force generic pixel pipeline
40 #define ANDROID_CODEGEN_C           1   // hand-written C, fallback generic
41 #define ANDROID_CODEGEN_ASM         2   // hand-written asm, fallback generic
42 #define ANDROID_CODEGEN_GENERATED   3   // hand-written asm, fallback codegen
43 
44 #ifdef NDEBUG
45 #   define ANDROID_RELEASE
46 #   define ANDROID_CODEGEN      ANDROID_CODEGEN_GENERATED
47 #else
48 #   define ANDROID_DEBUG
49 #   define ANDROID_CODEGEN      ANDROID_CODEGEN_GENERATED
50 #endif
51 
52 #if defined(__arm__)
53 #   define ANDROID_ARM_CODEGEN  1
54 #else
55 #   define ANDROID_ARM_CODEGEN  0
56 #endif
57 
58 #define DEBUG__CODEGEN_ONLY     0
59 
60 
61 #define ASSEMBLY_SCRATCH_SIZE   2048
62 
63 // ----------------------------------------------------------------------------
64 namespace android {
65 // ----------------------------------------------------------------------------
66 
67 static void init_y(context_t*, int32_t);
68 static void init_y_noop(context_t*, int32_t);
69 static void init_y_packed(context_t*, int32_t);
70 static void init_y_error(context_t*, int32_t);
71 
72 static void step_y__generic(context_t* c);
73 static void step_y__nop(context_t*);
74 static void step_y__smooth(context_t* c);
75 static void step_y__tmu(context_t* c);
76 static void step_y__w(context_t* c);
77 
78 static void scanline(context_t* c);
79 static void scanline_perspective(context_t* c);
80 static void scanline_perspective_single(context_t* c);
81 static void scanline_t32cb16blend(context_t* c);
82 static void scanline_t32cb16(context_t* c);
83 static void scanline_memcpy(context_t* c);
84 static void scanline_memset8(context_t* c);
85 static void scanline_memset16(context_t* c);
86 static void scanline_memset32(context_t* c);
87 static void scanline_noop(context_t* c);
88 static void scanline_set(context_t* c);
89 static void scanline_clear(context_t* c);
90 
91 static void rect_generic(context_t* c, size_t yc);
92 static void rect_memcpy(context_t* c, size_t yc);
93 
94 extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t);
95 extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct);
96 
97 // ----------------------------------------------------------------------------
98 
99 struct shortcut_t {
100     needs_filter_t  filter;
101     const char*     desc;
102     void            (*scanline)(context_t*);
103     void            (*init_y)(context_t*, int32_t);
104 };
105 
106 // Keep in sync with needs
107 static shortcut_t shortcuts[] = {
108     { { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } },
109         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
110         "565 fb, 8888 tx, blend", scanline_t32cb16blend, init_y_noop },
111     { { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } },
112         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
113         "565 fb, 8888 tx", scanline_t32cb16, init_y_noop  },
114     { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
115         { 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } },
116         "(nop) alpha test", scanline_noop, init_y_noop },
117     { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
118         { 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } },
119         "(nop) depth test", scanline_noop, init_y_noop },
120     { { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } },
121         { 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } },
122         "(nop) logic_op", scanline_noop, init_y_noop },
123     { { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } },
124         { 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } },
125         "(nop) color mask", scanline_noop, init_y_noop },
126     { { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } },
127         { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
128         "(set) logic_op", scanline_set, init_y_noop },
129     { { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } },
130         { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
131         "(clear) logic_op", scanline_clear, init_y_noop },
132     { { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } },
133         { 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } },
134         "(clear) blending 0/0", scanline_clear, init_y_noop },
135     { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
136         { 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } },
137         "(error) invalid color-buffer format", scanline_noop, init_y_error },
138 };
139 static const needs_filter_t noblend1to1 = {
140         // (disregard dithering, see below)
141         { 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } },
142         { 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } }
143 };
144 static  const needs_filter_t fill16noblend = {
145         { 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } },
146         { 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } }
147 };
148 
149 // ----------------------------------------------------------------------------
150 
151 #if ANDROID_ARM_CODEGEN
152 static CodeCache gCodeCache(12 * 1024);
153 
154 class ScanlineAssembly : public Assembly {
155     AssemblyKey<needs_t> mKey;
156 public:
ScanlineAssembly(needs_t needs,size_t size)157     ScanlineAssembly(needs_t needs, size_t size)
158         : Assembly(size), mKey(needs) { }
key() const159     const AssemblyKey<needs_t>& key() const { return mKey; }
160 };
161 #endif
162 
163 // ----------------------------------------------------------------------------
164 
ggl_init_scanline(context_t * c)165 void ggl_init_scanline(context_t* c)
166 {
167     c->init_y = init_y;
168     c->step_y = step_y__generic;
169     c->scanline = scanline;
170 }
171 
ggl_uninit_scanline(context_t * c)172 void ggl_uninit_scanline(context_t* c)
173 {
174     if (c->state.buffers.coverage)
175         free(c->state.buffers.coverage);
176 #if ANDROID_ARM_CODEGEN
177     if (c->scanline_as)
178         c->scanline_as->decStrong(c);
179 #endif
180 }
181 
182 // ----------------------------------------------------------------------------
183 
pick_scanline(context_t * c)184 static void pick_scanline(context_t* c)
185 {
186 #if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0))
187 
188 #if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC
189     c->init_y = init_y;
190     c->step_y = step_y__generic;
191     c->scanline = scanline;
192     return;
193 #endif
194 
195     //printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n",
196     //    c->state.needs.n, c->state.needs.p,
197     //    c->state.needs.t[0], c->state.needs.t[1]);
198 
199     // first handle the special case that we cannot test with a filter
200     const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n);
201     if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) {
202         if (c->state.needs.match(noblend1to1)) {
203             // this will match regardless of dithering state, since both
204             // src and dest have the same format anyway, there is no dithering
205             // to be done.
206             const GGLFormat* f =
207                 &(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]);
208             if ((f->components == GGL_RGB) ||
209                 (f->components == GGL_RGBA) ||
210                 (f->components == GGL_LUMINANCE) ||
211                 (f->components == GGL_LUMINANCE_ALPHA))
212             {
213                 // format must have all of RGB components
214                 // (so the current color doesn't show through)
215                 c->scanline = scanline_memcpy;
216                 c->init_y = init_y_noop;
217                 return;
218             }
219         }
220     }
221 
222     if (c->state.needs.match(fill16noblend)) {
223         c->init_y = init_y_packed;
224         switch (c->formats[cb_format].size) {
225         case 1: c->scanline = scanline_memset8;  return;
226         case 2: c->scanline = scanline_memset16; return;
227         case 4: c->scanline = scanline_memset32; return;
228         }
229     }
230 
231     const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t);
232     for (int i=0 ; i<numFilters ; i++) {
233         if (c->state.needs.match(shortcuts[i].filter)) {
234             c->scanline = shortcuts[i].scanline;
235             c->init_y = shortcuts[i].init_y;
236             return;
237         }
238     }
239 
240 #endif // DEBUG__CODEGEN_ONLY
241 
242     c->init_y = init_y;
243     c->step_y = step_y__generic;
244 
245 #if ANDROID_ARM_CODEGEN
246     // we're going to have to generate some code...
247     // here, generate code for our pixel pipeline
248     const AssemblyKey<needs_t> key(c->state.needs);
249     sp<Assembly> assembly = gCodeCache.lookup(key);
250     if (assembly == 0) {
251         // create a new assembly region
252         sp<ScanlineAssembly> a = new ScanlineAssembly(c->state.needs,
253                 ASSEMBLY_SCRATCH_SIZE);
254         // initialize our assembler
255         GGLAssembler assembler( new ARMAssembler(a) );
256         //GGLAssembler assembler(
257         //        new ARMAssemblerOptimizer(new ARMAssembler(a)) );
258         // generate the scanline code for the given needs
259         int err = assembler.scanline(c->state.needs, c);
260         if (ggl_likely(!err)) {
261             // finally, cache this assembly
262             err = gCodeCache.cache(a->key(), a);
263         }
264         if (ggl_unlikely(err)) {
265             LOGE("error generating or caching assembly. Reverting to NOP.");
266             c->scanline = scanline_noop;
267             c->init_y = init_y_noop;
268             c->step_y = step_y__nop;
269             return;
270         }
271         assembly = a;
272     }
273 
274     // release the previous assembly
275     if (c->scanline_as) {
276         c->scanline_as->decStrong(c);
277     }
278 
279     //LOGI("using generated pixel-pipeline");
280     c->scanline_as = assembly.get();
281     c->scanline_as->incStrong(c); //  hold on to assembly
282     c->scanline = (void(*)(context_t* c))assembly->base();
283 #else
284 //    LOGW("using generic (slow) pixel-pipeline");
285     c->scanline = scanline;
286 #endif
287 }
288 
ggl_pick_scanline(context_t * c)289 void ggl_pick_scanline(context_t* c)
290 {
291     pick_scanline(c);
292     if ((c->state.enables & GGL_ENABLE_W) &&
293         (c->state.enables & GGL_ENABLE_TMUS))
294     {
295         c->span = c->scanline;
296         c->scanline = scanline_perspective;
297         if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) {
298             // only one TMU enabled
299             c->scanline = scanline_perspective_single;
300         }
301     }
302 }
303 
304 // ----------------------------------------------------------------------------
305 
306 static void blending(context_t* c, pixel_t* fragment, pixel_t* fb);
307 static void blend_factor(context_t* c, pixel_t* r, uint32_t factor,
308         const pixel_t* src, const pixel_t* dst);
309 static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv);
310 
311 #if ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
312 
313 // no need to compile the generic-pipeline, it can't be reached
scanline(context_t *)314 void scanline(context_t*)
315 {
316 }
317 
318 #else
319 
rescale(uint32_t & u,uint8_t & su,uint32_t & v,uint8_t & sv)320 void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv)
321 {
322     if (su && sv) {
323         if (su > sv) {
324             v = ggl_expand(v, sv, su);
325             sv = su;
326         } else if (su < sv) {
327             u = ggl_expand(u, su, sv);
328             su = sv;
329         }
330     }
331 }
332 
blending(context_t * c,pixel_t * fragment,pixel_t * fb)333 void blending(context_t* c, pixel_t* fragment, pixel_t* fb)
334 {
335     rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]);
336     rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]);
337     rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]);
338     rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]);
339 
340     pixel_t sf, df;
341     blend_factor(c, &sf, c->state.blend.src, fragment, fb);
342     blend_factor(c, &df, c->state.blend.dst, fragment, fb);
343 
344     fragment->c[1] =
345             gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1]));
346     fragment->c[2] =
347             gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2]));
348     fragment->c[3] =
349             gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3]));
350 
351     if (c->state.blend.alpha_separate) {
352         blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb);
353         blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb);
354     }
355 
356     fragment->c[0] =
357             gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0]));
358 
359     // clamp to 1.0
360     if (fragment->c[0] >= (1LU<<fragment->s[0]))
361         fragment->c[0] = (1<<fragment->s[0])-1;
362     if (fragment->c[1] >= (1LU<<fragment->s[1]))
363         fragment->c[1] = (1<<fragment->s[1])-1;
364     if (fragment->c[2] >= (1LU<<fragment->s[2]))
365         fragment->c[2] = (1<<fragment->s[2])-1;
366     if (fragment->c[3] >= (1LU<<fragment->s[3]))
367         fragment->c[3] = (1<<fragment->s[3])-1;
368 }
369 
blendfactor(uint32_t x,uint32_t size,uint32_t def=0)370 static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0)
371 {
372     if (!size)
373         return def;
374 
375     // scale to 16 bits
376     if (size > 16) {
377         x >>= (size - 16);
378     } else if (size < 16) {
379         x = ggl_expand(x, size, 16);
380     }
381     x += x >> 15;
382     return x;
383 }
384 
blend_factor(context_t * c,pixel_t * r,uint32_t factor,const pixel_t * src,const pixel_t * dst)385 void blend_factor(context_t* c, pixel_t* r,
386         uint32_t factor, const pixel_t* src, const pixel_t* dst)
387 {
388     switch (factor) {
389         case GGL_ZERO:
390             r->c[1] =
391             r->c[2] =
392             r->c[3] =
393             r->c[0] = 0;
394             break;
395         case GGL_ONE:
396             r->c[1] =
397             r->c[2] =
398             r->c[3] =
399             r->c[0] = FIXED_ONE;
400             break;
401         case GGL_DST_COLOR:
402             r->c[1] = blendfactor(dst->c[1], dst->s[1]);
403             r->c[2] = blendfactor(dst->c[2], dst->s[2]);
404             r->c[3] = blendfactor(dst->c[3], dst->s[3]);
405             r->c[0] = blendfactor(dst->c[0], dst->s[0]);
406             break;
407         case GGL_SRC_COLOR:
408             r->c[1] = blendfactor(src->c[1], src->s[1]);
409             r->c[2] = blendfactor(src->c[2], src->s[2]);
410             r->c[3] = blendfactor(src->c[3], src->s[3]);
411             r->c[0] = blendfactor(src->c[0], src->s[0]);
412             break;
413         case GGL_ONE_MINUS_DST_COLOR:
414             r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]);
415             r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]);
416             r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]);
417             r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]);
418             break;
419         case GGL_ONE_MINUS_SRC_COLOR:
420             r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]);
421             r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]);
422             r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]);
423             r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]);
424             break;
425         case GGL_SRC_ALPHA:
426             r->c[1] =
427             r->c[2] =
428             r->c[3] =
429             r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE);
430             break;
431         case GGL_ONE_MINUS_SRC_ALPHA:
432             r->c[1] =
433             r->c[2] =
434             r->c[3] =
435             r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE);
436             break;
437         case GGL_DST_ALPHA:
438             r->c[1] =
439             r->c[2] =
440             r->c[3] =
441             r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
442             break;
443         case GGL_ONE_MINUS_DST_ALPHA:
444             r->c[1] =
445             r->c[2] =
446             r->c[3] =
447             r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
448             break;
449         case GGL_SRC_ALPHA_SATURATE:
450             // XXX: GGL_SRC_ALPHA_SATURATE
451             break;
452     }
453 }
454 
wrapping(int32_t coord,uint32_t size,int tx_wrap)455 static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap)
456 {
457     GGLfixed d;
458     if (tx_wrap == GGL_REPEAT) {
459         d = (uint32_t(coord)>>16) * size;
460     } else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics
461         const GGLfixed clamp_min = FIXED_HALF;
462         const GGLfixed clamp_max = (size << 16) - FIXED_HALF;
463         if (coord < clamp_min)     coord = clamp_min;
464         if (coord > clamp_max)     coord = clamp_max;
465         d = coord;
466     } else { // 1:1
467         const GGLfixed clamp_min = 0;
468         const GGLfixed clamp_max = (size << 16);
469         if (coord < clamp_min)     coord = clamp_min;
470         if (coord > clamp_max)     coord = clamp_max;
471         d = coord;
472     }
473     return d;
474 }
475 
476 static inline
ADJUST_COLOR_ITERATOR(GGLcolor v,GGLcolor dvdx,int len)477 GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len)
478 {
479     const int32_t end = dvdx * (len-1) + v;
480     if (end < 0)
481         v -= end;
482     v &= ~(v>>31);
483     return v;
484 }
485 
scanline(context_t * c)486 void scanline(context_t* c)
487 {
488     const uint32_t enables = c->state.enables;
489     const int xs = c->iterators.xl;
490     const int x1 = c->iterators.xr;
491 	int xc = x1 - xs;
492     const int16_t* covPtr = c->state.buffers.coverage + xs;
493 
494     // All iterated values are sampled at the pixel center
495 
496     // reset iterators for that scanline...
497     GGLcolor r, g, b, a;
498     iterators_t& ci = c->iterators;
499     if (enables & GGL_ENABLE_SMOOTH) {
500         r = (xs * c->shade.drdx) + ci.ydrdy;
501         g = (xs * c->shade.dgdx) + ci.ydgdy;
502         b = (xs * c->shade.dbdx) + ci.ydbdy;
503         a = (xs * c->shade.dadx) + ci.ydady;
504         r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc);
505         g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc);
506         b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc);
507         a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc);
508     } else {
509         r = ci.ydrdy;
510         g = ci.ydgdy;
511         b = ci.ydbdy;
512         a = ci.ydady;
513     }
514 
515     // z iterators are 1.31
516     GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy;
517     GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy;
518 
519     struct {
520         GGLfixed s, t;
521     } tc[GGL_TEXTURE_UNIT_COUNT];
522     if (enables & GGL_ENABLE_TMUS) {
523         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
524             if (c->state.texture[i].enable) {
525                 texture_iterators_t& ti = c->state.texture[i].iterators;
526                 if (enables & GGL_ENABLE_W) {
527                     tc[i].s = ti.ydsdy;
528                     tc[i].t = ti.ydtdy;
529                 } else {
530                     tc[i].s = (xs * ti.dsdx) + ti.ydsdy;
531                     tc[i].t = (xs * ti.dtdx) + ti.ydtdy;
532                 }
533             }
534         }
535     }
536 
537     pixel_t fragment;
538     pixel_t texel;
539     pixel_t fb;
540 
541 	uint32_t x = xs;
542 	uint32_t y = c->iterators.y;
543 
544 	while (xc--) {
545 
546         { // just a scope
547 
548 		// read color (convert to 8 bits by keeping only the integer part)
549         fragment.s[1] = fragment.s[2] =
550         fragment.s[3] = fragment.s[0] = 8;
551         fragment.c[1] = r >> (GGL_COLOR_BITS-8);
552         fragment.c[2] = g >> (GGL_COLOR_BITS-8);
553         fragment.c[3] = b >> (GGL_COLOR_BITS-8);
554         fragment.c[0] = a >> (GGL_COLOR_BITS-8);
555 
556 		// texturing
557         if (enables & GGL_ENABLE_TMUS) {
558             for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
559                 texture_t& tx = c->state.texture[i];
560                 if (!tx.enable)
561                     continue;
562                 texture_iterators_t& ti = tx.iterators;
563                 int32_t u, v;
564 
565                 // s-coordinate
566                 if (tx.s_coord != GGL_ONE_TO_ONE) {
567                     const int w = tx.surface.width;
568                     u = wrapping(tc[i].s, w, tx.s_wrap);
569                     tc[i].s += ti.dsdx;
570                 } else {
571                     u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF;
572                 }
573 
574                 // t-coordinate
575                 if (tx.t_coord != GGL_ONE_TO_ONE) {
576                     const int h = tx.surface.height;
577                     v = wrapping(tc[i].t, h, tx.t_wrap);
578                     tc[i].t += ti.dtdx;
579                 } else {
580                     v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF;
581                 }
582 
583                 // read texture
584                 if (tx.mag_filter == GGL_NEAREST &&
585                     tx.min_filter == GGL_NEAREST)
586                 {
587                     u >>= 16;
588                     v >>= 16;
589                     tx.surface.read(&tx.surface, c, u, v, &texel);
590                 } else {
591                     const int w = tx.surface.width;
592                     const int h = tx.surface.height;
593                     u -= FIXED_HALF;
594                     v -= FIXED_HALF;
595                     int u0 = u >> 16;
596                     int v0 = v >> 16;
597                     int u1 = u0 + 1;
598                     int v1 = v0 + 1;
599                     if (tx.s_wrap == GGL_REPEAT) {
600                         if (u0<0)  u0 += w;
601                         if (u1<0)  u1 += w;
602                         if (u0>=w) u0 -= w;
603                         if (u1>=w) u1 -= w;
604                     } else {
605                         if (u0<0)  u0 = 0;
606                         if (u1<0)  u1 = 0;
607                         if (u0>=w) u0 = w-1;
608                         if (u1>=w) u1 = w-1;
609                     }
610                     if (tx.t_wrap == GGL_REPEAT) {
611                         if (v0<0)  v0 += h;
612                         if (v1<0)  v1 += h;
613                         if (v0>=h) v0 -= h;
614                         if (v1>=h) v1 -= h;
615                     } else {
616                         if (v0<0)  v0 = 0;
617                         if (v1<0)  v1 = 0;
618                         if (v0>=h) v0 = h-1;
619                         if (v1>=h) v1 = h-1;
620                     }
621                     pixel_t texels[4];
622                     uint32_t mm[4];
623                     tx.surface.read(&tx.surface, c, u0, v0, &texels[0]);
624                     tx.surface.read(&tx.surface, c, u0, v1, &texels[1]);
625                     tx.surface.read(&tx.surface, c, u1, v0, &texels[2]);
626                     tx.surface.read(&tx.surface, c, u1, v1, &texels[3]);
627                     u = (u >> 12) & 0xF;
628                     v = (v >> 12) & 0xF;
629                     u += u>>3;
630                     v += v>>3;
631                     mm[0] = (0x10 - u) * (0x10 - v);
632                     mm[1] = (0x10 - u) * v;
633                     mm[2] = u * (0x10 - v);
634                     mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]);
635                     for (int j=0 ; j<4 ; j++) {
636                         texel.s[j] = texels[0].s[j];
637                         if (!texel.s[j]) continue;
638                         texel.s[j] += 8;
639                         texel.c[j] =    texels[0].c[j]*mm[0] +
640                                         texels[1].c[j]*mm[1] +
641                                         texels[2].c[j]*mm[2] +
642                                         texels[3].c[j]*mm[3] ;
643                     }
644                 }
645 
646                 // Texture environnement...
647                 for (int j=0 ; j<4 ; j++) {
648                     uint32_t& Cf = fragment.c[j];
649                     uint32_t& Ct = texel.c[j];
650                     uint8_t& sf  = fragment.s[j];
651                     uint8_t& st  = texel.s[j];
652                     uint32_t At = texel.c[0];
653                     uint8_t sat = texel.s[0];
654                     switch (tx.env) {
655                     case GGL_REPLACE:
656                         if (st) {
657                             Cf = Ct;
658                             sf = st;
659                         }
660                         break;
661                     case GGL_MODULATE:
662                         if (st) {
663                             uint32_t factor = Ct + (Ct>>(st-1));
664                             Cf = (Cf * factor) >> st;
665                         }
666                         break;
667                     case GGL_DECAL:
668                         if (sat) {
669                             rescale(Cf, sf, Ct, st);
670                             Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat;
671                         }
672                         break;
673                     case GGL_BLEND:
674                         if (st) {
675                             uint32_t Cc = tx.env_color[i];
676                             if (sf>8)       Cc = (Cc * ((1<<sf)-1))>>8;
677                             else if (sf<8)  Cc = (Cc - (Cc>>(8-sf)))>>(8-sf);
678                             uint32_t factor = Ct + (Ct>>(st-1));
679                             Cf = ((((1<<st) - factor) * Cf) + Ct*Cc)>>st;
680                         }
681                         break;
682                     case GGL_ADD:
683                         if (st) {
684                             rescale(Cf, sf, Ct, st);
685                             Cf += Ct;
686                         }
687                         break;
688                     }
689                 }
690             }
691 		}
692 
693         // coverage application
694         if (enables & GGL_ENABLE_AA) {
695             int16_t cf = *covPtr++;
696             fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15;
697         }
698 
699         // alpha-test
700         if (enables & GGL_ENABLE_ALPHA_TEST) {
701             GGLcolor ref = c->state.alpha_test.ref;
702             GGLcolor alpha = (uint64_t(fragment.c[0]) *
703                     ((1<<GGL_COLOR_BITS)-1)) / ((1<<fragment.s[0])-1);
704             switch (c->state.alpha_test.func) {
705             case GGL_NEVER:     goto discard;
706             case GGL_LESS:      if (alpha<ref)  break; goto discard;
707             case GGL_EQUAL:     if (alpha==ref) break; goto discard;
708             case GGL_LEQUAL:    if (alpha<=ref) break; goto discard;
709             case GGL_GREATER:   if (alpha>ref)  break; goto discard;
710             case GGL_NOTEQUAL:  if (alpha!=ref) break; goto discard;
711             case GGL_GEQUAL:    if (alpha>=ref) break; goto discard;
712             }
713         }
714 
715         // depth test
716         if (c->state.buffers.depth.format) {
717             if (enables & GGL_ENABLE_DEPTH_TEST) {
718                 surface_t* cb = &(c->state.buffers.depth);
719                 uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y));
720                 uint16_t zz = uint32_t(z)>>(16);
721                 uint16_t depth = *p;
722                 switch (c->state.depth_test.func) {
723                 case GGL_NEVER:     goto discard;
724                 case GGL_LESS:      if (zz<depth)    break; goto discard;
725                 case GGL_EQUAL:     if (zz==depth)   break; goto discard;
726                 case GGL_LEQUAL:    if (zz<=depth)   break; goto discard;
727                 case GGL_GREATER:   if (zz>depth)    break; goto discard;
728                 case GGL_NOTEQUAL:  if (zz!=depth)   break; goto discard;
729                 case GGL_GEQUAL:    if (zz>=depth)   break; goto discard;
730                 }
731                 // depth buffer is not enabled, if depth-test is not enabled
732 /*
733         fragment.s[1] = fragment.s[2] =
734         fragment.s[3] = fragment.s[0] = 8;
735         fragment.c[1] =
736         fragment.c[2] =
737         fragment.c[3] =
738         fragment.c[0] = 255 - (zz>>8);
739 */
740                 if (c->state.mask.depth) {
741                     *p = zz;
742                 }
743             }
744         }
745 
746         // fog
747         if (enables & GGL_ENABLE_FOG) {
748             for (int i=1 ; i<=3 ; i++) {
749                 GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF;
750                 uint32_t& c = fragment.c[i];
751                 uint8_t& s  = fragment.s[i];
752                 c = (c * 0x10000) / ((1<<s)-1);
753                 c = gglMulAddx(c, f, gglMulx(fc, 0x10000 - f));
754                 s = 16;
755             }
756         }
757 
758         // blending
759         if (enables & GGL_ENABLE_BLENDING) {
760             fb.c[1] = fb.c[2] = fb.c[3] = fb.c[0] = 0; // placate valgrind
761             fb.s[1] = fb.s[2] = fb.s[3] = fb.s[0] = 0;
762             c->state.buffers.color.read(
763                     &(c->state.buffers.color), c, x, y, &fb);
764             blending( c, &fragment, &fb );
765         }
766 
767 		// write
768         c->state.buffers.color.write(
769                 &(c->state.buffers.color), c, x, y, &fragment);
770         }
771 
772 discard:
773 		// iterate...
774         x += 1;
775         if (enables & GGL_ENABLE_SMOOTH) {
776             r += c->shade.drdx;
777             g += c->shade.dgdx;
778             b += c->shade.dbdx;
779             a += c->shade.dadx;
780         }
781         z += c->shade.dzdx;
782         f += c->shade.dfdx;
783 	}
784 }
785 
786 #endif // ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
787 
788 // ----------------------------------------------------------------------------
789 #if 0
790 #pragma mark -
791 #pragma mark Scanline
792 #endif
793 
794 template <typename T, typename U>
795 static inline __attribute__((const))
interpolate(int y,T v0,U dvdx,U dvdy)796 T interpolate(int y, T v0, U dvdx, U dvdy) {
797     // interpolates in pixel's centers
798     // v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx)
799     return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1));
800 }
801 
802 // ----------------------------------------------------------------------------
803 #if 0
804 #pragma mark -
805 #endif
806 
init_y(context_t * c,int32_t ys)807 void init_y(context_t* c, int32_t ys)
808 {
809     const uint32_t enables = c->state.enables;
810 
811     // compute iterators...
812     iterators_t& ci = c->iterators;
813 
814     // sample in the center
815     ci.y = ys;
816 
817     if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) {
818         ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy);
819         ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy);
820         ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy);
821     }
822 
823     if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) {
824         ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy);
825         ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy);
826         ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy);
827         ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady);
828         c->step_y = step_y__smooth;
829     } else {
830         ci.ydrdy = c->shade.r0;
831         ci.ydgdy = c->shade.g0;
832         ci.ydbdy = c->shade.b0;
833         ci.ydady = c->shade.a0;
834         // XXX: do only if needed, or make sure this is fast
835         c->packed = ggl_pack_color(c, c->state.buffers.color.format,
836                 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
837         c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
838                 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
839     }
840 
841     // initialize the variables we need in the shader
842     generated_vars_t& gen = c->generated_vars;
843     gen.argb[GGLFormat::ALPHA].c  = ci.ydady;
844     gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx;
845     gen.argb[GGLFormat::RED  ].c  = ci.ydrdy;
846     gen.argb[GGLFormat::RED  ].dx = c->shade.drdx;
847     gen.argb[GGLFormat::GREEN].c  = ci.ydgdy;
848     gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx;
849     gen.argb[GGLFormat::BLUE ].c  = ci.ydbdy;
850     gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx;
851     gen.dzdx = c->shade.dzdx;
852     gen.f    = ci.ydfdy;
853     gen.dfdx = c->shade.dfdx;
854 
855     if (enables & GGL_ENABLE_TMUS) {
856         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
857             texture_t& t = c->state.texture[i];
858             if (!t.enable) continue;
859 
860             texture_iterators_t& ti = t.iterators;
861             if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) {
862                 // we need to set all of these to 0 because in some cases
863                 // step_y__generic() or step_y__tmu() will be used and
864                 // therefore will update dtdy, however, in 1:1 mode
865                 // this is always done by the scanline rasterizer.
866                 ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0;
867                 ti.ydsdy = t.shade.is0;
868                 ti.ydtdy = t.shade.it0;
869             } else {
870                 const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16);
871                 const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16);
872                 ti.sscale = t.shade.sscale + adjustSWrap;
873                 ti.tscale = t.shade.tscale + adjustTWrap;
874                 if (!(enables & GGL_ENABLE_W)) {
875                     // S coordinate
876                     const int32_t sscale = ti.sscale;
877                     const int32_t sy = interpolate(ys,
878                             t.shade.is0, t.shade.idsdx, t.shade.idsdy);
879                     if (sscale>=0) {
880                         ti.ydsdy= sy            << sscale;
881                         ti.dsdx = t.shade.idsdx << sscale;
882                         ti.dsdy = t.shade.idsdy << sscale;
883                     } else {
884                         ti.ydsdy= sy            >> -sscale;
885                         ti.dsdx = t.shade.idsdx >> -sscale;
886                         ti.dsdy = t.shade.idsdy >> -sscale;
887                     }
888                     // T coordinate
889                     const int32_t tscale = ti.tscale;
890                     const int32_t ty = interpolate(ys,
891                             t.shade.it0, t.shade.idtdx, t.shade.idtdy);
892                     if (tscale>=0) {
893                         ti.ydtdy= ty            << tscale;
894                         ti.dtdx = t.shade.idtdx << tscale;
895                         ti.dtdy = t.shade.idtdy << tscale;
896                     } else {
897                         ti.ydtdy= ty            >> -tscale;
898                         ti.dtdx = t.shade.idtdx >> -tscale;
899                         ti.dtdy = t.shade.idtdy >> -tscale;
900                     }
901                 }
902             }
903             // mirror for generated code...
904             generated_tex_vars_t& gen = c->generated_vars.texture[i];
905             gen.width   = t.surface.width;
906             gen.height  = t.surface.height;
907             gen.stride  = t.surface.stride;
908             gen.data    = int32_t(t.surface.data);
909             gen.dsdx = ti.dsdx;
910             gen.dtdx = ti.dtdx;
911         }
912     }
913 
914     // choose the y-stepper
915     c->step_y = step_y__nop;
916     if (enables & GGL_ENABLE_FOG) {
917         c->step_y = step_y__generic;
918     } else if (enables & GGL_ENABLE_TMUS) {
919         if (enables & GGL_ENABLE_SMOOTH) {
920             c->step_y = step_y__generic;
921         } else if (enables & GGL_ENABLE_W) {
922             c->step_y = step_y__w;
923         } else {
924             c->step_y = step_y__tmu;
925         }
926     } else {
927         if (enables & GGL_ENABLE_SMOOTH) {
928             c->step_y = step_y__smooth;
929         }
930     }
931 
932     // choose the rectangle blitter
933     c->rect = rect_generic;
934     if ((c->step_y == step_y__nop) &&
935         (c->scanline == scanline_memcpy))
936     {
937         c->rect = rect_memcpy;
938     }
939 }
940 
init_y_packed(context_t * c,int32_t y0)941 void init_y_packed(context_t* c, int32_t y0)
942 {
943     uint8_t f = c->state.buffers.color.format;
944     c->packed = ggl_pack_color(c, f,
945             c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
946     c->iterators.y = y0;
947     c->step_y = step_y__nop;
948     // choose the rectangle blitter
949     c->rect = rect_generic;
950     if (c->scanline == scanline_memcpy) {
951         c->rect = rect_memcpy;
952     }
953 }
954 
init_y_noop(context_t * c,int32_t y0)955 void init_y_noop(context_t* c, int32_t y0)
956 {
957     c->iterators.y = y0;
958     c->step_y = step_y__nop;
959     // choose the rectangle blitter
960     c->rect = rect_generic;
961     if (c->scanline == scanline_memcpy) {
962         c->rect = rect_memcpy;
963     }
964 }
965 
init_y_error(context_t * c,int32_t y0)966 void init_y_error(context_t* c, int32_t y0)
967 {
968     // woooops, shoud never happen,
969     // fail gracefully (don't display anything)
970     init_y_noop(c, y0);
971     LOGE("color-buffer has an invalid format!");
972 }
973 
974 // ----------------------------------------------------------------------------
975 #if 0
976 #pragma mark -
977 #endif
978 
step_y__generic(context_t * c)979 void step_y__generic(context_t* c)
980 {
981     const uint32_t enables = c->state.enables;
982 
983     // iterate...
984     iterators_t& ci = c->iterators;
985     ci.y += 1;
986 
987     if (enables & GGL_ENABLE_SMOOTH) {
988         ci.ydrdy += c->shade.drdy;
989         ci.ydgdy += c->shade.dgdy;
990         ci.ydbdy += c->shade.dbdy;
991         ci.ydady += c->shade.dady;
992     }
993 
994     const uint32_t mask =
995             GGL_ENABLE_DEPTH_TEST |
996             GGL_ENABLE_W |
997             GGL_ENABLE_FOG;
998     if (enables & mask) {
999         ci.ydzdy += c->shade.dzdy;
1000         ci.ydwdy += c->shade.dwdy;
1001         ci.ydfdy += c->shade.dfdy;
1002     }
1003 
1004     if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) {
1005         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1006             if (c->state.texture[i].enable) {
1007                 texture_iterators_t& ti = c->state.texture[i].iterators;
1008                 ti.ydsdy += ti.dsdy;
1009                 ti.ydtdy += ti.dtdy;
1010             }
1011         }
1012     }
1013 }
1014 
step_y__nop(context_t * c)1015 void step_y__nop(context_t* c)
1016 {
1017     c->iterators.y += 1;
1018     c->iterators.ydzdy += c->shade.dzdy;
1019 }
1020 
step_y__smooth(context_t * c)1021 void step_y__smooth(context_t* c)
1022 {
1023     iterators_t& ci = c->iterators;
1024     ci.y += 1;
1025     ci.ydrdy += c->shade.drdy;
1026     ci.ydgdy += c->shade.dgdy;
1027     ci.ydbdy += c->shade.dbdy;
1028     ci.ydady += c->shade.dady;
1029     ci.ydzdy += c->shade.dzdy;
1030 }
1031 
step_y__w(context_t * c)1032 void step_y__w(context_t* c)
1033 {
1034     iterators_t& ci = c->iterators;
1035     ci.y += 1;
1036     ci.ydzdy += c->shade.dzdy;
1037     ci.ydwdy += c->shade.dwdy;
1038 }
1039 
step_y__tmu(context_t * c)1040 void step_y__tmu(context_t* c)
1041 {
1042     iterators_t& ci = c->iterators;
1043     ci.y += 1;
1044     ci.ydzdy += c->shade.dzdy;
1045     for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1046         if (c->state.texture[i].enable) {
1047             texture_iterators_t& ti = c->state.texture[i].iterators;
1048             ti.ydsdy += ti.dsdy;
1049             ti.ydtdy += ti.dtdy;
1050         }
1051     }
1052 }
1053 
1054 // ----------------------------------------------------------------------------
1055 #if 0
1056 #pragma mark -
1057 #endif
1058 
scanline_perspective(context_t * c)1059 void scanline_perspective(context_t* c)
1060 {
1061     struct {
1062         union {
1063             struct {
1064                 int32_t s, sq;
1065                 int32_t t, tq;
1066             };
1067             struct {
1068                 int32_t v, q;
1069             } st[2];
1070         };
1071     } tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16)));
1072 
1073     // XXX: we should have a special case when dwdx = 0
1074 
1075     // 32 pixels spans works okay. 16 is a lot better,
1076     // but hey, it's a software renderer...
1077     const uint32_t SPAN_BITS = 5;
1078     const uint32_t ys = c->iterators.y;
1079     const uint32_t xs = c->iterators.xl;
1080     const uint32_t x1 = c->iterators.xr;
1081 	const uint32_t xc = x1 - xs;
1082     uint32_t remainder = xc & ((1<<SPAN_BITS)-1);
1083     uint32_t numSpans = xc >> SPAN_BITS;
1084 
1085     const iterators_t& ci = c->iterators;
1086     int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy;
1087     int32_t q0 = gglRecipQ(w0, 30);
1088     const int iwscale = 32 - gglClz(q0);
1089 
1090     const int32_t dwdx = c->shade.dwdx << SPAN_BITS;
1091     int32_t xl = c->iterators.xl;
1092 
1093     // We process s & t with a loop to reduce the code size
1094     // (and i-cache pressure).
1095 
1096     for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1097         const texture_t& tmu = c->state.texture[i];
1098         if (!tmu.enable) continue;
1099         int32_t s =   tmu.shade.is0 +
1100                      (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
1101                      ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
1102         int32_t t =   tmu.shade.it0 +
1103                      (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
1104                      ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
1105         tc[i].s  = s;
1106         tc[i].t  = t;
1107         tc[i].sq = gglMulx(s, q0, iwscale);
1108         tc[i].tq = gglMulx(t, q0, iwscale);
1109     }
1110 
1111     int32_t span = 0;
1112     do {
1113         int32_t w1;
1114         if (ggl_likely(numSpans)) {
1115             w1 = w0 + dwdx;
1116         } else {
1117             if (remainder) {
1118                 // finish off the scanline...
1119                 span = remainder;
1120                 w1 = (c->shade.dwdx * span) + w0;
1121             } else {
1122                 break;
1123             }
1124         }
1125         int32_t q1 = gglRecipQ(w1, 30);
1126         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1127             texture_t& tmu = c->state.texture[i];
1128             if (!tmu.enable) continue;
1129             texture_iterators_t& ti = tmu.iterators;
1130 
1131             for (int j=0 ; j<2 ; j++) {
1132                 int32_t v = tc[i].st[j].v;
1133                 if (span)   v += (tmu.shade.st[j].dx)*span;
1134                 else        v += (tmu.shade.st[j].dx)<<SPAN_BITS;
1135                 const int32_t v0 = tc[i].st[j].q;
1136                 const int32_t v1 = gglMulx(v, q1, iwscale);
1137                 int32_t dvdx = v1 - v0;
1138                 if (span)   dvdx /= span;
1139                 else        dvdx >>= SPAN_BITS;
1140                 tc[i].st[j].v = v;
1141                 tc[i].st[j].q = v1;
1142 
1143                 const int scale = ti.st[j].scale + (iwscale - 30);
1144                 if (scale >= 0) {
1145                     ti.st[j].ydvdy = v0   << scale;
1146                     ti.st[j].dvdx  = dvdx << scale;
1147                 } else {
1148                     ti.st[j].ydvdy = v0   >> -scale;
1149                     ti.st[j].dvdx  = dvdx >> -scale;
1150                 }
1151             }
1152             generated_tex_vars_t& gen = c->generated_vars.texture[i];
1153             gen.dsdx = ti.st[0].dvdx;
1154             gen.dtdx = ti.st[1].dvdx;
1155         }
1156         c->iterators.xl = xl;
1157         c->iterators.xr = xl = xl + (span ? span : (1<<SPAN_BITS));
1158         w0 = w1;
1159         q0 = q1;
1160         c->span(c);
1161     } while(numSpans--);
1162 }
1163 
scanline_perspective_single(context_t * c)1164 void scanline_perspective_single(context_t* c)
1165 {
1166     // 32 pixels spans works okay. 16 is a lot better,
1167     // but hey, it's a software renderer...
1168     const uint32_t SPAN_BITS = 5;
1169     const uint32_t ys = c->iterators.y;
1170     const uint32_t xs = c->iterators.xl;
1171     const uint32_t x1 = c->iterators.xr;
1172 	const uint32_t xc = x1 - xs;
1173 
1174     const iterators_t& ci = c->iterators;
1175     int32_t w = (xs * c->shade.dwdx) + ci.ydwdy;
1176     int32_t iw = gglRecipQ(w, 30);
1177     const int iwscale = 32 - gglClz(iw);
1178 
1179     const int i = 31 - gglClz(c->state.enabled_tmu);
1180     generated_tex_vars_t& gen = c->generated_vars.texture[i];
1181     texture_t& tmu = c->state.texture[i];
1182     texture_iterators_t& ti = tmu.iterators;
1183     const int sscale = ti.sscale + (iwscale - 30);
1184     const int tscale = ti.tscale + (iwscale - 30);
1185     int32_t s =   tmu.shade.is0 +
1186                  (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
1187                  ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
1188     int32_t t =   tmu.shade.it0 +
1189                  (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
1190                  ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
1191     int32_t s0 = gglMulx(s, iw, iwscale);
1192     int32_t t0 = gglMulx(t, iw, iwscale);
1193     int32_t xl = c->iterators.xl;
1194 
1195     int32_t sq, tq, dsdx, dtdx;
1196     int32_t premainder = xc & ((1<<SPAN_BITS)-1);
1197     uint32_t numSpans = xc >> SPAN_BITS;
1198     if (c->shade.dwdx == 0) {
1199         // XXX: we could choose to do this if the error is small enough
1200         numSpans = 0;
1201         premainder = xc;
1202         goto no_perspective;
1203     }
1204 
1205     if (premainder) {
1206         w += c->shade.dwdx   * premainder;
1207         iw = gglRecipQ(w, 30);
1208 no_perspective:
1209         s += tmu.shade.idsdx * premainder;
1210         t += tmu.shade.idtdx * premainder;
1211         sq = gglMulx(s, iw, iwscale);
1212         tq = gglMulx(t, iw, iwscale);
1213         dsdx = (sq - s0) / premainder;
1214         dtdx = (tq - t0) / premainder;
1215         c->iterators.xl = xl;
1216         c->iterators.xr = xl = xl + premainder;
1217         goto finish;
1218     }
1219 
1220     while (numSpans--) {
1221         w += c->shade.dwdx   << SPAN_BITS;
1222         s += tmu.shade.idsdx << SPAN_BITS;
1223         t += tmu.shade.idtdx << SPAN_BITS;
1224         iw = gglRecipQ(w, 30);
1225         sq = gglMulx(s, iw, iwscale);
1226         tq = gglMulx(t, iw, iwscale);
1227         dsdx = (sq - s0) >> SPAN_BITS;
1228         dtdx = (tq - t0) >> SPAN_BITS;
1229         c->iterators.xl = xl;
1230         c->iterators.xr = xl = xl + (1<<SPAN_BITS);
1231 finish:
1232         if (sscale >= 0) {
1233             ti.ydsdy = s0   << sscale;
1234             ti.dsdx  = dsdx << sscale;
1235         } else {
1236             ti.ydsdy = s0   >>-sscale;
1237             ti.dsdx  = dsdx >>-sscale;
1238         }
1239         if (tscale >= 0) {
1240             ti.ydtdy = t0   << tscale;
1241             ti.dtdx  = dtdx << tscale;
1242         } else {
1243             ti.ydtdy = t0   >>-tscale;
1244             ti.dtdx  = dtdx >>-tscale;
1245         }
1246         s0 = sq;
1247         t0 = tq;
1248         gen.dsdx = ti.dsdx;
1249         gen.dtdx = ti.dtdx;
1250         c->span(c);
1251     }
1252 }
1253 
1254 // ----------------------------------------------------------------------------
1255 
scanline_t32cb16(context_t * c)1256 void scanline_t32cb16(context_t* c)
1257 {
1258     int32_t x = c->iterators.xl;
1259     size_t ct = c->iterators.xr - x;
1260     int32_t y = c->iterators.y;
1261     surface_t* cb = &(c->state.buffers.color);
1262     union {
1263         uint16_t* dst;
1264         uint32_t* dst32;
1265     };
1266     dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
1267 
1268     surface_t* tex = &(c->state.texture[0].surface);
1269     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
1270     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
1271     uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
1272     int sR, sG, sB;
1273     uint32_t s, d;
1274 
1275     if (ct==1 || uint32_t(dst)&2) {
1276 last_one:
1277         s = GGL_RGBA_TO_HOST( *src++ );
1278         sR = (s >> (   3))&0x1F;
1279         sG = (s >> ( 8+2))&0x3F;
1280         sB = (s >> (16+3))&0x1F;
1281         *dst++ = uint16_t((sR<<11)|(sG<<5)|sB);
1282         ct--;
1283     }
1284 
1285     while (ct >= 2) {
1286         s = GGL_RGBA_TO_HOST( *src++ );
1287         sR = (s >> (   3))&0x1F;
1288         sG = (s >> ( 8+2))&0x3F;
1289         sB = (s >> (16+3))&0x1F;
1290         d = (sR<<11)|(sG<<5)|sB;
1291 
1292         s = GGL_RGBA_TO_HOST( *src++ );
1293         sR = (s >> (   3))&0x1F;
1294         sG = (s >> ( 8+2))&0x3F;
1295         sB = (s >> (16+3))&0x1F;
1296         d |= ((sR<<11)|(sG<<5)|sB)<<16;
1297 
1298 #if BYTE_ORDER == BIG_ENDIAN
1299         d = (d>>16) | (d<<16);
1300 #endif
1301 
1302         *dst32++ = d;
1303         ct -= 2;
1304     }
1305 
1306     if (ct > 0) {
1307         goto last_one;
1308     }
1309 }
1310 
scanline_t32cb16blend(context_t * c)1311 void scanline_t32cb16blend(context_t* c)
1312 {
1313     int32_t x = c->iterators.xl;
1314     size_t ct = c->iterators.xr - x;
1315     int32_t y = c->iterators.y;
1316     surface_t* cb = &(c->state.buffers.color);
1317     uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
1318 
1319     surface_t* tex = &(c->state.texture[0].surface);
1320     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
1321     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
1322     uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
1323 
1324 #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
1325     scanline_t32cb16blend_arm(dst, src, ct);
1326 #else
1327     while (ct--) {
1328         uint32_t s = *src++;
1329         if (!s) {
1330             dst++;
1331             continue;
1332         }
1333         uint16_t d = *dst;
1334         s = GGL_RGBA_TO_HOST(s);
1335         int sR = (s >> (   3))&0x1F;
1336         int sG = (s >> ( 8+2))&0x3F;
1337         int sB = (s >> (16+3))&0x1F;
1338         int sA = (s>>24);
1339         int f = 0x100 - (sA + (sA>>7));
1340         int dR = (d>>11)&0x1f;
1341         int dG = (d>>5)&0x3f;
1342         int dB = (d)&0x1f;
1343         sR += (f*dR)>>8;
1344         sG += (f*dG)>>8;
1345         sB += (f*dB)>>8;
1346         *dst++ = uint16_t((sR<<11)|(sG<<5)|sB);
1347     }
1348 #endif
1349 }
1350 
scanline_memcpy(context_t * c)1351 void scanline_memcpy(context_t* c)
1352 {
1353     int32_t x = c->iterators.xl;
1354     size_t ct = c->iterators.xr - x;
1355     int32_t y = c->iterators.y;
1356     surface_t* cb = &(c->state.buffers.color);
1357     const GGLFormat* fp = &(c->formats[cb->format]);
1358     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
1359                             (x + (cb->stride * y)) * fp->size;
1360 
1361     surface_t* tex = &(c->state.texture[0].surface);
1362     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
1363     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
1364     uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
1365                             (u + (tex->stride * v)) * fp->size;
1366 
1367     const size_t size = ct * fp->size;
1368     memcpy(dst, src, size);
1369 }
1370 
scanline_memset8(context_t * c)1371 void scanline_memset8(context_t* c)
1372 {
1373     int32_t x = c->iterators.xl;
1374     size_t ct = c->iterators.xr - x;
1375     int32_t y = c->iterators.y;
1376     surface_t* cb = &(c->state.buffers.color);
1377     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + (x+(cb->stride*y));
1378     uint32_t packed = c->packed;
1379     memset(dst, packed, ct);
1380 }
1381 
scanline_memset16(context_t * c)1382 void scanline_memset16(context_t* c)
1383 {
1384     int32_t x = c->iterators.xl;
1385     size_t ct = c->iterators.xr - x;
1386     int32_t y = c->iterators.y;
1387     surface_t* cb = &(c->state.buffers.color);
1388     uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
1389     uint32_t packed = c->packed;
1390     android_memset16(dst, packed, ct*2);
1391 }
1392 
scanline_memset32(context_t * c)1393 void scanline_memset32(context_t* c)
1394 {
1395     int32_t x = c->iterators.xl;
1396     size_t ct = c->iterators.xr - x;
1397     int32_t y = c->iterators.y;
1398     surface_t* cb = &(c->state.buffers.color);
1399     uint32_t* dst = reinterpret_cast<uint32_t*>(cb->data) + (x+(cb->stride*y));
1400     uint32_t packed = GGL_HOST_TO_RGBA(c->packed);
1401     android_memset32(dst, packed, ct*4);
1402 }
1403 
scanline_clear(context_t * c)1404 void scanline_clear(context_t* c)
1405 {
1406     int32_t x = c->iterators.xl;
1407     size_t ct = c->iterators.xr - x;
1408     int32_t y = c->iterators.y;
1409     surface_t* cb = &(c->state.buffers.color);
1410     const GGLFormat* fp = &(c->formats[cb->format]);
1411     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
1412                             (x + (cb->stride * y)) * fp->size;
1413     const size_t size = ct * fp->size;
1414     memset(dst, 0, size);
1415 }
1416 
scanline_set(context_t * c)1417 void scanline_set(context_t* c)
1418 {
1419     int32_t x = c->iterators.xl;
1420     size_t ct = c->iterators.xr - x;
1421     int32_t y = c->iterators.y;
1422     surface_t* cb = &(c->state.buffers.color);
1423     const GGLFormat* fp = &(c->formats[cb->format]);
1424     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
1425                             (x + (cb->stride * y)) * fp->size;
1426     const size_t size = ct * fp->size;
1427     memset(dst, 0xFF, size);
1428 }
1429 
scanline_noop(context_t * c)1430 void scanline_noop(context_t* c)
1431 {
1432 }
1433 
rect_generic(context_t * c,size_t yc)1434 void rect_generic(context_t* c, size_t yc)
1435 {
1436     do {
1437         c->scanline(c);
1438         c->step_y(c);
1439     } while (--yc);
1440 }
1441 
rect_memcpy(context_t * c,size_t yc)1442 void rect_memcpy(context_t* c, size_t yc)
1443 {
1444     int32_t x = c->iterators.xl;
1445     size_t ct = c->iterators.xr - x;
1446     int32_t y = c->iterators.y;
1447     surface_t* cb = &(c->state.buffers.color);
1448     const GGLFormat* fp = &(c->formats[cb->format]);
1449     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
1450                             (x + (cb->stride * y)) * fp->size;
1451 
1452     surface_t* tex = &(c->state.texture[0].surface);
1453     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
1454     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
1455     uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
1456                             (u + (tex->stride * v)) * fp->size;
1457 
1458     if (cb->stride == tex->stride && ct == size_t(cb->stride)) {
1459         memcpy(dst, src, ct * fp->size * yc);
1460     } else {
1461         const size_t size = ct * fp->size;
1462         const size_t dbpr = cb->stride  * fp->size;
1463         const size_t sbpr = tex->stride * fp->size;
1464         do {
1465             memcpy(dst, src, size);
1466             dst += dbpr;
1467             src += sbpr;
1468         } while (--yc);
1469     }
1470 }
1471 // ----------------------------------------------------------------------------
1472 }; // namespace android
1473 
1474 using namespace android;
ggl_test_codegen(uint32_t n,uint32_t p,uint32_t t0,uint32_t t1)1475 extern "C" void ggl_test_codegen(uint32_t n, uint32_t p, uint32_t t0, uint32_t t1)
1476 {
1477 #if ANDROID_ARM_CODEGEN
1478     GGLContext* c;
1479     gglInit(&c);
1480     needs_t needs;
1481     needs.n = n;
1482     needs.p = p;
1483     needs.t[0] = t0;
1484     needs.t[1] = t1;
1485     sp<ScanlineAssembly> a(new ScanlineAssembly(needs, ASSEMBLY_SCRATCH_SIZE));
1486     GGLAssembler assembler( new ARMAssembler(a) );
1487     int err = assembler.scanline(needs, (context_t*)c);
1488     if (err != 0) {
1489         printf("error %08x (%s)\n", err, strerror(-err));
1490     }
1491     gglUninit(c);
1492 #else
1493     printf("This test runs only on ARM\n");
1494 #endif
1495 }
1496 
1497