• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* hash - hashing table processing.
2 
3    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
4    Software Foundation, Inc.
5 
6    Written by Jim Meyering, 1992.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2, or (at your option)
11    any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software Foundation,
20    Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */
21 
22 /* A generic hash table package.  */
23 
24 /* Define USE_OBSTACK to 1 if you want the allocator to use obstacks instead
25    of malloc.  If you change USE_OBSTACK, you have to recompile!  */
26 
27 #ifdef HAVE_CONFIG_H
28 # include <config.h>
29 #endif
30 
31 #include "hash.h"
32 #include "xalloc.h"
33 
34 #include <limits.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 
38 #if USE_OBSTACK
39 # include "obstack.h"
40 # ifndef obstack_chunk_alloc
41 #  define obstack_chunk_alloc malloc
42 # endif
43 # ifndef obstack_chunk_free
44 #  define obstack_chunk_free free
45 # endif
46 #endif
47 
48 #ifndef SIZE_MAX
49 # define SIZE_MAX ((size_t) -1)
50 #endif
51 
52 struct hash_table
53   {
54     /* The array of buckets starts at BUCKET and extends to BUCKET_LIMIT-1,
55        for a possibility of N_BUCKETS.  Among those, N_BUCKETS_USED buckets
56        are not empty, there are N_ENTRIES active entries in the table.  */
57     struct hash_entry *bucket;
58     struct hash_entry const *bucket_limit;
59     size_t n_buckets;
60     size_t n_buckets_used;
61     size_t n_entries;
62 
63     /* Tuning arguments, kept in a physicaly separate structure.  */
64     const Hash_tuning *tuning;
65 
66     /* Three functions are given to `hash_initialize', see the documentation
67        block for this function.  In a word, HASHER randomizes a user entry
68        into a number up from 0 up to some maximum minus 1; COMPARATOR returns
69        true if two user entries compare equally; and DATA_FREER is the cleanup
70        function for a user entry.  */
71     Hash_hasher hasher;
72     Hash_comparator comparator;
73     Hash_data_freer data_freer;
74 
75     /* A linked list of freed struct hash_entry structs.  */
76     struct hash_entry *free_entry_list;
77 
78 #if USE_OBSTACK
79     /* Whenever obstacks are used, it is possible to allocate all overflowed
80        entries into a single stack, so they all can be freed in a single
81        operation.  It is not clear if the speedup is worth the trouble.  */
82     struct obstack entry_stack;
83 #endif
84   };
85 
86 /* A hash table contains many internal entries, each holding a pointer to
87    some user provided data (also called a user entry).  An entry indistinctly
88    refers to both the internal entry and its associated user entry.  A user
89    entry contents may be hashed by a randomization function (the hashing
90    function, or just `hasher' for short) into a number (or `slot') between 0
91    and the current table size.  At each slot position in the hash table,
92    starts a linked chain of entries for which the user data all hash to this
93    slot.  A bucket is the collection of all entries hashing to the same slot.
94 
95    A good `hasher' function will distribute entries rather evenly in buckets.
96    In the ideal case, the length of each bucket is roughly the number of
97    entries divided by the table size.  Finding the slot for a data is usually
98    done in constant time by the `hasher', and the later finding of a precise
99    entry is linear in time with the size of the bucket.  Consequently, a
100    larger hash table size (that is, a larger number of buckets) is prone to
101    yielding shorter chains, *given* the `hasher' function behaves properly.
102 
103    Long buckets slow down the lookup algorithm.  One might use big hash table
104    sizes in hope to reduce the average length of buckets, but this might
105    become inordinate, as unused slots in the hash table take some space.  The
106    best bet is to make sure you are using a good `hasher' function (beware
107    that those are not that easy to write! :-), and to use a table size
108    larger than the actual number of entries.  */
109 
110 /* If an insertion makes the ratio of nonempty buckets to table size larger
111    than the growth threshold (a number between 0.0 and 1.0), then increase
112    the table size by multiplying by the growth factor (a number greater than
113    1.0).  The growth threshold defaults to 0.8, and the growth factor
114    defaults to 1.414, meaning that the table will have doubled its size
115    every second time 80% of the buckets get used.  */
116 #define DEFAULT_GROWTH_THRESHOLD 0.8
117 #define DEFAULT_GROWTH_FACTOR 1.414
118 
119 /* If a deletion empties a bucket and causes the ratio of used buckets to
120    table size to become smaller than the shrink threshold (a number between
121    0.0 and 1.0), then shrink the table by multiplying by the shrink factor (a
122    number greater than the shrink threshold but smaller than 1.0).  The shrink
123    threshold and factor default to 0.0 and 1.0, meaning that the table never
124    shrinks.  */
125 #define DEFAULT_SHRINK_THRESHOLD 0.0
126 #define DEFAULT_SHRINK_FACTOR 1.0
127 
128 /* Use this to initialize or reset a TUNING structure to
129    some sensible values. */
130 static const Hash_tuning default_tuning =
131   {
132     DEFAULT_SHRINK_THRESHOLD,
133     DEFAULT_SHRINK_FACTOR,
134     DEFAULT_GROWTH_THRESHOLD,
135     DEFAULT_GROWTH_FACTOR,
136     false
137   };
138 
139 /* Information and lookup.  */
140 
141 /* The following few functions provide information about the overall hash
142    table organization: the number of entries, number of buckets and maximum
143    length of buckets.  */
144 
145 /* Return the number of buckets in the hash table.  The table size, the total
146    number of buckets (used plus unused), or the maximum number of slots, are
147    the same quantity.  */
148 
149 size_t
hash_get_n_buckets(const Hash_table * table)150 hash_get_n_buckets (const Hash_table *table)
151 {
152   return table->n_buckets;
153 }
154 
155 /* Return the number of slots in use (non-empty buckets).  */
156 
157 size_t
hash_get_n_buckets_used(const Hash_table * table)158 hash_get_n_buckets_used (const Hash_table *table)
159 {
160   return table->n_buckets_used;
161 }
162 
163 /* Return the number of active entries.  */
164 
165 size_t
hash_get_n_entries(const Hash_table * table)166 hash_get_n_entries (const Hash_table *table)
167 {
168   return table->n_entries;
169 }
170 
171 /* Return the length of the longest chain (bucket).  */
172 
173 size_t
hash_get_max_bucket_length(const Hash_table * table)174 hash_get_max_bucket_length (const Hash_table *table)
175 {
176   struct hash_entry const *bucket;
177   size_t max_bucket_length = 0;
178 
179   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
180     {
181       if (bucket->data)
182 	{
183 	  struct hash_entry const *cursor = bucket;
184 	  size_t bucket_length = 1;
185 
186 	  while (cursor = cursor->next, cursor)
187 	    bucket_length++;
188 
189 	  if (bucket_length > max_bucket_length)
190 	    max_bucket_length = bucket_length;
191 	}
192     }
193 
194   return max_bucket_length;
195 }
196 
197 /* Do a mild validation of a hash table, by traversing it and checking two
198    statistics.  */
199 
200 bool
hash_table_ok(const Hash_table * table)201 hash_table_ok (const Hash_table *table)
202 {
203   struct hash_entry const *bucket;
204   size_t n_buckets_used = 0;
205   size_t n_entries = 0;
206 
207   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
208     {
209       if (bucket->data)
210 	{
211 	  struct hash_entry const *cursor = bucket;
212 
213 	  /* Count bucket head.  */
214 	  n_buckets_used++;
215 	  n_entries++;
216 
217 	  /* Count bucket overflow.  */
218 	  while (cursor = cursor->next, cursor)
219 	    n_entries++;
220 	}
221     }
222 
223   if (n_buckets_used == table->n_buckets_used && n_entries == table->n_entries)
224     return true;
225 
226   return false;
227 }
228 
229 void
hash_print_statistics(const Hash_table * table,FILE * stream)230 hash_print_statistics (const Hash_table *table, FILE *stream)
231 {
232   size_t n_entries = hash_get_n_entries (table);
233   size_t n_buckets = hash_get_n_buckets (table);
234   size_t n_buckets_used = hash_get_n_buckets_used (table);
235   size_t max_bucket_length = hash_get_max_bucket_length (table);
236 
237   fprintf (stream, "# entries:         %lu\n", (unsigned long int) n_entries);
238   fprintf (stream, "# buckets:         %lu\n", (unsigned long int) n_buckets);
239   fprintf (stream, "# buckets used:    %lu (%.2f%%)\n",
240 	   (unsigned long int) n_buckets_used,
241 	   (100.0 * n_buckets_used) / n_buckets);
242   fprintf (stream, "max bucket length: %lu\n",
243 	   (unsigned long int) max_bucket_length);
244 }
245 
246 /* If ENTRY matches an entry already in the hash table, return the
247    entry from the table.  Otherwise, return NULL.  */
248 
249 void *
hash_lookup(const Hash_table * table,const void * entry)250 hash_lookup (const Hash_table *table, const void *entry)
251 {
252   struct hash_entry const *bucket
253     = table->bucket + table->hasher (entry, table->n_buckets);
254   struct hash_entry const *cursor;
255 
256   if (! (bucket < table->bucket_limit))
257     abort ();
258 
259   if (bucket->data == NULL)
260     return NULL;
261 
262   for (cursor = bucket; cursor; cursor = cursor->next)
263     if (table->comparator (entry, cursor->data))
264       return cursor->data;
265 
266   return NULL;
267 }
268 
269 /* Walking.  */
270 
271 /* The functions in this page traverse the hash table and process the
272    contained entries.  For the traversal to work properly, the hash table
273    should not be resized nor modified while any particular entry is being
274    processed.  In particular, entries should not be added or removed.  */
275 
276 /* Return the first data in the table, or NULL if the table is empty.  */
277 
278 void *
hash_get_first(const Hash_table * table)279 hash_get_first (const Hash_table *table)
280 {
281   struct hash_entry const *bucket;
282 
283   if (table->n_entries == 0)
284     return NULL;
285 
286   for (bucket = table->bucket; ; bucket++)
287     if (! (bucket < table->bucket_limit))
288       abort ();
289     else if (bucket->data)
290       return bucket->data;
291 }
292 
293 /* Return the user data for the entry following ENTRY, where ENTRY has been
294    returned by a previous call to either `hash_get_first' or `hash_get_next'.
295    Return NULL if there are no more entries.  */
296 
297 void *
hash_get_next(const Hash_table * table,const void * entry)298 hash_get_next (const Hash_table *table, const void *entry)
299 {
300   struct hash_entry const *bucket
301     = table->bucket + table->hasher (entry, table->n_buckets);
302   struct hash_entry const *cursor;
303 
304   if (! (bucket < table->bucket_limit))
305     abort ();
306 
307   /* Find next entry in the same bucket.  */
308   for (cursor = bucket; cursor; cursor = cursor->next)
309     if (cursor->data == entry && cursor->next)
310       return cursor->next->data;
311 
312   /* Find first entry in any subsequent bucket.  */
313   while (++bucket < table->bucket_limit)
314     if (bucket->data)
315       return bucket->data;
316 
317   /* None found.  */
318   return NULL;
319 }
320 
321 /* Fill BUFFER with pointers to active user entries in the hash table, then
322    return the number of pointers copied.  Do not copy more than BUFFER_SIZE
323    pointers.  */
324 
325 size_t
hash_get_entries(const Hash_table * table,void ** buffer,size_t buffer_size)326 hash_get_entries (const Hash_table *table, void **buffer,
327 		  size_t buffer_size)
328 {
329   size_t counter = 0;
330   struct hash_entry const *bucket;
331   struct hash_entry const *cursor;
332 
333   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
334     {
335       if (bucket->data)
336 	{
337 	  for (cursor = bucket; cursor; cursor = cursor->next)
338 	    {
339 	      if (counter >= buffer_size)
340 		return counter;
341 	      buffer[counter++] = cursor->data;
342 	    }
343 	}
344     }
345 
346   return counter;
347 }
348 
349 /* Call a PROCESSOR function for each entry of a hash table, and return the
350    number of entries for which the processor function returned success.  A
351    pointer to some PROCESSOR_DATA which will be made available to each call to
352    the processor function.  The PROCESSOR accepts two arguments: the first is
353    the user entry being walked into, the second is the value of PROCESSOR_DATA
354    as received.  The walking continue for as long as the PROCESSOR function
355    returns nonzero.  When it returns zero, the walking is interrupted.  */
356 
357 size_t
hash_do_for_each(const Hash_table * table,Hash_processor processor,void * processor_data)358 hash_do_for_each (const Hash_table *table, Hash_processor processor,
359 		  void *processor_data)
360 {
361   size_t counter = 0;
362   struct hash_entry const *bucket;
363   struct hash_entry const *cursor;
364 
365   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
366     {
367       if (bucket->data)
368 	{
369 	  for (cursor = bucket; cursor; cursor = cursor->next)
370 	    {
371 	      if (!(*processor) (cursor->data, processor_data))
372 		return counter;
373 	      counter++;
374 	    }
375 	}
376     }
377 
378   return counter;
379 }
380 
381 /* Allocation and clean-up.  */
382 
383 /* Return a hash index for a NUL-terminated STRING between 0 and N_BUCKETS-1.
384    This is a convenience routine for constructing other hashing functions.  */
385 
386 #if USE_DIFF_HASH
387 
388 /* About hashings, Paul Eggert writes to me (FP), on 1994-01-01: "Please see
389    B. J. McKenzie, R. Harries & T. Bell, Selecting a hashing algorithm,
390    Software--practice & experience 20, 2 (Feb 1990), 209-224.  Good hash
391    algorithms tend to be domain-specific, so what's good for [diffutils'] io.c
392    may not be good for your application."  */
393 
394 size_t
hash_string(const char * string,size_t n_buckets)395 hash_string (const char *string, size_t n_buckets)
396 {
397 # define ROTATE_LEFT(Value, Shift) \
398   ((Value) << (Shift) | (Value) >> ((sizeof (size_t) * CHAR_BIT) - (Shift)))
399 # define HASH_ONE_CHAR(Value, Byte) \
400   ((Byte) + ROTATE_LEFT (Value, 7))
401 
402   size_t value = 0;
403   unsigned char ch;
404 
405   for (; (ch = *string); string++)
406     value = HASH_ONE_CHAR (value, ch);
407   return value % n_buckets;
408 
409 # undef ROTATE_LEFT
410 # undef HASH_ONE_CHAR
411 }
412 
413 #else /* not USE_DIFF_HASH */
414 
415 /* This one comes from `recode', and performs a bit better than the above as
416    per a few experiments.  It is inspired from a hashing routine found in the
417    very old Cyber `snoop', itself written in typical Greg Mansfield style.
418    (By the way, what happened to this excellent man?  Is he still alive?)  */
419 
420 size_t
hash_string(const char * string,size_t n_buckets)421 hash_string (const char *string, size_t n_buckets)
422 {
423   size_t value = 0;
424   unsigned char ch;
425 
426   for (; (ch = *string); string++)
427     value = (value * 31 + ch) % n_buckets;
428   return value;
429 }
430 
431 #endif /* not USE_DIFF_HASH */
432 
433 /* Return true if CANDIDATE is a prime number.  CANDIDATE should be an odd
434    number at least equal to 11.  */
435 
436 static bool
is_prime(size_t candidate)437 is_prime (size_t candidate)
438 {
439   size_t divisor = 3;
440   size_t square = divisor * divisor;
441 
442   while (square < candidate && (candidate % divisor))
443     {
444       divisor++;
445       square += 4 * divisor;
446       divisor++;
447     }
448 
449   return (candidate % divisor ? true : false);
450 }
451 
452 /* Round a given CANDIDATE number up to the nearest prime, and return that
453    prime.  Primes lower than 10 are merely skipped.  */
454 
455 static size_t
next_prime(size_t candidate)456 next_prime (size_t candidate)
457 {
458   /* Skip small primes.  */
459   if (candidate < 10)
460     candidate = 10;
461 
462   /* Make it definitely odd.  */
463   candidate |= 1;
464 
465   while (!is_prime (candidate))
466     candidate += 2;
467 
468   return candidate;
469 }
470 
471 void
hash_reset_tuning(Hash_tuning * tuning)472 hash_reset_tuning (Hash_tuning *tuning)
473 {
474   *tuning = default_tuning;
475 }
476 
477 /* For the given hash TABLE, check the user supplied tuning structure for
478    reasonable values, and return true if there is no gross error with it.
479    Otherwise, definitively reset the TUNING field to some acceptable default
480    in the hash table (that is, the user loses the right of further modifying
481    tuning arguments), and return false.  */
482 
483 static bool
check_tuning(Hash_table * table)484 check_tuning (Hash_table *table)
485 {
486   const Hash_tuning *tuning = table->tuning;
487 
488   /* Be a bit stricter than mathematics would require, so that
489      rounding errors in size calculations do not cause allocations to
490      fail to grow or shrink as they should.  The smallest allocation
491      is 11 (due to next_prime's algorithm), so an epsilon of 0.1
492      should be good enough.  */
493   float epsilon = 0.1f;
494 
495   if (epsilon < tuning->growth_threshold
496       && tuning->growth_threshold < 1 - epsilon
497       && 1 + epsilon < tuning->growth_factor
498       && 0 <= tuning->shrink_threshold
499       && tuning->shrink_threshold + epsilon < tuning->shrink_factor
500       && tuning->shrink_factor <= 1
501       && tuning->shrink_threshold + epsilon < tuning->growth_threshold)
502     return true;
503 
504   table->tuning = &default_tuning;
505   return false;
506 }
507 
508 /* Allocate and return a new hash table, or NULL upon failure.  The initial
509    number of buckets is automatically selected so as to _guarantee_ that you
510    may insert at least CANDIDATE different user entries before any growth of
511    the hash table size occurs.  So, if have a reasonably tight a-priori upper
512    bound on the number of entries you intend to insert in the hash table, you
513    may save some table memory and insertion time, by specifying it here.  If
514    the IS_N_BUCKETS field of the TUNING structure is true, the CANDIDATE
515    argument has its meaning changed to the wanted number of buckets.
516 
517    TUNING points to a structure of user-supplied values, in case some fine
518    tuning is wanted over the default behavior of the hasher.  If TUNING is
519    NULL, the default tuning parameters are used instead.
520 
521    The user-supplied HASHER function should be provided.  It accepts two
522    arguments ENTRY and TABLE_SIZE.  It computes, by hashing ENTRY contents, a
523    slot number for that entry which should be in the range 0..TABLE_SIZE-1.
524    This slot number is then returned.
525 
526    The user-supplied COMPARATOR function should be provided.  It accepts two
527    arguments pointing to user data, it then returns true for a pair of entries
528    that compare equal, or false otherwise.  This function is internally called
529    on entries which are already known to hash to the same bucket index.
530 
531    The user-supplied DATA_FREER function, when not NULL, may be later called
532    with the user data as an argument, just before the entry containing the
533    data gets freed.  This happens from within `hash_free' or `hash_clear'.
534    You should specify this function only if you want these functions to free
535    all of your `data' data.  This is typically the case when your data is
536    simply an auxiliary struct that you have malloc'd to aggregate several
537    values.  */
538 
539 Hash_table *
hash_initialize(size_t candidate,const Hash_tuning * tuning,Hash_hasher hasher,Hash_comparator comparator,Hash_data_freer data_freer)540 hash_initialize (size_t candidate, const Hash_tuning *tuning,
541 		 Hash_hasher hasher, Hash_comparator comparator,
542 		 Hash_data_freer data_freer)
543 {
544   Hash_table *table;
545 
546   if (hasher == NULL || comparator == NULL)
547     return NULL;
548 
549   table = malloc (sizeof *table);
550   if (table == NULL)
551     return NULL;
552 
553   if (!tuning)
554     tuning = &default_tuning;
555   table->tuning = tuning;
556   if (!check_tuning (table))
557     {
558       /* Fail if the tuning options are invalid.  This is the only occasion
559 	 when the user gets some feedback about it.  Once the table is created,
560 	 if the user provides invalid tuning options, we silently revert to
561 	 using the defaults, and ignore further request to change the tuning
562 	 options.  */
563       goto fail;
564     }
565 
566   if (!tuning->is_n_buckets)
567     {
568       float new_candidate = candidate / tuning->growth_threshold;
569       if (SIZE_MAX <= new_candidate)
570 	goto fail;
571       candidate = new_candidate;
572     }
573 
574   if (xalloc_oversized (candidate, sizeof *table->bucket))
575     goto fail;
576   table->n_buckets = next_prime (candidate);
577   if (xalloc_oversized (table->n_buckets, sizeof *table->bucket))
578     goto fail;
579 
580   table->bucket = calloc (table->n_buckets, sizeof *table->bucket);
581   table->bucket_limit = table->bucket + table->n_buckets;
582   table->n_buckets_used = 0;
583   table->n_entries = 0;
584 
585   table->hasher = hasher;
586   table->comparator = comparator;
587   table->data_freer = data_freer;
588 
589   table->free_entry_list = NULL;
590 #if USE_OBSTACK
591   obstack_init (&table->entry_stack);
592 #endif
593   return table;
594 
595  fail:
596   free (table);
597   return NULL;
598 }
599 
600 /* Make all buckets empty, placing any chained entries on the free list.
601    Apply the user-specified function data_freer (if any) to the datas of any
602    affected entries.  */
603 
604 void
hash_clear(Hash_table * table)605 hash_clear (Hash_table *table)
606 {
607   struct hash_entry *bucket;
608 
609   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
610     {
611       if (bucket->data)
612 	{
613 	  struct hash_entry *cursor;
614 	  struct hash_entry *next;
615 
616 	  /* Free the bucket overflow.  */
617 	  for (cursor = bucket->next; cursor; cursor = next)
618 	    {
619 	      if (table->data_freer)
620 		(*table->data_freer) (cursor->data);
621 	      cursor->data = NULL;
622 
623 	      next = cursor->next;
624 	      /* Relinking is done one entry at a time, as it is to be expected
625 		 that overflows are either rare or short.  */
626 	      cursor->next = table->free_entry_list;
627 	      table->free_entry_list = cursor;
628 	    }
629 
630 	  /* Free the bucket head.  */
631 	  if (table->data_freer)
632 	    (*table->data_freer) (bucket->data);
633 	  bucket->data = NULL;
634 	  bucket->next = NULL;
635 	}
636     }
637 
638   table->n_buckets_used = 0;
639   table->n_entries = 0;
640 }
641 
642 /* Reclaim all storage associated with a hash table.  If a data_freer
643    function has been supplied by the user when the hash table was created,
644    this function applies it to the data of each entry before freeing that
645    entry.  */
646 
647 void
hash_free(Hash_table * table)648 hash_free (Hash_table *table)
649 {
650   struct hash_entry *bucket;
651   struct hash_entry *cursor;
652   struct hash_entry *next;
653 
654   /* Call the user data_freer function.  */
655   if (table->data_freer && table->n_entries)
656     {
657       for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
658 	{
659 	  if (bucket->data)
660 	    {
661 	      for (cursor = bucket; cursor; cursor = cursor->next)
662 		{
663 		  (*table->data_freer) (cursor->data);
664 		}
665 	    }
666 	}
667     }
668 
669 #if USE_OBSTACK
670 
671   obstack_free (&table->entry_stack, NULL);
672 
673 #else
674 
675   /* Free all bucket overflowed entries.  */
676   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
677     {
678       for (cursor = bucket->next; cursor; cursor = next)
679 	{
680 	  next = cursor->next;
681 	  free (cursor);
682 	}
683     }
684 
685   /* Also reclaim the internal list of previously freed entries.  */
686   for (cursor = table->free_entry_list; cursor; cursor = next)
687     {
688       next = cursor->next;
689       free (cursor);
690     }
691 
692 #endif
693 
694   /* Free the remainder of the hash table structure.  */
695   free (table->bucket);
696   free (table);
697 }
698 
699 /* Insertion and deletion.  */
700 
701 /* Get a new hash entry for a bucket overflow, possibly by reclying a
702    previously freed one.  If this is not possible, allocate a new one.  */
703 
704 static struct hash_entry *
allocate_entry(Hash_table * table)705 allocate_entry (Hash_table *table)
706 {
707   struct hash_entry *new;
708 
709   if (table->free_entry_list)
710     {
711       new = table->free_entry_list;
712       table->free_entry_list = new->next;
713     }
714   else
715     {
716 #if USE_OBSTACK
717       new = obstack_alloc (&table->entry_stack, sizeof *new);
718 #else
719       new = malloc (sizeof *new);
720 #endif
721     }
722 
723   return new;
724 }
725 
726 /* Free a hash entry which was part of some bucket overflow,
727    saving it for later recycling.  */
728 
729 static void
free_entry(Hash_table * table,struct hash_entry * entry)730 free_entry (Hash_table *table, struct hash_entry *entry)
731 {
732   entry->data = NULL;
733   entry->next = table->free_entry_list;
734   table->free_entry_list = entry;
735 }
736 
737 /* This private function is used to help with insertion and deletion.  When
738    ENTRY matches an entry in the table, return a pointer to the corresponding
739    user data and set *BUCKET_HEAD to the head of the selected bucket.
740    Otherwise, return NULL.  When DELETE is true and ENTRY matches an entry in
741    the table, unlink the matching entry.  */
742 
743 static void *
hash_find_entry(Hash_table * table,const void * entry,struct hash_entry ** bucket_head,bool delete)744 hash_find_entry (Hash_table *table, const void *entry,
745 		 struct hash_entry **bucket_head, bool delete)
746 {
747   struct hash_entry *bucket
748     = table->bucket + table->hasher (entry, table->n_buckets);
749   struct hash_entry *cursor;
750 
751   if (! (bucket < table->bucket_limit))
752     abort ();
753 
754   *bucket_head = bucket;
755 
756   /* Test for empty bucket.  */
757   if (bucket->data == NULL)
758     return NULL;
759 
760   /* See if the entry is the first in the bucket.  */
761   if ((*table->comparator) (entry, bucket->data))
762     {
763       void *data = bucket->data;
764 
765       if (delete)
766 	{
767 	  if (bucket->next)
768 	    {
769 	      struct hash_entry *next = bucket->next;
770 
771 	      /* Bump the first overflow entry into the bucket head, then save
772 		 the previous first overflow entry for later recycling.  */
773 	      *bucket = *next;
774 	      free_entry (table, next);
775 	    }
776 	  else
777 	    {
778 	      bucket->data = NULL;
779 	    }
780 	}
781 
782       return data;
783     }
784 
785   /* Scan the bucket overflow.  */
786   for (cursor = bucket; cursor->next; cursor = cursor->next)
787     {
788       if ((*table->comparator) (entry, cursor->next->data))
789 	{
790 	  void *data = cursor->next->data;
791 
792 	  if (delete)
793 	    {
794 	      struct hash_entry *next = cursor->next;
795 
796 	      /* Unlink the entry to delete, then save the freed entry for later
797 		 recycling.  */
798 	      cursor->next = next->next;
799 	      free_entry (table, next);
800 	    }
801 
802 	  return data;
803 	}
804     }
805 
806   /* No entry found.  */
807   return NULL;
808 }
809 
810 /* For an already existing hash table, change the number of buckets through
811    specifying CANDIDATE.  The contents of the hash table are preserved.  The
812    new number of buckets is automatically selected so as to _guarantee_ that
813    the table may receive at least CANDIDATE different user entries, including
814    those already in the table, before any other growth of the hash table size
815    occurs.  If TUNING->IS_N_BUCKETS is true, then CANDIDATE specifies the
816    exact number of buckets desired.  */
817 
818 bool
hash_rehash(Hash_table * table,size_t candidate)819 hash_rehash (Hash_table *table, size_t candidate)
820 {
821   Hash_table *new_table;
822   struct hash_entry *bucket;
823   struct hash_entry *cursor;
824   struct hash_entry *next;
825 
826   new_table = hash_initialize (candidate, table->tuning, table->hasher,
827 			       table->comparator, table->data_freer);
828   if (new_table == NULL)
829     return false;
830 
831   /* Merely reuse the extra old space into the new table.  */
832 #if USE_OBSTACK
833   obstack_free (&new_table->entry_stack, NULL);
834   new_table->entry_stack = table->entry_stack;
835 #endif
836   new_table->free_entry_list = table->free_entry_list;
837 
838   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
839     if (bucket->data)
840       for (cursor = bucket; cursor; cursor = next)
841 	{
842 	  void *data = cursor->data;
843 	  struct hash_entry *new_bucket
844 	    = (new_table->bucket
845 	       + new_table->hasher (data, new_table->n_buckets));
846 
847 	  if (! (new_bucket < new_table->bucket_limit))
848 	    abort ();
849 
850 	  next = cursor->next;
851 
852 	  if (new_bucket->data)
853 	    {
854 	      if (cursor == bucket)
855 		{
856 		  /* Allocate or recycle an entry, when moving from a bucket
857 		     header into a bucket overflow.  */
858 		  struct hash_entry *new_entry = allocate_entry (new_table);
859 
860 		  if (new_entry == NULL)
861 		    return false;
862 
863 		  new_entry->data = data;
864 		  new_entry->next = new_bucket->next;
865 		  new_bucket->next = new_entry;
866 		}
867 	      else
868 		{
869 		  /* Merely relink an existing entry, when moving from a
870 		     bucket overflow into a bucket overflow.  */
871 		  cursor->next = new_bucket->next;
872 		  new_bucket->next = cursor;
873 		}
874 	    }
875 	  else
876 	    {
877 	      /* Free an existing entry, when moving from a bucket
878 		 overflow into a bucket header.  Also take care of the
879 		 simple case of moving from a bucket header into a bucket
880 		 header.  */
881 	      new_bucket->data = data;
882 	      new_table->n_buckets_used++;
883 	      if (cursor != bucket)
884 		free_entry (new_table, cursor);
885 	    }
886 	}
887 
888   free (table->bucket);
889   table->bucket = new_table->bucket;
890   table->bucket_limit = new_table->bucket_limit;
891   table->n_buckets = new_table->n_buckets;
892   table->n_buckets_used = new_table->n_buckets_used;
893   table->free_entry_list = new_table->free_entry_list;
894   /* table->n_entries already holds its value.  */
895 #if USE_OBSTACK
896   table->entry_stack = new_table->entry_stack;
897 #endif
898   free (new_table);
899 
900   return true;
901 }
902 
903 /* If ENTRY matches an entry already in the hash table, return the pointer
904    to the entry from the table.  Otherwise, insert ENTRY and return ENTRY.
905    Return NULL if the storage required for insertion cannot be allocated.  */
906 
907 void *
hash_insert(Hash_table * table,const void * entry)908 hash_insert (Hash_table *table, const void *entry)
909 {
910   void *data;
911   struct hash_entry *bucket;
912 
913   /* The caller cannot insert a NULL entry.  */
914   if (! entry)
915     abort ();
916 
917   /* If there's a matching entry already in the table, return that.  */
918   if ((data = hash_find_entry (table, entry, &bucket, false)) != NULL)
919     return data;
920 
921   /* ENTRY is not matched, it should be inserted.  */
922 
923   if (bucket->data)
924     {
925       struct hash_entry *new_entry = allocate_entry (table);
926 
927       if (new_entry == NULL)
928 	return NULL;
929 
930       /* Add ENTRY in the overflow of the bucket.  */
931 
932       new_entry->data = (void *) entry;
933       new_entry->next = bucket->next;
934       bucket->next = new_entry;
935       table->n_entries++;
936       return (void *) entry;
937     }
938 
939   /* Add ENTRY right in the bucket head.  */
940 
941   bucket->data = (void *) entry;
942   table->n_entries++;
943   table->n_buckets_used++;
944 
945   /* If the growth threshold of the buckets in use has been reached, increase
946      the table size and rehash.  There's no point in checking the number of
947      entries:  if the hashing function is ill-conditioned, rehashing is not
948      likely to improve it.  */
949 
950   if (table->n_buckets_used
951       > table->tuning->growth_threshold * table->n_buckets)
952     {
953       /* Check more fully, before starting real work.  If tuning arguments
954 	 became invalid, the second check will rely on proper defaults.  */
955       check_tuning (table);
956       if (table->n_buckets_used
957 	  > table->tuning->growth_threshold * table->n_buckets)
958 	{
959 	  const Hash_tuning *tuning = table->tuning;
960 	  float candidate =
961 	    (tuning->is_n_buckets
962 	     ? (table->n_buckets * tuning->growth_factor)
963 	     : (table->n_buckets * tuning->growth_factor
964 		* tuning->growth_threshold));
965 
966 	  if (SIZE_MAX <= candidate)
967 	    return NULL;
968 
969 	  /* If the rehash fails, arrange to return NULL.  */
970 	  if (!hash_rehash (table, candidate))
971 	    entry = NULL;
972 	}
973     }
974 
975   return (void *) entry;
976 }
977 
978 /* If ENTRY is already in the table, remove it and return the just-deleted
979    data (the user may want to deallocate its storage).  If ENTRY is not in the
980    table, don't modify the table and return NULL.  */
981 
982 void *
hash_delete(Hash_table * table,const void * entry)983 hash_delete (Hash_table *table, const void *entry)
984 {
985   void *data;
986   struct hash_entry *bucket;
987 
988   data = hash_find_entry (table, entry, &bucket, true);
989   if (!data)
990     return NULL;
991 
992   table->n_entries--;
993   if (!bucket->data)
994     {
995       table->n_buckets_used--;
996 
997       /* If the shrink threshold of the buckets in use has been reached,
998 	 rehash into a smaller table.  */
999 
1000       if (table->n_buckets_used
1001 	  < table->tuning->shrink_threshold * table->n_buckets)
1002 	{
1003 	  /* Check more fully, before starting real work.  If tuning arguments
1004 	     became invalid, the second check will rely on proper defaults.  */
1005 	  check_tuning (table);
1006 	  if (table->n_buckets_used
1007 	      < table->tuning->shrink_threshold * table->n_buckets)
1008 	    {
1009 	      const Hash_tuning *tuning = table->tuning;
1010 	      size_t candidate =
1011 		(tuning->is_n_buckets
1012 		 ? table->n_buckets * tuning->shrink_factor
1013 		 : (table->n_buckets * tuning->shrink_factor
1014 		    * tuning->growth_threshold));
1015 
1016 	      hash_rehash (table, candidate);
1017 	    }
1018 	}
1019     }
1020 
1021   return data;
1022 }
1023 
1024 /* Testing.  */
1025 
1026 #if TESTING
1027 
1028 void
hash_print(const Hash_table * table)1029 hash_print (const Hash_table *table)
1030 {
1031   struct hash_entry const *bucket;
1032 
1033   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
1034     {
1035       struct hash_entry *cursor;
1036 
1037       if (bucket)
1038 	printf ("%lu:\n", (unsigned long int) (bucket - table->bucket));
1039 
1040       for (cursor = bucket; cursor; cursor = cursor->next)
1041 	{
1042 	  char const *s = cursor->data;
1043 	  /* FIXME */
1044 	  if (s)
1045 	    printf ("  %s\n", s);
1046 	}
1047     }
1048 }
1049 
1050 #endif /* TESTING */
1051