1 /* hash - hashing table processing.
2
3 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
4 Software Foundation, Inc.
5
6 Written by Jim Meyering, 1992.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software Foundation,
20 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /* A generic hash table package. */
23
24 /* Define USE_OBSTACK to 1 if you want the allocator to use obstacks instead
25 of malloc. If you change USE_OBSTACK, you have to recompile! */
26
27 #ifdef HAVE_CONFIG_H
28 # include <config.h>
29 #endif
30
31 #include "hash.h"
32 #include "xalloc.h"
33
34 #include <limits.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37
38 #if USE_OBSTACK
39 # include "obstack.h"
40 # ifndef obstack_chunk_alloc
41 # define obstack_chunk_alloc malloc
42 # endif
43 # ifndef obstack_chunk_free
44 # define obstack_chunk_free free
45 # endif
46 #endif
47
48 #ifndef SIZE_MAX
49 # define SIZE_MAX ((size_t) -1)
50 #endif
51
52 struct hash_table
53 {
54 /* The array of buckets starts at BUCKET and extends to BUCKET_LIMIT-1,
55 for a possibility of N_BUCKETS. Among those, N_BUCKETS_USED buckets
56 are not empty, there are N_ENTRIES active entries in the table. */
57 struct hash_entry *bucket;
58 struct hash_entry const *bucket_limit;
59 size_t n_buckets;
60 size_t n_buckets_used;
61 size_t n_entries;
62
63 /* Tuning arguments, kept in a physicaly separate structure. */
64 const Hash_tuning *tuning;
65
66 /* Three functions are given to `hash_initialize', see the documentation
67 block for this function. In a word, HASHER randomizes a user entry
68 into a number up from 0 up to some maximum minus 1; COMPARATOR returns
69 true if two user entries compare equally; and DATA_FREER is the cleanup
70 function for a user entry. */
71 Hash_hasher hasher;
72 Hash_comparator comparator;
73 Hash_data_freer data_freer;
74
75 /* A linked list of freed struct hash_entry structs. */
76 struct hash_entry *free_entry_list;
77
78 #if USE_OBSTACK
79 /* Whenever obstacks are used, it is possible to allocate all overflowed
80 entries into a single stack, so they all can be freed in a single
81 operation. It is not clear if the speedup is worth the trouble. */
82 struct obstack entry_stack;
83 #endif
84 };
85
86 /* A hash table contains many internal entries, each holding a pointer to
87 some user provided data (also called a user entry). An entry indistinctly
88 refers to both the internal entry and its associated user entry. A user
89 entry contents may be hashed by a randomization function (the hashing
90 function, or just `hasher' for short) into a number (or `slot') between 0
91 and the current table size. At each slot position in the hash table,
92 starts a linked chain of entries for which the user data all hash to this
93 slot. A bucket is the collection of all entries hashing to the same slot.
94
95 A good `hasher' function will distribute entries rather evenly in buckets.
96 In the ideal case, the length of each bucket is roughly the number of
97 entries divided by the table size. Finding the slot for a data is usually
98 done in constant time by the `hasher', and the later finding of a precise
99 entry is linear in time with the size of the bucket. Consequently, a
100 larger hash table size (that is, a larger number of buckets) is prone to
101 yielding shorter chains, *given* the `hasher' function behaves properly.
102
103 Long buckets slow down the lookup algorithm. One might use big hash table
104 sizes in hope to reduce the average length of buckets, but this might
105 become inordinate, as unused slots in the hash table take some space. The
106 best bet is to make sure you are using a good `hasher' function (beware
107 that those are not that easy to write! :-), and to use a table size
108 larger than the actual number of entries. */
109
110 /* If an insertion makes the ratio of nonempty buckets to table size larger
111 than the growth threshold (a number between 0.0 and 1.0), then increase
112 the table size by multiplying by the growth factor (a number greater than
113 1.0). The growth threshold defaults to 0.8, and the growth factor
114 defaults to 1.414, meaning that the table will have doubled its size
115 every second time 80% of the buckets get used. */
116 #define DEFAULT_GROWTH_THRESHOLD 0.8
117 #define DEFAULT_GROWTH_FACTOR 1.414
118
119 /* If a deletion empties a bucket and causes the ratio of used buckets to
120 table size to become smaller than the shrink threshold (a number between
121 0.0 and 1.0), then shrink the table by multiplying by the shrink factor (a
122 number greater than the shrink threshold but smaller than 1.0). The shrink
123 threshold and factor default to 0.0 and 1.0, meaning that the table never
124 shrinks. */
125 #define DEFAULT_SHRINK_THRESHOLD 0.0
126 #define DEFAULT_SHRINK_FACTOR 1.0
127
128 /* Use this to initialize or reset a TUNING structure to
129 some sensible values. */
130 static const Hash_tuning default_tuning =
131 {
132 DEFAULT_SHRINK_THRESHOLD,
133 DEFAULT_SHRINK_FACTOR,
134 DEFAULT_GROWTH_THRESHOLD,
135 DEFAULT_GROWTH_FACTOR,
136 false
137 };
138
139 /* Information and lookup. */
140
141 /* The following few functions provide information about the overall hash
142 table organization: the number of entries, number of buckets and maximum
143 length of buckets. */
144
145 /* Return the number of buckets in the hash table. The table size, the total
146 number of buckets (used plus unused), or the maximum number of slots, are
147 the same quantity. */
148
149 size_t
hash_get_n_buckets(const Hash_table * table)150 hash_get_n_buckets (const Hash_table *table)
151 {
152 return table->n_buckets;
153 }
154
155 /* Return the number of slots in use (non-empty buckets). */
156
157 size_t
hash_get_n_buckets_used(const Hash_table * table)158 hash_get_n_buckets_used (const Hash_table *table)
159 {
160 return table->n_buckets_used;
161 }
162
163 /* Return the number of active entries. */
164
165 size_t
hash_get_n_entries(const Hash_table * table)166 hash_get_n_entries (const Hash_table *table)
167 {
168 return table->n_entries;
169 }
170
171 /* Return the length of the longest chain (bucket). */
172
173 size_t
hash_get_max_bucket_length(const Hash_table * table)174 hash_get_max_bucket_length (const Hash_table *table)
175 {
176 struct hash_entry const *bucket;
177 size_t max_bucket_length = 0;
178
179 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
180 {
181 if (bucket->data)
182 {
183 struct hash_entry const *cursor = bucket;
184 size_t bucket_length = 1;
185
186 while (cursor = cursor->next, cursor)
187 bucket_length++;
188
189 if (bucket_length > max_bucket_length)
190 max_bucket_length = bucket_length;
191 }
192 }
193
194 return max_bucket_length;
195 }
196
197 /* Do a mild validation of a hash table, by traversing it and checking two
198 statistics. */
199
200 bool
hash_table_ok(const Hash_table * table)201 hash_table_ok (const Hash_table *table)
202 {
203 struct hash_entry const *bucket;
204 size_t n_buckets_used = 0;
205 size_t n_entries = 0;
206
207 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
208 {
209 if (bucket->data)
210 {
211 struct hash_entry const *cursor = bucket;
212
213 /* Count bucket head. */
214 n_buckets_used++;
215 n_entries++;
216
217 /* Count bucket overflow. */
218 while (cursor = cursor->next, cursor)
219 n_entries++;
220 }
221 }
222
223 if (n_buckets_used == table->n_buckets_used && n_entries == table->n_entries)
224 return true;
225
226 return false;
227 }
228
229 void
hash_print_statistics(const Hash_table * table,FILE * stream)230 hash_print_statistics (const Hash_table *table, FILE *stream)
231 {
232 size_t n_entries = hash_get_n_entries (table);
233 size_t n_buckets = hash_get_n_buckets (table);
234 size_t n_buckets_used = hash_get_n_buckets_used (table);
235 size_t max_bucket_length = hash_get_max_bucket_length (table);
236
237 fprintf (stream, "# entries: %lu\n", (unsigned long int) n_entries);
238 fprintf (stream, "# buckets: %lu\n", (unsigned long int) n_buckets);
239 fprintf (stream, "# buckets used: %lu (%.2f%%)\n",
240 (unsigned long int) n_buckets_used,
241 (100.0 * n_buckets_used) / n_buckets);
242 fprintf (stream, "max bucket length: %lu\n",
243 (unsigned long int) max_bucket_length);
244 }
245
246 /* If ENTRY matches an entry already in the hash table, return the
247 entry from the table. Otherwise, return NULL. */
248
249 void *
hash_lookup(const Hash_table * table,const void * entry)250 hash_lookup (const Hash_table *table, const void *entry)
251 {
252 struct hash_entry const *bucket
253 = table->bucket + table->hasher (entry, table->n_buckets);
254 struct hash_entry const *cursor;
255
256 if (! (bucket < table->bucket_limit))
257 abort ();
258
259 if (bucket->data == NULL)
260 return NULL;
261
262 for (cursor = bucket; cursor; cursor = cursor->next)
263 if (table->comparator (entry, cursor->data))
264 return cursor->data;
265
266 return NULL;
267 }
268
269 /* Walking. */
270
271 /* The functions in this page traverse the hash table and process the
272 contained entries. For the traversal to work properly, the hash table
273 should not be resized nor modified while any particular entry is being
274 processed. In particular, entries should not be added or removed. */
275
276 /* Return the first data in the table, or NULL if the table is empty. */
277
278 void *
hash_get_first(const Hash_table * table)279 hash_get_first (const Hash_table *table)
280 {
281 struct hash_entry const *bucket;
282
283 if (table->n_entries == 0)
284 return NULL;
285
286 for (bucket = table->bucket; ; bucket++)
287 if (! (bucket < table->bucket_limit))
288 abort ();
289 else if (bucket->data)
290 return bucket->data;
291 }
292
293 /* Return the user data for the entry following ENTRY, where ENTRY has been
294 returned by a previous call to either `hash_get_first' or `hash_get_next'.
295 Return NULL if there are no more entries. */
296
297 void *
hash_get_next(const Hash_table * table,const void * entry)298 hash_get_next (const Hash_table *table, const void *entry)
299 {
300 struct hash_entry const *bucket
301 = table->bucket + table->hasher (entry, table->n_buckets);
302 struct hash_entry const *cursor;
303
304 if (! (bucket < table->bucket_limit))
305 abort ();
306
307 /* Find next entry in the same bucket. */
308 for (cursor = bucket; cursor; cursor = cursor->next)
309 if (cursor->data == entry && cursor->next)
310 return cursor->next->data;
311
312 /* Find first entry in any subsequent bucket. */
313 while (++bucket < table->bucket_limit)
314 if (bucket->data)
315 return bucket->data;
316
317 /* None found. */
318 return NULL;
319 }
320
321 /* Fill BUFFER with pointers to active user entries in the hash table, then
322 return the number of pointers copied. Do not copy more than BUFFER_SIZE
323 pointers. */
324
325 size_t
hash_get_entries(const Hash_table * table,void ** buffer,size_t buffer_size)326 hash_get_entries (const Hash_table *table, void **buffer,
327 size_t buffer_size)
328 {
329 size_t counter = 0;
330 struct hash_entry const *bucket;
331 struct hash_entry const *cursor;
332
333 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
334 {
335 if (bucket->data)
336 {
337 for (cursor = bucket; cursor; cursor = cursor->next)
338 {
339 if (counter >= buffer_size)
340 return counter;
341 buffer[counter++] = cursor->data;
342 }
343 }
344 }
345
346 return counter;
347 }
348
349 /* Call a PROCESSOR function for each entry of a hash table, and return the
350 number of entries for which the processor function returned success. A
351 pointer to some PROCESSOR_DATA which will be made available to each call to
352 the processor function. The PROCESSOR accepts two arguments: the first is
353 the user entry being walked into, the second is the value of PROCESSOR_DATA
354 as received. The walking continue for as long as the PROCESSOR function
355 returns nonzero. When it returns zero, the walking is interrupted. */
356
357 size_t
hash_do_for_each(const Hash_table * table,Hash_processor processor,void * processor_data)358 hash_do_for_each (const Hash_table *table, Hash_processor processor,
359 void *processor_data)
360 {
361 size_t counter = 0;
362 struct hash_entry const *bucket;
363 struct hash_entry const *cursor;
364
365 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
366 {
367 if (bucket->data)
368 {
369 for (cursor = bucket; cursor; cursor = cursor->next)
370 {
371 if (!(*processor) (cursor->data, processor_data))
372 return counter;
373 counter++;
374 }
375 }
376 }
377
378 return counter;
379 }
380
381 /* Allocation and clean-up. */
382
383 /* Return a hash index for a NUL-terminated STRING between 0 and N_BUCKETS-1.
384 This is a convenience routine for constructing other hashing functions. */
385
386 #if USE_DIFF_HASH
387
388 /* About hashings, Paul Eggert writes to me (FP), on 1994-01-01: "Please see
389 B. J. McKenzie, R. Harries & T. Bell, Selecting a hashing algorithm,
390 Software--practice & experience 20, 2 (Feb 1990), 209-224. Good hash
391 algorithms tend to be domain-specific, so what's good for [diffutils'] io.c
392 may not be good for your application." */
393
394 size_t
hash_string(const char * string,size_t n_buckets)395 hash_string (const char *string, size_t n_buckets)
396 {
397 # define ROTATE_LEFT(Value, Shift) \
398 ((Value) << (Shift) | (Value) >> ((sizeof (size_t) * CHAR_BIT) - (Shift)))
399 # define HASH_ONE_CHAR(Value, Byte) \
400 ((Byte) + ROTATE_LEFT (Value, 7))
401
402 size_t value = 0;
403 unsigned char ch;
404
405 for (; (ch = *string); string++)
406 value = HASH_ONE_CHAR (value, ch);
407 return value % n_buckets;
408
409 # undef ROTATE_LEFT
410 # undef HASH_ONE_CHAR
411 }
412
413 #else /* not USE_DIFF_HASH */
414
415 /* This one comes from `recode', and performs a bit better than the above as
416 per a few experiments. It is inspired from a hashing routine found in the
417 very old Cyber `snoop', itself written in typical Greg Mansfield style.
418 (By the way, what happened to this excellent man? Is he still alive?) */
419
420 size_t
hash_string(const char * string,size_t n_buckets)421 hash_string (const char *string, size_t n_buckets)
422 {
423 size_t value = 0;
424 unsigned char ch;
425
426 for (; (ch = *string); string++)
427 value = (value * 31 + ch) % n_buckets;
428 return value;
429 }
430
431 #endif /* not USE_DIFF_HASH */
432
433 /* Return true if CANDIDATE is a prime number. CANDIDATE should be an odd
434 number at least equal to 11. */
435
436 static bool
is_prime(size_t candidate)437 is_prime (size_t candidate)
438 {
439 size_t divisor = 3;
440 size_t square = divisor * divisor;
441
442 while (square < candidate && (candidate % divisor))
443 {
444 divisor++;
445 square += 4 * divisor;
446 divisor++;
447 }
448
449 return (candidate % divisor ? true : false);
450 }
451
452 /* Round a given CANDIDATE number up to the nearest prime, and return that
453 prime. Primes lower than 10 are merely skipped. */
454
455 static size_t
next_prime(size_t candidate)456 next_prime (size_t candidate)
457 {
458 /* Skip small primes. */
459 if (candidate < 10)
460 candidate = 10;
461
462 /* Make it definitely odd. */
463 candidate |= 1;
464
465 while (!is_prime (candidate))
466 candidate += 2;
467
468 return candidate;
469 }
470
471 void
hash_reset_tuning(Hash_tuning * tuning)472 hash_reset_tuning (Hash_tuning *tuning)
473 {
474 *tuning = default_tuning;
475 }
476
477 /* For the given hash TABLE, check the user supplied tuning structure for
478 reasonable values, and return true if there is no gross error with it.
479 Otherwise, definitively reset the TUNING field to some acceptable default
480 in the hash table (that is, the user loses the right of further modifying
481 tuning arguments), and return false. */
482
483 static bool
check_tuning(Hash_table * table)484 check_tuning (Hash_table *table)
485 {
486 const Hash_tuning *tuning = table->tuning;
487
488 /* Be a bit stricter than mathematics would require, so that
489 rounding errors in size calculations do not cause allocations to
490 fail to grow or shrink as they should. The smallest allocation
491 is 11 (due to next_prime's algorithm), so an epsilon of 0.1
492 should be good enough. */
493 float epsilon = 0.1f;
494
495 if (epsilon < tuning->growth_threshold
496 && tuning->growth_threshold < 1 - epsilon
497 && 1 + epsilon < tuning->growth_factor
498 && 0 <= tuning->shrink_threshold
499 && tuning->shrink_threshold + epsilon < tuning->shrink_factor
500 && tuning->shrink_factor <= 1
501 && tuning->shrink_threshold + epsilon < tuning->growth_threshold)
502 return true;
503
504 table->tuning = &default_tuning;
505 return false;
506 }
507
508 /* Allocate and return a new hash table, or NULL upon failure. The initial
509 number of buckets is automatically selected so as to _guarantee_ that you
510 may insert at least CANDIDATE different user entries before any growth of
511 the hash table size occurs. So, if have a reasonably tight a-priori upper
512 bound on the number of entries you intend to insert in the hash table, you
513 may save some table memory and insertion time, by specifying it here. If
514 the IS_N_BUCKETS field of the TUNING structure is true, the CANDIDATE
515 argument has its meaning changed to the wanted number of buckets.
516
517 TUNING points to a structure of user-supplied values, in case some fine
518 tuning is wanted over the default behavior of the hasher. If TUNING is
519 NULL, the default tuning parameters are used instead.
520
521 The user-supplied HASHER function should be provided. It accepts two
522 arguments ENTRY and TABLE_SIZE. It computes, by hashing ENTRY contents, a
523 slot number for that entry which should be in the range 0..TABLE_SIZE-1.
524 This slot number is then returned.
525
526 The user-supplied COMPARATOR function should be provided. It accepts two
527 arguments pointing to user data, it then returns true for a pair of entries
528 that compare equal, or false otherwise. This function is internally called
529 on entries which are already known to hash to the same bucket index.
530
531 The user-supplied DATA_FREER function, when not NULL, may be later called
532 with the user data as an argument, just before the entry containing the
533 data gets freed. This happens from within `hash_free' or `hash_clear'.
534 You should specify this function only if you want these functions to free
535 all of your `data' data. This is typically the case when your data is
536 simply an auxiliary struct that you have malloc'd to aggregate several
537 values. */
538
539 Hash_table *
hash_initialize(size_t candidate,const Hash_tuning * tuning,Hash_hasher hasher,Hash_comparator comparator,Hash_data_freer data_freer)540 hash_initialize (size_t candidate, const Hash_tuning *tuning,
541 Hash_hasher hasher, Hash_comparator comparator,
542 Hash_data_freer data_freer)
543 {
544 Hash_table *table;
545
546 if (hasher == NULL || comparator == NULL)
547 return NULL;
548
549 table = malloc (sizeof *table);
550 if (table == NULL)
551 return NULL;
552
553 if (!tuning)
554 tuning = &default_tuning;
555 table->tuning = tuning;
556 if (!check_tuning (table))
557 {
558 /* Fail if the tuning options are invalid. This is the only occasion
559 when the user gets some feedback about it. Once the table is created,
560 if the user provides invalid tuning options, we silently revert to
561 using the defaults, and ignore further request to change the tuning
562 options. */
563 goto fail;
564 }
565
566 if (!tuning->is_n_buckets)
567 {
568 float new_candidate = candidate / tuning->growth_threshold;
569 if (SIZE_MAX <= new_candidate)
570 goto fail;
571 candidate = new_candidate;
572 }
573
574 if (xalloc_oversized (candidate, sizeof *table->bucket))
575 goto fail;
576 table->n_buckets = next_prime (candidate);
577 if (xalloc_oversized (table->n_buckets, sizeof *table->bucket))
578 goto fail;
579
580 table->bucket = calloc (table->n_buckets, sizeof *table->bucket);
581 table->bucket_limit = table->bucket + table->n_buckets;
582 table->n_buckets_used = 0;
583 table->n_entries = 0;
584
585 table->hasher = hasher;
586 table->comparator = comparator;
587 table->data_freer = data_freer;
588
589 table->free_entry_list = NULL;
590 #if USE_OBSTACK
591 obstack_init (&table->entry_stack);
592 #endif
593 return table;
594
595 fail:
596 free (table);
597 return NULL;
598 }
599
600 /* Make all buckets empty, placing any chained entries on the free list.
601 Apply the user-specified function data_freer (if any) to the datas of any
602 affected entries. */
603
604 void
hash_clear(Hash_table * table)605 hash_clear (Hash_table *table)
606 {
607 struct hash_entry *bucket;
608
609 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
610 {
611 if (bucket->data)
612 {
613 struct hash_entry *cursor;
614 struct hash_entry *next;
615
616 /* Free the bucket overflow. */
617 for (cursor = bucket->next; cursor; cursor = next)
618 {
619 if (table->data_freer)
620 (*table->data_freer) (cursor->data);
621 cursor->data = NULL;
622
623 next = cursor->next;
624 /* Relinking is done one entry at a time, as it is to be expected
625 that overflows are either rare or short. */
626 cursor->next = table->free_entry_list;
627 table->free_entry_list = cursor;
628 }
629
630 /* Free the bucket head. */
631 if (table->data_freer)
632 (*table->data_freer) (bucket->data);
633 bucket->data = NULL;
634 bucket->next = NULL;
635 }
636 }
637
638 table->n_buckets_used = 0;
639 table->n_entries = 0;
640 }
641
642 /* Reclaim all storage associated with a hash table. If a data_freer
643 function has been supplied by the user when the hash table was created,
644 this function applies it to the data of each entry before freeing that
645 entry. */
646
647 void
hash_free(Hash_table * table)648 hash_free (Hash_table *table)
649 {
650 struct hash_entry *bucket;
651 struct hash_entry *cursor;
652 struct hash_entry *next;
653
654 /* Call the user data_freer function. */
655 if (table->data_freer && table->n_entries)
656 {
657 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
658 {
659 if (bucket->data)
660 {
661 for (cursor = bucket; cursor; cursor = cursor->next)
662 {
663 (*table->data_freer) (cursor->data);
664 }
665 }
666 }
667 }
668
669 #if USE_OBSTACK
670
671 obstack_free (&table->entry_stack, NULL);
672
673 #else
674
675 /* Free all bucket overflowed entries. */
676 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
677 {
678 for (cursor = bucket->next; cursor; cursor = next)
679 {
680 next = cursor->next;
681 free (cursor);
682 }
683 }
684
685 /* Also reclaim the internal list of previously freed entries. */
686 for (cursor = table->free_entry_list; cursor; cursor = next)
687 {
688 next = cursor->next;
689 free (cursor);
690 }
691
692 #endif
693
694 /* Free the remainder of the hash table structure. */
695 free (table->bucket);
696 free (table);
697 }
698
699 /* Insertion and deletion. */
700
701 /* Get a new hash entry for a bucket overflow, possibly by reclying a
702 previously freed one. If this is not possible, allocate a new one. */
703
704 static struct hash_entry *
allocate_entry(Hash_table * table)705 allocate_entry (Hash_table *table)
706 {
707 struct hash_entry *new;
708
709 if (table->free_entry_list)
710 {
711 new = table->free_entry_list;
712 table->free_entry_list = new->next;
713 }
714 else
715 {
716 #if USE_OBSTACK
717 new = obstack_alloc (&table->entry_stack, sizeof *new);
718 #else
719 new = malloc (sizeof *new);
720 #endif
721 }
722
723 return new;
724 }
725
726 /* Free a hash entry which was part of some bucket overflow,
727 saving it for later recycling. */
728
729 static void
free_entry(Hash_table * table,struct hash_entry * entry)730 free_entry (Hash_table *table, struct hash_entry *entry)
731 {
732 entry->data = NULL;
733 entry->next = table->free_entry_list;
734 table->free_entry_list = entry;
735 }
736
737 /* This private function is used to help with insertion and deletion. When
738 ENTRY matches an entry in the table, return a pointer to the corresponding
739 user data and set *BUCKET_HEAD to the head of the selected bucket.
740 Otherwise, return NULL. When DELETE is true and ENTRY matches an entry in
741 the table, unlink the matching entry. */
742
743 static void *
hash_find_entry(Hash_table * table,const void * entry,struct hash_entry ** bucket_head,bool delete)744 hash_find_entry (Hash_table *table, const void *entry,
745 struct hash_entry **bucket_head, bool delete)
746 {
747 struct hash_entry *bucket
748 = table->bucket + table->hasher (entry, table->n_buckets);
749 struct hash_entry *cursor;
750
751 if (! (bucket < table->bucket_limit))
752 abort ();
753
754 *bucket_head = bucket;
755
756 /* Test for empty bucket. */
757 if (bucket->data == NULL)
758 return NULL;
759
760 /* See if the entry is the first in the bucket. */
761 if ((*table->comparator) (entry, bucket->data))
762 {
763 void *data = bucket->data;
764
765 if (delete)
766 {
767 if (bucket->next)
768 {
769 struct hash_entry *next = bucket->next;
770
771 /* Bump the first overflow entry into the bucket head, then save
772 the previous first overflow entry for later recycling. */
773 *bucket = *next;
774 free_entry (table, next);
775 }
776 else
777 {
778 bucket->data = NULL;
779 }
780 }
781
782 return data;
783 }
784
785 /* Scan the bucket overflow. */
786 for (cursor = bucket; cursor->next; cursor = cursor->next)
787 {
788 if ((*table->comparator) (entry, cursor->next->data))
789 {
790 void *data = cursor->next->data;
791
792 if (delete)
793 {
794 struct hash_entry *next = cursor->next;
795
796 /* Unlink the entry to delete, then save the freed entry for later
797 recycling. */
798 cursor->next = next->next;
799 free_entry (table, next);
800 }
801
802 return data;
803 }
804 }
805
806 /* No entry found. */
807 return NULL;
808 }
809
810 /* For an already existing hash table, change the number of buckets through
811 specifying CANDIDATE. The contents of the hash table are preserved. The
812 new number of buckets is automatically selected so as to _guarantee_ that
813 the table may receive at least CANDIDATE different user entries, including
814 those already in the table, before any other growth of the hash table size
815 occurs. If TUNING->IS_N_BUCKETS is true, then CANDIDATE specifies the
816 exact number of buckets desired. */
817
818 bool
hash_rehash(Hash_table * table,size_t candidate)819 hash_rehash (Hash_table *table, size_t candidate)
820 {
821 Hash_table *new_table;
822 struct hash_entry *bucket;
823 struct hash_entry *cursor;
824 struct hash_entry *next;
825
826 new_table = hash_initialize (candidate, table->tuning, table->hasher,
827 table->comparator, table->data_freer);
828 if (new_table == NULL)
829 return false;
830
831 /* Merely reuse the extra old space into the new table. */
832 #if USE_OBSTACK
833 obstack_free (&new_table->entry_stack, NULL);
834 new_table->entry_stack = table->entry_stack;
835 #endif
836 new_table->free_entry_list = table->free_entry_list;
837
838 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
839 if (bucket->data)
840 for (cursor = bucket; cursor; cursor = next)
841 {
842 void *data = cursor->data;
843 struct hash_entry *new_bucket
844 = (new_table->bucket
845 + new_table->hasher (data, new_table->n_buckets));
846
847 if (! (new_bucket < new_table->bucket_limit))
848 abort ();
849
850 next = cursor->next;
851
852 if (new_bucket->data)
853 {
854 if (cursor == bucket)
855 {
856 /* Allocate or recycle an entry, when moving from a bucket
857 header into a bucket overflow. */
858 struct hash_entry *new_entry = allocate_entry (new_table);
859
860 if (new_entry == NULL)
861 return false;
862
863 new_entry->data = data;
864 new_entry->next = new_bucket->next;
865 new_bucket->next = new_entry;
866 }
867 else
868 {
869 /* Merely relink an existing entry, when moving from a
870 bucket overflow into a bucket overflow. */
871 cursor->next = new_bucket->next;
872 new_bucket->next = cursor;
873 }
874 }
875 else
876 {
877 /* Free an existing entry, when moving from a bucket
878 overflow into a bucket header. Also take care of the
879 simple case of moving from a bucket header into a bucket
880 header. */
881 new_bucket->data = data;
882 new_table->n_buckets_used++;
883 if (cursor != bucket)
884 free_entry (new_table, cursor);
885 }
886 }
887
888 free (table->bucket);
889 table->bucket = new_table->bucket;
890 table->bucket_limit = new_table->bucket_limit;
891 table->n_buckets = new_table->n_buckets;
892 table->n_buckets_used = new_table->n_buckets_used;
893 table->free_entry_list = new_table->free_entry_list;
894 /* table->n_entries already holds its value. */
895 #if USE_OBSTACK
896 table->entry_stack = new_table->entry_stack;
897 #endif
898 free (new_table);
899
900 return true;
901 }
902
903 /* If ENTRY matches an entry already in the hash table, return the pointer
904 to the entry from the table. Otherwise, insert ENTRY and return ENTRY.
905 Return NULL if the storage required for insertion cannot be allocated. */
906
907 void *
hash_insert(Hash_table * table,const void * entry)908 hash_insert (Hash_table *table, const void *entry)
909 {
910 void *data;
911 struct hash_entry *bucket;
912
913 /* The caller cannot insert a NULL entry. */
914 if (! entry)
915 abort ();
916
917 /* If there's a matching entry already in the table, return that. */
918 if ((data = hash_find_entry (table, entry, &bucket, false)) != NULL)
919 return data;
920
921 /* ENTRY is not matched, it should be inserted. */
922
923 if (bucket->data)
924 {
925 struct hash_entry *new_entry = allocate_entry (table);
926
927 if (new_entry == NULL)
928 return NULL;
929
930 /* Add ENTRY in the overflow of the bucket. */
931
932 new_entry->data = (void *) entry;
933 new_entry->next = bucket->next;
934 bucket->next = new_entry;
935 table->n_entries++;
936 return (void *) entry;
937 }
938
939 /* Add ENTRY right in the bucket head. */
940
941 bucket->data = (void *) entry;
942 table->n_entries++;
943 table->n_buckets_used++;
944
945 /* If the growth threshold of the buckets in use has been reached, increase
946 the table size and rehash. There's no point in checking the number of
947 entries: if the hashing function is ill-conditioned, rehashing is not
948 likely to improve it. */
949
950 if (table->n_buckets_used
951 > table->tuning->growth_threshold * table->n_buckets)
952 {
953 /* Check more fully, before starting real work. If tuning arguments
954 became invalid, the second check will rely on proper defaults. */
955 check_tuning (table);
956 if (table->n_buckets_used
957 > table->tuning->growth_threshold * table->n_buckets)
958 {
959 const Hash_tuning *tuning = table->tuning;
960 float candidate =
961 (tuning->is_n_buckets
962 ? (table->n_buckets * tuning->growth_factor)
963 : (table->n_buckets * tuning->growth_factor
964 * tuning->growth_threshold));
965
966 if (SIZE_MAX <= candidate)
967 return NULL;
968
969 /* If the rehash fails, arrange to return NULL. */
970 if (!hash_rehash (table, candidate))
971 entry = NULL;
972 }
973 }
974
975 return (void *) entry;
976 }
977
978 /* If ENTRY is already in the table, remove it and return the just-deleted
979 data (the user may want to deallocate its storage). If ENTRY is not in the
980 table, don't modify the table and return NULL. */
981
982 void *
hash_delete(Hash_table * table,const void * entry)983 hash_delete (Hash_table *table, const void *entry)
984 {
985 void *data;
986 struct hash_entry *bucket;
987
988 data = hash_find_entry (table, entry, &bucket, true);
989 if (!data)
990 return NULL;
991
992 table->n_entries--;
993 if (!bucket->data)
994 {
995 table->n_buckets_used--;
996
997 /* If the shrink threshold of the buckets in use has been reached,
998 rehash into a smaller table. */
999
1000 if (table->n_buckets_used
1001 < table->tuning->shrink_threshold * table->n_buckets)
1002 {
1003 /* Check more fully, before starting real work. If tuning arguments
1004 became invalid, the second check will rely on proper defaults. */
1005 check_tuning (table);
1006 if (table->n_buckets_used
1007 < table->tuning->shrink_threshold * table->n_buckets)
1008 {
1009 const Hash_tuning *tuning = table->tuning;
1010 size_t candidate =
1011 (tuning->is_n_buckets
1012 ? table->n_buckets * tuning->shrink_factor
1013 : (table->n_buckets * tuning->shrink_factor
1014 * tuning->growth_threshold));
1015
1016 hash_rehash (table, candidate);
1017 }
1018 }
1019 }
1020
1021 return data;
1022 }
1023
1024 /* Testing. */
1025
1026 #if TESTING
1027
1028 void
hash_print(const Hash_table * table)1029 hash_print (const Hash_table *table)
1030 {
1031 struct hash_entry const *bucket;
1032
1033 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
1034 {
1035 struct hash_entry *cursor;
1036
1037 if (bucket)
1038 printf ("%lu:\n", (unsigned long int) (bucket - table->bucket));
1039
1040 for (cursor = bucket; cursor; cursor = cursor->next)
1041 {
1042 char const *s = cursor->data;
1043 /* FIXME */
1044 if (s)
1045 printf (" %s\n", s);
1046 }
1047 }
1048 }
1049
1050 #endif /* TESTING */
1051