• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 // Platform specific code for Win32.
29 #ifndef WIN32_LEAN_AND_MEAN
30 // WIN32_LEAN_AND_MEAN implies NOCRYPT and NOGDI.
31 #define WIN32_LEAN_AND_MEAN
32 #endif
33 #ifndef NOMINMAX
34 #define NOMINMAX
35 #endif
36 #ifndef NOKERNEL
37 #define NOKERNEL
38 #endif
39 #ifndef NOUSER
40 #define NOUSER
41 #endif
42 #ifndef NOSERVICE
43 #define NOSERVICE
44 #endif
45 #ifndef NOSOUND
46 #define NOSOUND
47 #endif
48 #ifndef NOMCX
49 #define NOMCX
50 #endif
51 // Require Windows 2000 or higher (this is required for the IsDebuggerPresent
52 // function to be present).
53 #ifndef _WIN32_WINNT
54 #define _WIN32_WINNT 0x500
55 #endif
56 
57 #include <windows.h>
58 
59 #include <time.h>  // For LocalOffset() implementation.
60 #include <mmsystem.h>  // For timeGetTime().
61 #ifdef __MINGW32__
62 // Require Windows XP or higher when compiling with MinGW. This is for MinGW
63 // header files to expose getaddrinfo.
64 #undef _WIN32_WINNT
65 #define _WIN32_WINNT 0x501
66 #endif  // __MINGW32__
67 #ifndef __MINGW32__
68 #include <dbghelp.h>  // For SymLoadModule64 and al.
69 #endif  // __MINGW32__
70 #include <limits.h>  // For INT_MAX and al.
71 #include <tlhelp32.h>  // For Module32First and al.
72 
73 // These additional WIN32 includes have to be right here as the #undef's below
74 // makes it impossible to have them elsewhere.
75 #include <winsock2.h>
76 #include <ws2tcpip.h>
77 #include <process.h>  // for _beginthreadex()
78 #include <stdlib.h>
79 
80 #undef VOID
81 #undef DELETE
82 #undef IN
83 #undef THIS
84 #undef CONST
85 #undef NAN
86 #undef GetObject
87 #undef CreateMutex
88 #undef CreateSemaphore
89 
90 #include "v8.h"
91 
92 #include "platform.h"
93 
94 // Extra POSIX/ANSI routines for Win32 when when using Visual Studio C++. Please
95 // refer to The Open Group Base Specification for specification of the correct
96 // semantics for these functions.
97 // (http://www.opengroup.org/onlinepubs/000095399/)
98 #ifdef _MSC_VER
99 
100 namespace v8 {
101 namespace internal {
102 
103 // Test for finite value - usually defined in math.h
isfinite(double x)104 int isfinite(double x) {
105   return _finite(x);
106 }
107 
108 }  // namespace v8
109 }  // namespace internal
110 
111 // Test for a NaN (not a number) value - usually defined in math.h
isnan(double x)112 int isnan(double x) {
113   return _isnan(x);
114 }
115 
116 
117 // Test for infinity - usually defined in math.h
isinf(double x)118 int isinf(double x) {
119   return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0;
120 }
121 
122 
123 // Test if x is less than y and both nominal - usually defined in math.h
isless(double x,double y)124 int isless(double x, double y) {
125   return isnan(x) || isnan(y) ? 0 : x < y;
126 }
127 
128 
129 // Test if x is greater than y and both nominal - usually defined in math.h
isgreater(double x,double y)130 int isgreater(double x, double y) {
131   return isnan(x) || isnan(y) ? 0 : x > y;
132 }
133 
134 
135 // Classify floating point number - usually defined in math.h
fpclassify(double x)136 int fpclassify(double x) {
137   // Use the MS-specific _fpclass() for classification.
138   int flags = _fpclass(x);
139 
140   // Determine class. We cannot use a switch statement because
141   // the _FPCLASS_ constants are defined as flags.
142   if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL;
143   if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO;
144   if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL;
145   if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE;
146 
147   // All cases should be covered by the code above.
148   ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN));
149   return FP_NAN;
150 }
151 
152 
153 // Test sign - usually defined in math.h
signbit(double x)154 int signbit(double x) {
155   // We need to take care of the special case of both positive
156   // and negative versions of zero.
157   if (x == 0)
158     return _fpclass(x) & _FPCLASS_NZ;
159   else
160     return x < 0;
161 }
162 
163 
164 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
165 // defined in strings.h.
strncasecmp(const char * s1,const char * s2,int n)166 int strncasecmp(const char* s1, const char* s2, int n) {
167   return _strnicmp(s1, s2, n);
168 }
169 
170 #endif  // _MSC_VER
171 
172 
173 // Extra functions for MinGW. Most of these are the _s functions which are in
174 // the Microsoft Visual Studio C++ CRT.
175 #ifdef __MINGW32__
176 
localtime_s(tm * out_tm,const time_t * time)177 int localtime_s(tm* out_tm, const time_t* time) {
178   tm* posix_local_time_struct = localtime(time);
179   if (posix_local_time_struct == NULL) return 1;
180   *out_tm = *posix_local_time_struct;
181   return 0;
182 }
183 
184 
185 // Not sure this the correct interpretation of _mkgmtime
_mkgmtime(tm * timeptr)186 time_t _mkgmtime(tm* timeptr) {
187   return mktime(timeptr);
188 }
189 
190 
fopen_s(FILE ** pFile,const char * filename,const char * mode)191 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
192   *pFile = fopen(filename, mode);
193   return *pFile != NULL ? 0 : 1;
194 }
195 
196 
_vsnprintf_s(char * buffer,size_t sizeOfBuffer,size_t count,const char * format,va_list argptr)197 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
198                  const char* format, va_list argptr) {
199   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
200 }
201 #define _TRUNCATE 0
202 
203 
strncpy_s(char * strDest,size_t numberOfElements,const char * strSource,size_t count)204 int strncpy_s(char* strDest, size_t numberOfElements,
205               const char* strSource, size_t count) {
206   strncpy(strDest, strSource, count);
207   return 0;
208 }
209 
210 #endif  // __MINGW32__
211 
212 // Generate a pseudo-random number in the range 0-2^31-1. Usually
213 // defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
random()214 int random() {
215   return rand();
216 }
217 
218 
219 namespace v8 {
220 namespace internal {
221 
ceiling(double x)222 double ceiling(double x) {
223   return ceil(x);
224 }
225 
226 // ----------------------------------------------------------------------------
227 // The Time class represents time on win32. A timestamp is represented as
228 // a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
229 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
230 // January 1, 1970.
231 
232 class Time {
233  public:
234   // Constructors.
235   Time();
236   explicit Time(double jstime);
237   Time(int year, int mon, int day, int hour, int min, int sec);
238 
239   // Convert timestamp to JavaScript representation.
240   double ToJSTime();
241 
242   // Set timestamp to current time.
243   void SetToCurrentTime();
244 
245   // Returns the local timezone offset in milliseconds east of UTC. This is
246   // the number of milliseconds you must add to UTC to get local time, i.e.
247   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
248   // routine also takes into account whether daylight saving is effect
249   // at the time.
250   int64_t LocalOffset();
251 
252   // Returns the daylight savings time offset for the time in milliseconds.
253   int64_t DaylightSavingsOffset();
254 
255   // Returns a string identifying the current timezone for the
256   // timestamp taking into account daylight saving.
257   char* LocalTimezone();
258 
259  private:
260   // Constants for time conversion.
261   static const int64_t kTimeEpoc = 116444736000000000LL;
262   static const int64_t kTimeScaler = 10000;
263   static const int64_t kMsPerMinute = 60000;
264 
265   // Constants for timezone information.
266   static const int kTzNameSize = 128;
267   static const bool kShortTzNames = false;
268 
269   // Timezone information. We need to have static buffers for the
270   // timezone names because we return pointers to these in
271   // LocalTimezone().
272   static bool tz_initialized_;
273   static TIME_ZONE_INFORMATION tzinfo_;
274   static char std_tz_name_[kTzNameSize];
275   static char dst_tz_name_[kTzNameSize];
276 
277   // Initialize the timezone information (if not already done).
278   static void TzSet();
279 
280   // Guess the name of the timezone from the bias.
281   static const char* GuessTimezoneNameFromBias(int bias);
282 
283   // Return whether or not daylight savings time is in effect at this time.
284   bool InDST();
285 
286   // Return the difference (in milliseconds) between this timestamp and
287   // another timestamp.
288   int64_t Diff(Time* other);
289 
290   // Accessor for FILETIME representation.
ft()291   FILETIME& ft() { return time_.ft_; }
292 
293   // Accessor for integer representation.
t()294   int64_t& t() { return time_.t_; }
295 
296   // Although win32 uses 64-bit integers for representing timestamps,
297   // these are packed into a FILETIME structure. The FILETIME structure
298   // is just a struct representing a 64-bit integer. The TimeStamp union
299   // allows access to both a FILETIME and an integer representation of
300   // the timestamp.
301   union TimeStamp {
302     FILETIME ft_;
303     int64_t t_;
304   };
305 
306   TimeStamp time_;
307 };
308 
309 // Static variables.
310 bool Time::tz_initialized_ = false;
311 TIME_ZONE_INFORMATION Time::tzinfo_;
312 char Time::std_tz_name_[kTzNameSize];
313 char Time::dst_tz_name_[kTzNameSize];
314 
315 
316 // Initialize timestamp to start of epoc.
Time()317 Time::Time() {
318   t() = 0;
319 }
320 
321 
322 // Initialize timestamp from a JavaScript timestamp.
Time(double jstime)323 Time::Time(double jstime) {
324   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
325 }
326 
327 
328 // Initialize timestamp from date/time components.
Time(int year,int mon,int day,int hour,int min,int sec)329 Time::Time(int year, int mon, int day, int hour, int min, int sec) {
330   SYSTEMTIME st;
331   st.wYear = year;
332   st.wMonth = mon;
333   st.wDay = day;
334   st.wHour = hour;
335   st.wMinute = min;
336   st.wSecond = sec;
337   st.wMilliseconds = 0;
338   SystemTimeToFileTime(&st, &ft());
339 }
340 
341 
342 // Convert timestamp to JavaScript timestamp.
ToJSTime()343 double Time::ToJSTime() {
344   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
345 }
346 
347 
348 // Guess the name of the timezone from the bias.
349 // The guess is very biased towards the northern hemisphere.
GuessTimezoneNameFromBias(int bias)350 const char* Time::GuessTimezoneNameFromBias(int bias) {
351   static const int kHour = 60;
352   switch (-bias) {
353     case -9*kHour: return "Alaska";
354     case -8*kHour: return "Pacific";
355     case -7*kHour: return "Mountain";
356     case -6*kHour: return "Central";
357     case -5*kHour: return "Eastern";
358     case -4*kHour: return "Atlantic";
359     case  0*kHour: return "GMT";
360     case +1*kHour: return "Central Europe";
361     case +2*kHour: return "Eastern Europe";
362     case +3*kHour: return "Russia";
363     case +5*kHour + 30: return "India";
364     case +8*kHour: return "China";
365     case +9*kHour: return "Japan";
366     case +12*kHour: return "New Zealand";
367     default: return "Local";
368   }
369 }
370 
371 
372 // Initialize timezone information. The timezone information is obtained from
373 // windows. If we cannot get the timezone information we fall back to CET.
374 // Please notice that this code is not thread-safe.
TzSet()375 void Time::TzSet() {
376   // Just return if timezone information has already been initialized.
377   if (tz_initialized_) return;
378 
379   // Initialize POSIX time zone data.
380   _tzset();
381   // Obtain timezone information from operating system.
382   memset(&tzinfo_, 0, sizeof(tzinfo_));
383   if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
384     // If we cannot get timezone information we fall back to CET.
385     tzinfo_.Bias = -60;
386     tzinfo_.StandardDate.wMonth = 10;
387     tzinfo_.StandardDate.wDay = 5;
388     tzinfo_.StandardDate.wHour = 3;
389     tzinfo_.StandardBias = 0;
390     tzinfo_.DaylightDate.wMonth = 3;
391     tzinfo_.DaylightDate.wDay = 5;
392     tzinfo_.DaylightDate.wHour = 2;
393     tzinfo_.DaylightBias = -60;
394   }
395 
396   // Make standard and DST timezone names.
397   OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize),
398                "%S",
399                tzinfo_.StandardName);
400   std_tz_name_[kTzNameSize - 1] = '\0';
401   OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize),
402                "%S",
403                tzinfo_.DaylightName);
404   dst_tz_name_[kTzNameSize - 1] = '\0';
405 
406   // If OS returned empty string or resource id (like "@tzres.dll,-211")
407   // simply guess the name from the UTC bias of the timezone.
408   // To properly resolve the resource identifier requires a library load,
409   // which is not possible in a sandbox.
410   if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
411     OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
412                  "%s Standard Time",
413                  GuessTimezoneNameFromBias(tzinfo_.Bias));
414   }
415   if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
416     OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
417                  "%s Daylight Time",
418                  GuessTimezoneNameFromBias(tzinfo_.Bias));
419   }
420 
421   // Timezone information initialized.
422   tz_initialized_ = true;
423 }
424 
425 
426 // Return the difference in milliseconds between this and another timestamp.
Diff(Time * other)427 int64_t Time::Diff(Time* other) {
428   return (t() - other->t()) / kTimeScaler;
429 }
430 
431 
432 // Set timestamp to current time.
SetToCurrentTime()433 void Time::SetToCurrentTime() {
434   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
435   // Because we're fast, we like fast timers which have at least a
436   // 1ms resolution.
437   //
438   // timeGetTime() provides 1ms granularity when combined with
439   // timeBeginPeriod().  If the host application for v8 wants fast
440   // timers, it can use timeBeginPeriod to increase the resolution.
441   //
442   // Using timeGetTime() has a drawback because it is a 32bit value
443   // and hence rolls-over every ~49days.
444   //
445   // To use the clock, we use GetSystemTimeAsFileTime as our base;
446   // and then use timeGetTime to extrapolate current time from the
447   // start time.  To deal with rollovers, we resync the clock
448   // any time when more than kMaxClockElapsedTime has passed or
449   // whenever timeGetTime creates a rollover.
450 
451   static bool initialized = false;
452   static TimeStamp init_time;
453   static DWORD init_ticks;
454   static const int64_t kHundredNanosecondsPerSecond = 10000000;
455   static const int64_t kMaxClockElapsedTime =
456       60*kHundredNanosecondsPerSecond;  // 1 minute
457 
458   // If we are uninitialized, we need to resync the clock.
459   bool needs_resync = !initialized;
460 
461   // Get the current time.
462   TimeStamp time_now;
463   GetSystemTimeAsFileTime(&time_now.ft_);
464   DWORD ticks_now = timeGetTime();
465 
466   // Check if we need to resync due to clock rollover.
467   needs_resync |= ticks_now < init_ticks;
468 
469   // Check if we need to resync due to elapsed time.
470   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
471 
472   // Resync the clock if necessary.
473   if (needs_resync) {
474     GetSystemTimeAsFileTime(&init_time.ft_);
475     init_ticks = ticks_now = timeGetTime();
476     initialized = true;
477   }
478 
479   // Finally, compute the actual time.  Why is this so hard.
480   DWORD elapsed = ticks_now - init_ticks;
481   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
482 }
483 
484 
485 // Return the local timezone offset in milliseconds east of UTC. This
486 // takes into account whether daylight saving is in effect at the time.
487 // Only times in the 32-bit Unix range may be passed to this function.
488 // Also, adding the time-zone offset to the input must not overflow.
489 // The function EquivalentTime() in date-delay.js guarantees this.
LocalOffset()490 int64_t Time::LocalOffset() {
491   // Initialize timezone information, if needed.
492   TzSet();
493 
494   Time rounded_to_second(*this);
495   rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
496       1000 * kTimeScaler;
497   // Convert to local time using POSIX localtime function.
498   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
499   // very slow.  Other browsers use localtime().
500 
501   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
502   // POSIX seconds past 1/1/1970 0:00:00.
503   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
504   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
505     return 0;
506   }
507   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
508   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
509 
510   // Convert to local time, as struct with fields for day, hour, year, etc.
511   tm posix_local_time_struct;
512   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
513   // Convert local time in struct to POSIX time as if it were a UTC time.
514   time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
515   Time localtime(1000.0 * local_posix_time);
516 
517   return localtime.Diff(&rounded_to_second);
518 }
519 
520 
521 // Return whether or not daylight savings time is in effect at this time.
InDST()522 bool Time::InDST() {
523   // Initialize timezone information, if needed.
524   TzSet();
525 
526   // Determine if DST is in effect at the specified time.
527   bool in_dst = false;
528   if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
529     // Get the local timezone offset for the timestamp in milliseconds.
530     int64_t offset = LocalOffset();
531 
532     // Compute the offset for DST. The bias parameters in the timezone info
533     // are specified in minutes. These must be converted to milliseconds.
534     int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
535 
536     // If the local time offset equals the timezone bias plus the daylight
537     // bias then DST is in effect.
538     in_dst = offset == dstofs;
539   }
540 
541   return in_dst;
542 }
543 
544 
545 // Return the daylight savings time offset for this time.
DaylightSavingsOffset()546 int64_t Time::DaylightSavingsOffset() {
547   return InDST() ? 60 * kMsPerMinute : 0;
548 }
549 
550 
551 // Returns a string identifying the current timezone for the
552 // timestamp taking into account daylight saving.
LocalTimezone()553 char* Time::LocalTimezone() {
554   // Return the standard or DST time zone name based on whether daylight
555   // saving is in effect at the given time.
556   return InDST() ? dst_tz_name_ : std_tz_name_;
557 }
558 
559 
Setup()560 void OS::Setup() {
561   // Seed the random number generator.
562   // Convert the current time to a 64-bit integer first, before converting it
563   // to an unsigned. Going directly can cause an overflow and the seed to be
564   // set to all ones. The seed will be identical for different instances that
565   // call this setup code within the same millisecond.
566   uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
567   srand(static_cast<unsigned int>(seed));
568 }
569 
570 
571 // Returns the accumulated user time for thread.
GetUserTime(uint32_t * secs,uint32_t * usecs)572 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
573   FILETIME dummy;
574   uint64_t usertime;
575 
576   // Get the amount of time that the thread has executed in user mode.
577   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
578                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
579 
580   // Adjust the resolution to micro-seconds.
581   usertime /= 10;
582 
583   // Convert to seconds and microseconds
584   *secs = static_cast<uint32_t>(usertime / 1000000);
585   *usecs = static_cast<uint32_t>(usertime % 1000000);
586   return 0;
587 }
588 
589 
590 // Returns current time as the number of milliseconds since
591 // 00:00:00 UTC, January 1, 1970.
TimeCurrentMillis()592 double OS::TimeCurrentMillis() {
593   Time t;
594   t.SetToCurrentTime();
595   return t.ToJSTime();
596 }
597 
598 // Returns the tickcounter based on timeGetTime.
Ticks()599 int64_t OS::Ticks() {
600   return timeGetTime() * 1000;  // Convert to microseconds.
601 }
602 
603 
604 // Returns a string identifying the current timezone taking into
605 // account daylight saving.
LocalTimezone(double time)606 const char* OS::LocalTimezone(double time) {
607   return Time(time).LocalTimezone();
608 }
609 
610 
611 // Returns the local time offset in milliseconds east of UTC without
612 // taking daylight savings time into account.
LocalTimeOffset()613 double OS::LocalTimeOffset() {
614   // Use current time, rounded to the millisecond.
615   Time t(TimeCurrentMillis());
616   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
617   return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
618 }
619 
620 
621 // Returns the daylight savings offset in milliseconds for the given
622 // time.
DaylightSavingsOffset(double time)623 double OS::DaylightSavingsOffset(double time) {
624   int64_t offset = Time(time).DaylightSavingsOffset();
625   return static_cast<double>(offset);
626 }
627 
628 
629 // ----------------------------------------------------------------------------
630 // Win32 console output.
631 //
632 // If a Win32 application is linked as a console application it has a normal
633 // standard output and standard error. In this case normal printf works fine
634 // for output. However, if the application is linked as a GUI application,
635 // the process doesn't have a console, and therefore (debugging) output is lost.
636 // This is the case if we are embedded in a windows program (like a browser).
637 // In order to be able to get debug output in this case the the debugging
638 // facility using OutputDebugString. This output goes to the active debugger
639 // for the process (if any). Else the output can be monitored using DBMON.EXE.
640 
641 enum OutputMode {
642   UNKNOWN,  // Output method has not yet been determined.
643   CONSOLE,  // Output is written to stdout.
644   ODS       // Output is written to debug facility.
645 };
646 
647 static OutputMode output_mode = UNKNOWN;  // Current output mode.
648 
649 
650 // Determine if the process has a console for output.
HasConsole()651 static bool HasConsole() {
652   // Only check the first time. Eventual race conditions are not a problem,
653   // because all threads will eventually determine the same mode.
654   if (output_mode == UNKNOWN) {
655     // We cannot just check that the standard output is attached to a console
656     // because this would fail if output is redirected to a file. Therefore we
657     // say that a process does not have an output console if either the
658     // standard output handle is invalid or its file type is unknown.
659     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
660         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
661       output_mode = CONSOLE;
662     else
663       output_mode = ODS;
664   }
665   return output_mode == CONSOLE;
666 }
667 
668 
VPrintHelper(FILE * stream,const char * format,va_list args)669 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
670   if (HasConsole()) {
671     vfprintf(stream, format, args);
672   } else {
673     // It is important to use safe print here in order to avoid
674     // overflowing the buffer. We might truncate the output, but this
675     // does not crash.
676     EmbeddedVector<char, 4096> buffer;
677     OS::VSNPrintF(buffer, format, args);
678     OutputDebugStringA(buffer.start());
679   }
680 }
681 
682 
FOpen(const char * path,const char * mode)683 FILE* OS::FOpen(const char* path, const char* mode) {
684   FILE* result;
685   if (fopen_s(&result, path, mode) == 0) {
686     return result;
687   } else {
688     return NULL;
689   }
690 }
691 
692 
693 // Open log file in binary mode to avoid /n -> /r/n conversion.
694 const char* OS::LogFileOpenMode = "wb";
695 
696 
697 // Print (debug) message to console.
Print(const char * format,...)698 void OS::Print(const char* format, ...) {
699   va_list args;
700   va_start(args, format);
701   VPrint(format, args);
702   va_end(args);
703 }
704 
705 
VPrint(const char * format,va_list args)706 void OS::VPrint(const char* format, va_list args) {
707   VPrintHelper(stdout, format, args);
708 }
709 
710 
711 // Print error message to console.
PrintError(const char * format,...)712 void OS::PrintError(const char* format, ...) {
713   va_list args;
714   va_start(args, format);
715   VPrintError(format, args);
716   va_end(args);
717 }
718 
719 
VPrintError(const char * format,va_list args)720 void OS::VPrintError(const char* format, va_list args) {
721   VPrintHelper(stderr, format, args);
722 }
723 
724 
SNPrintF(Vector<char> str,const char * format,...)725 int OS::SNPrintF(Vector<char> str, const char* format, ...) {
726   va_list args;
727   va_start(args, format);
728   int result = VSNPrintF(str, format, args);
729   va_end(args);
730   return result;
731 }
732 
733 
VSNPrintF(Vector<char> str,const char * format,va_list args)734 int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
735   int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
736   // Make sure to zero-terminate the string if the output was
737   // truncated or if there was an error.
738   if (n < 0 || n >= str.length()) {
739     str[str.length() - 1] = '\0';
740     return -1;
741   } else {
742     return n;
743   }
744 }
745 
746 
StrChr(char * str,int c)747 char* OS::StrChr(char* str, int c) {
748   return const_cast<char*>(strchr(str, c));
749 }
750 
751 
StrNCpy(Vector<char> dest,const char * src,size_t n)752 void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
753   int result = strncpy_s(dest.start(), dest.length(), src, n);
754   USE(result);
755   ASSERT(result == 0);
756 }
757 
758 
759 // We keep the lowest and highest addresses mapped as a quick way of
760 // determining that pointers are outside the heap (used mostly in assertions
761 // and verification).  The estimate is conservative, ie, not all addresses in
762 // 'allocated' space are actually allocated to our heap.  The range is
763 // [lowest, highest), inclusive on the low and and exclusive on the high end.
764 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
765 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
766 
767 
UpdateAllocatedSpaceLimits(void * address,int size)768 static void UpdateAllocatedSpaceLimits(void* address, int size) {
769   lowest_ever_allocated = Min(lowest_ever_allocated, address);
770   highest_ever_allocated =
771       Max(highest_ever_allocated,
772           reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
773 }
774 
775 
IsOutsideAllocatedSpace(void * pointer)776 bool OS::IsOutsideAllocatedSpace(void* pointer) {
777   if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
778     return true;
779   // Ask the Windows API
780   if (IsBadWritePtr(pointer, 1))
781     return true;
782   return false;
783 }
784 
785 
786 // Get the system's page size used by VirtualAlloc() or the next power
787 // of two. The reason for always returning a power of two is that the
788 // rounding up in OS::Allocate expects that.
GetPageSize()789 static size_t GetPageSize() {
790   static size_t page_size = 0;
791   if (page_size == 0) {
792     SYSTEM_INFO info;
793     GetSystemInfo(&info);
794     page_size = RoundUpToPowerOf2(info.dwPageSize);
795   }
796   return page_size;
797 }
798 
799 
800 // The allocation alignment is the guaranteed alignment for
801 // VirtualAlloc'ed blocks of memory.
AllocateAlignment()802 size_t OS::AllocateAlignment() {
803   static size_t allocate_alignment = 0;
804   if (allocate_alignment == 0) {
805     SYSTEM_INFO info;
806     GetSystemInfo(&info);
807     allocate_alignment = info.dwAllocationGranularity;
808   }
809   return allocate_alignment;
810 }
811 
812 
Allocate(const size_t requested,size_t * allocated,bool is_executable)813 void* OS::Allocate(const size_t requested,
814                    size_t* allocated,
815                    bool is_executable) {
816   // VirtualAlloc rounds allocated size to page size automatically.
817   size_t msize = RoundUp(requested, GetPageSize());
818 
819   // Windows XP SP2 allows Data Excution Prevention (DEP).
820   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
821   LPVOID mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
822   if (mbase == NULL) {
823     LOG(StringEvent("OS::Allocate", "VirtualAlloc failed"));
824     return NULL;
825   }
826 
827   ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
828 
829   *allocated = msize;
830   UpdateAllocatedSpaceLimits(mbase, msize);
831   return mbase;
832 }
833 
834 
Free(void * address,const size_t size)835 void OS::Free(void* address, const size_t size) {
836   // TODO(1240712): VirtualFree has a return value which is ignored here.
837   VirtualFree(address, 0, MEM_RELEASE);
838   USE(size);
839 }
840 
841 
842 #ifdef ENABLE_HEAP_PROTECTION
843 
Protect(void * address,size_t size)844 void OS::Protect(void* address, size_t size) {
845   // TODO(1240712): VirtualProtect has a return value which is ignored here.
846   DWORD old_protect;
847   VirtualProtect(address, size, PAGE_READONLY, &old_protect);
848 }
849 
850 
Unprotect(void * address,size_t size,bool is_executable)851 void OS::Unprotect(void* address, size_t size, bool is_executable) {
852   // TODO(1240712): VirtualProtect has a return value which is ignored here.
853   DWORD new_protect = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
854   DWORD old_protect;
855   VirtualProtect(address, size, new_protect, &old_protect);
856 }
857 
858 #endif
859 
860 
Sleep(int milliseconds)861 void OS::Sleep(int milliseconds) {
862   ::Sleep(milliseconds);
863 }
864 
865 
Abort()866 void OS::Abort() {
867   if (!IsDebuggerPresent()) {
868 #ifdef _MSC_VER
869     // Make the MSVCRT do a silent abort.
870     _set_abort_behavior(0, _WRITE_ABORT_MSG);
871     _set_abort_behavior(0, _CALL_REPORTFAULT);
872 #endif  // _MSC_VER
873     abort();
874   } else {
875     DebugBreak();
876   }
877 }
878 
879 
DebugBreak()880 void OS::DebugBreak() {
881 #ifdef _MSC_VER
882   __debugbreak();
883 #else
884   ::DebugBreak();
885 #endif
886 }
887 
888 
889 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
890  public:
Win32MemoryMappedFile(HANDLE file,HANDLE file_mapping,void * memory)891   Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory)
892     : file_(file), file_mapping_(file_mapping), memory_(memory) { }
893   virtual ~Win32MemoryMappedFile();
memory()894   virtual void* memory() { return memory_; }
895  private:
896   HANDLE file_;
897   HANDLE file_mapping_;
898   void* memory_;
899 };
900 
901 
create(const char * name,int size,void * initial)902 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
903     void* initial) {
904   // Open a physical file
905   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
906       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
907   if (file == NULL) return NULL;
908   // Create a file mapping for the physical file
909   HANDLE file_mapping = CreateFileMapping(file, NULL,
910       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
911   if (file_mapping == NULL) return NULL;
912   // Map a view of the file into memory
913   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
914   if (memory) memmove(memory, initial, size);
915   return new Win32MemoryMappedFile(file, file_mapping, memory);
916 }
917 
918 
~Win32MemoryMappedFile()919 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
920   if (memory_ != NULL)
921     UnmapViewOfFile(memory_);
922   CloseHandle(file_mapping_);
923   CloseHandle(file_);
924 }
925 
926 
927 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
928 // dynamically. This is to avoid being depending on dbghelp.dll and
929 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
930 // kernel32.dll at some point so loading functions defines in TlHelp32.h
931 // dynamically might not be necessary any more - for some versions of Windows?).
932 
933 // Function pointers to functions dynamically loaded from dbghelp.dll.
934 #define DBGHELP_FUNCTION_LIST(V)  \
935   V(SymInitialize)                \
936   V(SymGetOptions)                \
937   V(SymSetOptions)                \
938   V(SymGetSearchPath)             \
939   V(SymLoadModule64)              \
940   V(StackWalk64)                  \
941   V(SymGetSymFromAddr64)          \
942   V(SymGetLineFromAddr64)         \
943   V(SymFunctionTableAccess64)     \
944   V(SymGetModuleBase64)
945 
946 // Function pointers to functions dynamically loaded from dbghelp.dll.
947 #define TLHELP32_FUNCTION_LIST(V)  \
948   V(CreateToolhelp32Snapshot)      \
949   V(Module32FirstW)                \
950   V(Module32NextW)
951 
952 // Define the decoration to use for the type and variable name used for
953 // dynamically loaded DLL function..
954 #define DLL_FUNC_TYPE(name) _##name##_
955 #define DLL_FUNC_VAR(name) _##name
956 
957 // Define the type for each dynamically loaded DLL function. The function
958 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
959 // from the Windows include files are redefined here to have the function
960 // definitions to be as close to the ones in the original .h files as possible.
961 #ifndef IN
962 #define IN
963 #endif
964 #ifndef VOID
965 #define VOID void
966 #endif
967 
968 // DbgHelp isn't supported on MinGW yet
969 #ifndef __MINGW32__
970 // DbgHelp.h functions.
971 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
972                                                        IN PSTR UserSearchPath,
973                                                        IN BOOL fInvadeProcess);
974 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
975 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
976 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
977     IN HANDLE hProcess,
978     OUT PSTR SearchPath,
979     IN DWORD SearchPathLength);
980 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
981     IN HANDLE hProcess,
982     IN HANDLE hFile,
983     IN PSTR ImageName,
984     IN PSTR ModuleName,
985     IN DWORD64 BaseOfDll,
986     IN DWORD SizeOfDll);
987 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
988     DWORD MachineType,
989     HANDLE hProcess,
990     HANDLE hThread,
991     LPSTACKFRAME64 StackFrame,
992     PVOID ContextRecord,
993     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
994     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
995     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
996     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
997 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
998     IN HANDLE hProcess,
999     IN DWORD64 qwAddr,
1000     OUT PDWORD64 pdwDisplacement,
1001     OUT PIMAGEHLP_SYMBOL64 Symbol);
1002 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
1003     IN HANDLE hProcess,
1004     IN DWORD64 qwAddr,
1005     OUT PDWORD pdwDisplacement,
1006     OUT PIMAGEHLP_LINE64 Line64);
1007 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1008 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1009     HANDLE hProcess,
1010     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1011 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1012     HANDLE hProcess,
1013     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1014 
1015 // TlHelp32.h functions.
1016 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1017     DWORD dwFlags,
1018     DWORD th32ProcessID);
1019 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1020                                                         LPMODULEENTRY32W lpme);
1021 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1022                                                        LPMODULEENTRY32W lpme);
1023 
1024 #undef IN
1025 #undef VOID
1026 
1027 // Declare a variable for each dynamically loaded DLL function.
1028 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1029 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)1030 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1031 #undef DEF_DLL_FUNCTION
1032 
1033 // Load the functions. This function has a lot of "ugly" macros in order to
1034 // keep down code duplication.
1035 
1036 static bool LoadDbgHelpAndTlHelp32() {
1037   static bool dbghelp_loaded = false;
1038 
1039   if (dbghelp_loaded) return true;
1040 
1041   HMODULE module;
1042 
1043   // Load functions from the dbghelp.dll module.
1044   module = LoadLibrary(TEXT("dbghelp.dll"));
1045   if (module == NULL) {
1046     return false;
1047   }
1048 
1049 #define LOAD_DLL_FUNC(name)                                                 \
1050   DLL_FUNC_VAR(name) =                                                      \
1051       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1052 
1053 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1054 
1055 #undef LOAD_DLL_FUNC
1056 
1057   // Load functions from the kernel32.dll module (the TlHelp32.h function used
1058   // to be in tlhelp32.dll but are now moved to kernel32.dll).
1059   module = LoadLibrary(TEXT("kernel32.dll"));
1060   if (module == NULL) {
1061     return false;
1062   }
1063 
1064 #define LOAD_DLL_FUNC(name)                                                 \
1065   DLL_FUNC_VAR(name) =                                                      \
1066       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1067 
1068 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1069 
1070 #undef LOAD_DLL_FUNC
1071 
1072   // Check that all functions where loaded.
1073   bool result =
1074 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1075 
1076 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1077 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1078 
1079 #undef DLL_FUNC_LOADED
1080   true;
1081 
1082   dbghelp_loaded = result;
1083   return result;
1084   // NOTE: The modules are never unloaded and will stay around until the
1085   // application is closed.
1086 }
1087 
1088 
1089 // Load the symbols for generating stack traces.
LoadSymbols(HANDLE process_handle)1090 static bool LoadSymbols(HANDLE process_handle) {
1091   static bool symbols_loaded = false;
1092 
1093   if (symbols_loaded) return true;
1094 
1095   BOOL ok;
1096 
1097   // Initialize the symbol engine.
1098   ok = _SymInitialize(process_handle,  // hProcess
1099                       NULL,            // UserSearchPath
1100                       FALSE);          // fInvadeProcess
1101   if (!ok) return false;
1102 
1103   DWORD options = _SymGetOptions();
1104   options |= SYMOPT_LOAD_LINES;
1105   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1106   options = _SymSetOptions(options);
1107 
1108   char buf[OS::kStackWalkMaxNameLen] = {0};
1109   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1110   if (!ok) {
1111     int err = GetLastError();
1112     PrintF("%d\n", err);
1113     return false;
1114   }
1115 
1116   HANDLE snapshot = _CreateToolhelp32Snapshot(
1117       TH32CS_SNAPMODULE,       // dwFlags
1118       GetCurrentProcessId());  // th32ProcessId
1119   if (snapshot == INVALID_HANDLE_VALUE) return false;
1120   MODULEENTRY32W module_entry;
1121   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
1122   BOOL cont = _Module32FirstW(snapshot, &module_entry);
1123   while (cont) {
1124     DWORD64 base;
1125     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1126     // both unicode and ASCII strings even though the parameter is PSTR.
1127     base = _SymLoadModule64(
1128         process_handle,                                       // hProcess
1129         0,                                                    // hFile
1130         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
1131         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
1132         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
1133         module_entry.modBaseSize);                            // SizeOfDll
1134     if (base == 0) {
1135       int err = GetLastError();
1136       if (err != ERROR_MOD_NOT_FOUND &&
1137           err != ERROR_INVALID_HANDLE) return false;
1138     }
1139     LOG(SharedLibraryEvent(
1140             module_entry.szExePath,
1141             reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1142             reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1143                                            module_entry.modBaseSize)));
1144     cont = _Module32NextW(snapshot, &module_entry);
1145   }
1146   CloseHandle(snapshot);
1147 
1148   symbols_loaded = true;
1149   return true;
1150 }
1151 
1152 
LogSharedLibraryAddresses()1153 void OS::LogSharedLibraryAddresses() {
1154   // SharedLibraryEvents are logged when loading symbol information.
1155   // Only the shared libraries loaded at the time of the call to
1156   // LogSharedLibraryAddresses are logged.  DLLs loaded after
1157   // initialization are not accounted for.
1158   if (!LoadDbgHelpAndTlHelp32()) return;
1159   HANDLE process_handle = GetCurrentProcess();
1160   LoadSymbols(process_handle);
1161 }
1162 
1163 
1164 // Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
1165 
1166 // Switch off warning 4748 (/GS can not protect parameters and local variables
1167 // from local buffer overrun because optimizations are disabled in function) as
1168 // it is triggered by the use of inline assembler.
1169 #pragma warning(push)
1170 #pragma warning(disable : 4748)
StackWalk(Vector<OS::StackFrame> frames)1171 int OS::StackWalk(Vector<OS::StackFrame> frames) {
1172   BOOL ok;
1173 
1174   // Load the required functions from DLL's.
1175   if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
1176 
1177   // Get the process and thread handles.
1178   HANDLE process_handle = GetCurrentProcess();
1179   HANDLE thread_handle = GetCurrentThread();
1180 
1181   // Read the symbols.
1182   if (!LoadSymbols(process_handle)) return kStackWalkError;
1183 
1184   // Capture current context.
1185   CONTEXT context;
1186   memset(&context, 0, sizeof(context));
1187   context.ContextFlags = CONTEXT_CONTROL;
1188   context.ContextFlags = CONTEXT_CONTROL;
1189 #ifdef  _WIN64
1190   // TODO(X64): Implement context capture.
1191 #else
1192   __asm    call x
1193   __asm x: pop eax
1194   __asm    mov context.Eip, eax
1195   __asm    mov context.Ebp, ebp
1196   __asm    mov context.Esp, esp
1197   // NOTE: At some point, we could use RtlCaptureContext(&context) to
1198   // capture the context instead of inline assembler. However it is
1199   // only available on XP, Vista, Server 2003 and Server 2008 which
1200   // might not be sufficient.
1201 #endif
1202 
1203   // Initialize the stack walking
1204   STACKFRAME64 stack_frame;
1205   memset(&stack_frame, 0, sizeof(stack_frame));
1206 #ifdef  _WIN64
1207   stack_frame.AddrPC.Offset = context.Rip;
1208   stack_frame.AddrFrame.Offset = context.Rbp;
1209   stack_frame.AddrStack.Offset = context.Rsp;
1210 #else
1211   stack_frame.AddrPC.Offset = context.Eip;
1212   stack_frame.AddrFrame.Offset = context.Ebp;
1213   stack_frame.AddrStack.Offset = context.Esp;
1214 #endif
1215   stack_frame.AddrPC.Mode = AddrModeFlat;
1216   stack_frame.AddrFrame.Mode = AddrModeFlat;
1217   stack_frame.AddrStack.Mode = AddrModeFlat;
1218   int frames_count = 0;
1219 
1220   // Collect stack frames.
1221   int frames_size = frames.length();
1222   while (frames_count < frames_size) {
1223     ok = _StackWalk64(
1224         IMAGE_FILE_MACHINE_I386,    // MachineType
1225         process_handle,             // hProcess
1226         thread_handle,              // hThread
1227         &stack_frame,               // StackFrame
1228         &context,                   // ContextRecord
1229         NULL,                       // ReadMemoryRoutine
1230         _SymFunctionTableAccess64,  // FunctionTableAccessRoutine
1231         _SymGetModuleBase64,        // GetModuleBaseRoutine
1232         NULL);                      // TranslateAddress
1233     if (!ok) break;
1234 
1235     // Store the address.
1236     ASSERT((stack_frame.AddrPC.Offset >> 32) == 0);  // 32-bit address.
1237     frames[frames_count].address =
1238         reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
1239 
1240     // Try to locate a symbol for this frame.
1241     DWORD64 symbol_displacement;
1242     IMAGEHLP_SYMBOL64* symbol = NULL;
1243     symbol = NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen);
1244     if (!symbol) return kStackWalkError;  // Out of memory.
1245     memset(symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
1246     symbol->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
1247     symbol->MaxNameLength = kStackWalkMaxNameLen;
1248     ok = _SymGetSymFromAddr64(process_handle,             // hProcess
1249                               stack_frame.AddrPC.Offset,  // Address
1250                               &symbol_displacement,       // Displacement
1251                               symbol);                    // Symbol
1252     if (ok) {
1253       // Try to locate more source information for the symbol.
1254       IMAGEHLP_LINE64 Line;
1255       memset(&Line, 0, sizeof(Line));
1256       Line.SizeOfStruct = sizeof(Line);
1257       DWORD line_displacement;
1258       ok = _SymGetLineFromAddr64(
1259           process_handle,             // hProcess
1260           stack_frame.AddrPC.Offset,  // dwAddr
1261           &line_displacement,         // pdwDisplacement
1262           &Line);                     // Line
1263       // Format a text representation of the frame based on the information
1264       // available.
1265       if (ok) {
1266         SNPrintF(MutableCStrVector(frames[frames_count].text,
1267                                    kStackWalkMaxTextLen),
1268                  "%s %s:%d:%d",
1269                  symbol->Name, Line.FileName, Line.LineNumber,
1270                  line_displacement);
1271       } else {
1272         SNPrintF(MutableCStrVector(frames[frames_count].text,
1273                                    kStackWalkMaxTextLen),
1274                  "%s",
1275                  symbol->Name);
1276       }
1277       // Make sure line termination is in place.
1278       frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
1279     } else {
1280       // No text representation of this frame
1281       frames[frames_count].text[0] = '\0';
1282 
1283       // Continue if we are just missing a module (for non C/C++ frames a
1284       // module will never be found).
1285       int err = GetLastError();
1286       if (err != ERROR_MOD_NOT_FOUND) {
1287         DeleteArray(symbol);
1288         break;
1289       }
1290     }
1291     DeleteArray(symbol);
1292 
1293     frames_count++;
1294   }
1295 
1296   // Return the number of frames filled in.
1297   return frames_count;
1298 }
1299 
1300 // Restore warnings to previous settings.
1301 #pragma warning(pop)
1302 
1303 #else  // __MINGW32__
LogSharedLibraryAddresses()1304 void OS::LogSharedLibraryAddresses() { }
StackWalk(Vector<OS::StackFrame> frames)1305 int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
1306 #endif  // __MINGW32__
1307 
1308 
nan_value()1309 double OS::nan_value() {
1310 #ifdef _MSC_VER
1311   static const __int64 nanval = 0xfff8000000000000;
1312   return *reinterpret_cast<const double*>(&nanval);
1313 #else  // _MSC_VER
1314   return NAN;
1315 #endif  // _MSC_VER
1316 }
1317 
1318 
ActivationFrameAlignment()1319 int OS::ActivationFrameAlignment() {
1320 #ifdef _WIN64
1321   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1322 #else
1323   return 8;  // Floating-point math runs faster with 8-byte alignment.
1324 #endif
1325 }
1326 
1327 
IsReserved()1328 bool VirtualMemory::IsReserved() {
1329   return address_ != NULL;
1330 }
1331 
1332 
VirtualMemory(size_t size)1333 VirtualMemory::VirtualMemory(size_t size) {
1334   address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
1335   size_ = size;
1336 }
1337 
1338 
~VirtualMemory()1339 VirtualMemory::~VirtualMemory() {
1340   if (IsReserved()) {
1341     if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL;
1342   }
1343 }
1344 
1345 
Commit(void * address,size_t size,bool is_executable)1346 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1347   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1348   if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) {
1349     return false;
1350   }
1351 
1352   UpdateAllocatedSpaceLimits(address, size);
1353   return true;
1354 }
1355 
1356 
Uncommit(void * address,size_t size)1357 bool VirtualMemory::Uncommit(void* address, size_t size) {
1358   ASSERT(IsReserved());
1359   return VirtualFree(address, size, MEM_DECOMMIT) != FALSE;
1360 }
1361 
1362 
1363 // ----------------------------------------------------------------------------
1364 // Win32 thread support.
1365 
1366 // Definition of invalid thread handle and id.
1367 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1368 static const DWORD kNoThreadId = 0;
1369 
1370 
1371 class ThreadHandle::PlatformData : public Malloced {
1372  public:
PlatformData(ThreadHandle::Kind kind)1373   explicit PlatformData(ThreadHandle::Kind kind) {
1374     Initialize(kind);
1375   }
1376 
Initialize(ThreadHandle::Kind kind)1377   void Initialize(ThreadHandle::Kind kind) {
1378     switch (kind) {
1379       case ThreadHandle::SELF: tid_ = GetCurrentThreadId(); break;
1380       case ThreadHandle::INVALID: tid_ = kNoThreadId; break;
1381     }
1382   }
1383   DWORD tid_;  // Win32 thread identifier.
1384 };
1385 
1386 
1387 // Entry point for threads. The supplied argument is a pointer to the thread
1388 // object. The entry function dispatches to the run method in the thread
1389 // object. It is important that this function has __stdcall calling
1390 // convention.
ThreadEntry(void * arg)1391 static unsigned int __stdcall ThreadEntry(void* arg) {
1392   Thread* thread = reinterpret_cast<Thread*>(arg);
1393   // This is also initialized by the last parameter to _beginthreadex() but we
1394   // don't know which thread will run first (the original thread or the new
1395   // one) so we initialize it here too.
1396   thread->thread_handle_data()->tid_ = GetCurrentThreadId();
1397   thread->Run();
1398   return 0;
1399 }
1400 
1401 
1402 // Initialize thread handle to invalid handle.
ThreadHandle(ThreadHandle::Kind kind)1403 ThreadHandle::ThreadHandle(ThreadHandle::Kind kind) {
1404   data_ = new PlatformData(kind);
1405 }
1406 
1407 
~ThreadHandle()1408 ThreadHandle::~ThreadHandle() {
1409   delete data_;
1410 }
1411 
1412 
1413 // The thread is running if it has the same id as the current thread.
IsSelf() const1414 bool ThreadHandle::IsSelf() const {
1415   return GetCurrentThreadId() == data_->tid_;
1416 }
1417 
1418 
1419 // Test for invalid thread handle.
IsValid() const1420 bool ThreadHandle::IsValid() const {
1421   return data_->tid_ != kNoThreadId;
1422 }
1423 
1424 
Initialize(ThreadHandle::Kind kind)1425 void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
1426   data_->Initialize(kind);
1427 }
1428 
1429 
1430 class Thread::PlatformData : public Malloced {
1431  public:
PlatformData(HANDLE thread)1432   explicit PlatformData(HANDLE thread) : thread_(thread) {}
1433   HANDLE thread_;
1434 };
1435 
1436 
1437 // Initialize a Win32 thread object. The thread has an invalid thread
1438 // handle until it is started.
1439 
Thread()1440 Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
1441   data_ = new PlatformData(kNoThread);
1442 }
1443 
1444 
1445 // Close our own handle for the thread.
~Thread()1446 Thread::~Thread() {
1447   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1448   delete data_;
1449 }
1450 
1451 
1452 // Create a new thread. It is important to use _beginthreadex() instead of
1453 // the Win32 function CreateThread(), because the CreateThread() does not
1454 // initialize thread specific structures in the C runtime library.
Start()1455 void Thread::Start() {
1456   data_->thread_ = reinterpret_cast<HANDLE>(
1457       _beginthreadex(NULL,
1458                      0,
1459                      ThreadEntry,
1460                      this,
1461                      0,
1462                      reinterpret_cast<unsigned int*>(
1463                          &thread_handle_data()->tid_)));
1464   ASSERT(IsValid());
1465 }
1466 
1467 
1468 // Wait for thread to terminate.
Join()1469 void Thread::Join() {
1470   WaitForSingleObject(data_->thread_, INFINITE);
1471 }
1472 
1473 
CreateThreadLocalKey()1474 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1475   DWORD result = TlsAlloc();
1476   ASSERT(result != TLS_OUT_OF_INDEXES);
1477   return static_cast<LocalStorageKey>(result);
1478 }
1479 
1480 
DeleteThreadLocalKey(LocalStorageKey key)1481 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1482   BOOL result = TlsFree(static_cast<DWORD>(key));
1483   USE(result);
1484   ASSERT(result);
1485 }
1486 
1487 
GetThreadLocal(LocalStorageKey key)1488 void* Thread::GetThreadLocal(LocalStorageKey key) {
1489   return TlsGetValue(static_cast<DWORD>(key));
1490 }
1491 
1492 
SetThreadLocal(LocalStorageKey key,void * value)1493 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1494   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1495   USE(result);
1496   ASSERT(result);
1497 }
1498 
1499 
1500 
YieldCPU()1501 void Thread::YieldCPU() {
1502   Sleep(0);
1503 }
1504 
1505 
1506 // ----------------------------------------------------------------------------
1507 // Win32 mutex support.
1508 //
1509 // On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
1510 // faster than Win32 Mutex objects because they are implemented using user mode
1511 // atomic instructions. Therefore we only do ring transitions if there is lock
1512 // contention.
1513 
1514 class Win32Mutex : public Mutex {
1515  public:
1516 
Win32Mutex()1517   Win32Mutex() { InitializeCriticalSection(&cs_); }
1518 
~Win32Mutex()1519   ~Win32Mutex() { DeleteCriticalSection(&cs_); }
1520 
Lock()1521   int Lock() {
1522     EnterCriticalSection(&cs_);
1523     return 0;
1524   }
1525 
Unlock()1526   int Unlock() {
1527     LeaveCriticalSection(&cs_);
1528     return 0;
1529   }
1530 
1531  private:
1532   CRITICAL_SECTION cs_;  // Critical section used for mutex
1533 };
1534 
1535 
CreateMutex()1536 Mutex* OS::CreateMutex() {
1537   return new Win32Mutex();
1538 }
1539 
1540 
1541 // ----------------------------------------------------------------------------
1542 // Win32 semaphore support.
1543 //
1544 // On Win32 semaphores are implemented using Win32 Semaphore objects. The
1545 // semaphores are anonymous. Also, the semaphores are initialized to have
1546 // no upper limit on count.
1547 
1548 
1549 class Win32Semaphore : public Semaphore {
1550  public:
Win32Semaphore(int count)1551   explicit Win32Semaphore(int count) {
1552     sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
1553   }
1554 
~Win32Semaphore()1555   ~Win32Semaphore() {
1556     CloseHandle(sem);
1557   }
1558 
Wait()1559   void Wait() {
1560     WaitForSingleObject(sem, INFINITE);
1561   }
1562 
Wait(int timeout)1563   bool Wait(int timeout) {
1564     // Timeout in Windows API is in milliseconds.
1565     DWORD millis_timeout = timeout / 1000;
1566     return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
1567   }
1568 
Signal()1569   void Signal() {
1570     LONG dummy;
1571     ReleaseSemaphore(sem, 1, &dummy);
1572   }
1573 
1574  private:
1575   HANDLE sem;
1576 };
1577 
1578 
CreateSemaphore(int count)1579 Semaphore* OS::CreateSemaphore(int count) {
1580   return new Win32Semaphore(count);
1581 }
1582 
1583 
1584 // ----------------------------------------------------------------------------
1585 // Win32 socket support.
1586 //
1587 
1588 class Win32Socket : public Socket {
1589  public:
Win32Socket()1590   explicit Win32Socket() {
1591     // Create the socket.
1592     socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
1593   }
Win32Socket(SOCKET socket)1594   explicit Win32Socket(SOCKET socket): socket_(socket) { }
~Win32Socket()1595   virtual ~Win32Socket() { Shutdown(); }
1596 
1597   // Server initialization.
1598   bool Bind(const int port);
1599   bool Listen(int backlog) const;
1600   Socket* Accept() const;
1601 
1602   // Client initialization.
1603   bool Connect(const char* host, const char* port);
1604 
1605   // Shutdown socket for both read and write.
1606   bool Shutdown();
1607 
1608   // Data Transimission
1609   int Send(const char* data, int len) const;
1610   int Receive(char* data, int len) const;
1611 
1612   bool SetReuseAddress(bool reuse_address);
1613 
IsValid() const1614   bool IsValid() const { return socket_ != INVALID_SOCKET; }
1615 
1616  private:
1617   SOCKET socket_;
1618 };
1619 
1620 
Bind(const int port)1621 bool Win32Socket::Bind(const int port) {
1622   if (!IsValid())  {
1623     return false;
1624   }
1625 
1626   sockaddr_in addr;
1627   memset(&addr, 0, sizeof(addr));
1628   addr.sin_family = AF_INET;
1629   addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1630   addr.sin_port = htons(port);
1631   int status = bind(socket_,
1632                     reinterpret_cast<struct sockaddr *>(&addr),
1633                     sizeof(addr));
1634   return status == 0;
1635 }
1636 
1637 
Listen(int backlog) const1638 bool Win32Socket::Listen(int backlog) const {
1639   if (!IsValid()) {
1640     return false;
1641   }
1642 
1643   int status = listen(socket_, backlog);
1644   return status == 0;
1645 }
1646 
1647 
Accept() const1648 Socket* Win32Socket::Accept() const {
1649   if (!IsValid()) {
1650     return NULL;
1651   }
1652 
1653   SOCKET socket = accept(socket_, NULL, NULL);
1654   if (socket == INVALID_SOCKET) {
1655     return NULL;
1656   } else {
1657     return new Win32Socket(socket);
1658   }
1659 }
1660 
1661 
Connect(const char * host,const char * port)1662 bool Win32Socket::Connect(const char* host, const char* port) {
1663   if (!IsValid()) {
1664     return false;
1665   }
1666 
1667   // Lookup host and port.
1668   struct addrinfo *result = NULL;
1669   struct addrinfo hints;
1670   memset(&hints, 0, sizeof(addrinfo));
1671   hints.ai_family = AF_INET;
1672   hints.ai_socktype = SOCK_STREAM;
1673   hints.ai_protocol = IPPROTO_TCP;
1674   int status = getaddrinfo(host, port, &hints, &result);
1675   if (status != 0) {
1676     return false;
1677   }
1678 
1679   // Connect.
1680   status = connect(socket_, result->ai_addr, result->ai_addrlen);
1681   freeaddrinfo(result);
1682   return status == 0;
1683 }
1684 
1685 
Shutdown()1686 bool Win32Socket::Shutdown() {
1687   if (IsValid()) {
1688     // Shutdown socket for both read and write.
1689     int status = shutdown(socket_, SD_BOTH);
1690     closesocket(socket_);
1691     socket_ = INVALID_SOCKET;
1692     return status == SOCKET_ERROR;
1693   }
1694   return true;
1695 }
1696 
1697 
Send(const char * data,int len) const1698 int Win32Socket::Send(const char* data, int len) const {
1699   int status = send(socket_, data, len, 0);
1700   return status;
1701 }
1702 
1703 
Receive(char * data,int len) const1704 int Win32Socket::Receive(char* data, int len) const {
1705   int status = recv(socket_, data, len, 0);
1706   return status;
1707 }
1708 
1709 
SetReuseAddress(bool reuse_address)1710 bool Win32Socket::SetReuseAddress(bool reuse_address) {
1711   BOOL on = reuse_address ? TRUE : FALSE;
1712   int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
1713                           reinterpret_cast<char*>(&on), sizeof(on));
1714   return status == SOCKET_ERROR;
1715 }
1716 
1717 
Setup()1718 bool Socket::Setup() {
1719   // Initialize Winsock32
1720   int err;
1721   WSADATA winsock_data;
1722   WORD version_requested = MAKEWORD(1, 0);
1723   err = WSAStartup(version_requested, &winsock_data);
1724   if (err != 0) {
1725     PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
1726   }
1727 
1728   return err == 0;
1729 }
1730 
1731 
LastError()1732 int Socket::LastError() {
1733   return WSAGetLastError();
1734 }
1735 
1736 
HToN(uint16_t value)1737 uint16_t Socket::HToN(uint16_t value) {
1738   return htons(value);
1739 }
1740 
1741 
NToH(uint16_t value)1742 uint16_t Socket::NToH(uint16_t value) {
1743   return ntohs(value);
1744 }
1745 
1746 
HToN(uint32_t value)1747 uint32_t Socket::HToN(uint32_t value) {
1748   return htonl(value);
1749 }
1750 
1751 
NToH(uint32_t value)1752 uint32_t Socket::NToH(uint32_t value) {
1753   return ntohl(value);
1754 }
1755 
1756 
CreateSocket()1757 Socket* OS::CreateSocket() {
1758   return new Win32Socket();
1759 }
1760 
1761 
1762 #ifdef ENABLE_LOGGING_AND_PROFILING
1763 
1764 // ----------------------------------------------------------------------------
1765 // Win32 profiler support.
1766 //
1767 // On win32 we use a sampler thread with high priority to sample the program
1768 // counter for the profiled thread.
1769 
1770 class Sampler::PlatformData : public Malloced {
1771  public:
PlatformData(Sampler * sampler)1772   explicit PlatformData(Sampler* sampler) {
1773     sampler_ = sampler;
1774     sampler_thread_ = INVALID_HANDLE_VALUE;
1775     profiled_thread_ = INVALID_HANDLE_VALUE;
1776   }
1777 
1778   Sampler* sampler_;
1779   HANDLE sampler_thread_;
1780   HANDLE profiled_thread_;
1781 
1782   // Sampler thread handler.
Runner()1783   void Runner() {
1784     // Context used for sampling the register state of the profiled thread.
1785     CONTEXT context;
1786     memset(&context, 0, sizeof(context));
1787     // Loop until the sampler is disengaged.
1788     while (sampler_->IsActive()) {
1789       TickSample sample;
1790 
1791       // If profiling, we record the pc and sp of the profiled thread.
1792       if (sampler_->IsProfiling()
1793           && SuspendThread(profiled_thread_) != (DWORD)-1) {
1794         context.ContextFlags = CONTEXT_FULL;
1795         if (GetThreadContext(profiled_thread_, &context) != 0) {
1796 #if V8_HOST_ARCH_X64
1797           UNIMPLEMENTED();
1798           sample.pc = context.Rip;
1799           sample.sp = context.Rsp;
1800           sample.fp = context.Rbp;
1801 #else
1802           sample.pc = context.Eip;
1803           sample.sp = context.Esp;
1804           sample.fp = context.Ebp;
1805 #endif
1806           sampler_->SampleStack(&sample);
1807         }
1808         ResumeThread(profiled_thread_);
1809       }
1810 
1811       // We always sample the VM state.
1812       sample.state = Logger::state();
1813       // Invoke tick handler with program counter and stack pointer.
1814       sampler_->Tick(&sample);
1815 
1816       // Wait until next sampling.
1817       Sleep(sampler_->interval_);
1818     }
1819   }
1820 };
1821 
1822 
1823 // Entry point for sampler thread.
SamplerEntry(void * arg)1824 static unsigned int __stdcall SamplerEntry(void* arg) {
1825   Sampler::PlatformData* data =
1826       reinterpret_cast<Sampler::PlatformData*>(arg);
1827   data->Runner();
1828   return 0;
1829 }
1830 
1831 
1832 // Initialize a profile sampler.
Sampler(int interval,bool profiling)1833 Sampler::Sampler(int interval, bool profiling)
1834     : interval_(interval), profiling_(profiling), active_(false) {
1835   data_ = new PlatformData(this);
1836 }
1837 
1838 
~Sampler()1839 Sampler::~Sampler() {
1840   delete data_;
1841 }
1842 
1843 
1844 // Start profiling.
Start()1845 void Sampler::Start() {
1846   // If we are profiling, we need to be able to access the calling
1847   // thread.
1848   if (IsProfiling()) {
1849     // Get a handle to the calling thread. This is the thread that we are
1850     // going to profile. We need to make a copy of the handle because we are
1851     // going to use it in the sampler thread. Using GetThreadHandle() will
1852     // not work in this case. We're using OpenThread because DuplicateHandle
1853     // for some reason doesn't work in Chrome's sandbox.
1854     data_->profiled_thread_ = OpenThread(THREAD_GET_CONTEXT |
1855                                          THREAD_SUSPEND_RESUME |
1856                                          THREAD_QUERY_INFORMATION,
1857                                          FALSE,
1858                                          GetCurrentThreadId());
1859     BOOL ok = data_->profiled_thread_ != NULL;
1860     if (!ok) return;
1861   }
1862 
1863   // Start sampler thread.
1864   unsigned int tid;
1865   active_ = true;
1866   data_->sampler_thread_ = reinterpret_cast<HANDLE>(
1867       _beginthreadex(NULL, 0, SamplerEntry, data_, 0, &tid));
1868   // Set thread to high priority to increase sampling accuracy.
1869   SetThreadPriority(data_->sampler_thread_, THREAD_PRIORITY_TIME_CRITICAL);
1870 }
1871 
1872 
1873 // Stop profiling.
Stop()1874 void Sampler::Stop() {
1875   // Seting active to false triggers termination of the sampler
1876   // thread.
1877   active_ = false;
1878 
1879   // Wait for sampler thread to terminate.
1880   WaitForSingleObject(data_->sampler_thread_, INFINITE);
1881 
1882   // Release the thread handles
1883   CloseHandle(data_->sampler_thread_);
1884   CloseHandle(data_->profiled_thread_);
1885 }
1886 
1887 
1888 #endif  // ENABLE_LOGGING_AND_PROFILING
1889 
1890 } }  // namespace v8::internal
1891