1
2 //
3 // file: rbbiscan.cpp
4 //
5 // Copyright (C) 2002-2007, International Business Machines Corporation and others.
6 // All Rights Reserved.
7 //
8 // This file contains the Rule Based Break Iterator Rule Builder functions for
9 // scanning the rules and assembling a parse tree. This is the first phase
10 // of compiling the rules.
11 //
12 // The overall of the rules is managed by class RBBIRuleBuilder, which will
13 // create and use an instance of this class as part of the process.
14 //
15
16 #include "unicode/utypes.h"
17
18 #if !UCONFIG_NO_BREAK_ITERATION
19
20 #include "unicode/unistr.h"
21 #include "unicode/uniset.h"
22 #include "unicode/uchar.h"
23 #include "unicode/uchriter.h"
24 #include "unicode/parsepos.h"
25 #include "unicode/parseerr.h"
26 #include "util.h"
27 #include "cmemory.h"
28 #include "cstring.h"
29
30 #include "rbbirpt.h" // Contains state table for the rbbi rules parser.
31 // generated by a Perl script.
32 #include "rbbirb.h"
33 #include "rbbinode.h"
34 #include "rbbiscan.h"
35 #include "rbbitblb.h"
36
37 #include "uassert.h"
38
39
40 //----------------------------------------------------------------------------------------
41 //
42 // Unicode Set init strings for each of the character classes needed for parsing a rule file.
43 // (Initialized with hex values for portability to EBCDIC based machines.
44 // Really ugly, but there's no good way to avoid it.)
45 //
46 // The sets are referred to by name in the rbbirpt.txt, which is the
47 // source form of the state transition table for the RBBI rule parser.
48 //
49 //----------------------------------------------------------------------------------------
50 static const UChar gRuleSet_rule_char_pattern[] = {
51 // [ ^ [ \ p { Z } \ u 0 0 2 0
52 0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30,
53 // - \ u 0 0 7 f ] - [ \ p
54 0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70,
55 // { L } ] - [ \ p { N } ] ]
56 0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0};
57
58 static const UChar gRuleSet_name_char_pattern[] = {
59 // [ _ \ p { L } \ p { N } ]
60 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0};
61
62 static const UChar gRuleSet_digit_char_pattern[] = {
63 // [ 0 - 9 ]
64 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0};
65
66 static const UChar gRuleSet_name_start_char_pattern[] = {
67 // [ _ \ p { L } ]
68 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 };
69
70 static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any"
71
72
73 U_CDECL_BEGIN
RBBISetTable_deleter(void * p)74 static void U_CALLCONV RBBISetTable_deleter(void *p) {
75 U_NAMESPACE_QUALIFIER RBBISetTableEl *px = (U_NAMESPACE_QUALIFIER RBBISetTableEl *)p;
76 delete px->key;
77 // Note: px->val is owned by the linked list "fSetsListHead" in scanner.
78 // Don't delete the value nodes here.
79 uprv_free(px);
80 }
81 U_CDECL_END
82
83 U_NAMESPACE_BEGIN
84
85 //----------------------------------------------------------------------------------------
86 //
87 // Constructor.
88 //
89 //----------------------------------------------------------------------------------------
RBBIRuleScanner(RBBIRuleBuilder * rb)90 RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb)
91 {
92 fRB = rb;
93 fStackPtr = 0;
94 fStack[fStackPtr] = 0;
95 fNodeStackPtr = 0;
96 fRuleNum = 0;
97 fNodeStack[0] = NULL;
98
99 fRuleSets[kRuleSet_rule_char-128] = NULL;
100 fRuleSets[kRuleSet_white_space-128] = NULL;
101 fRuleSets[kRuleSet_name_char-128] = NULL;
102 fRuleSets[kRuleSet_name_start_char-128] = NULL;
103 fRuleSets[kRuleSet_digit_char-128] = NULL;
104 fSymbolTable = NULL;
105 fSetTable = NULL;
106
107 fScanIndex = 0;
108 fNextIndex = 0;
109
110 fReverseRule = FALSE;
111 fLookAheadRule = FALSE;
112
113 fLineNum = 1;
114 fCharNum = 0;
115 fQuoteMode = FALSE;
116
117 // Do not check status until after all critical fields are sufficiently initialized
118 // that the destructor can run cleanly.
119 if (U_FAILURE(*rb->fStatus)) {
120 return;
121 }
122
123 //
124 // Set up the constant Unicode Sets.
125 // Note: These could be made static, lazily initialized, and shared among
126 // all instances of RBBIRuleScanners. BUT this is quite a bit simpler,
127 // and the time to build these few sets should be small compared to a
128 // full break iterator build.
129 fRuleSets[kRuleSet_rule_char-128] = new UnicodeSet(gRuleSet_rule_char_pattern, *rb->fStatus);
130 fRuleSets[kRuleSet_white_space-128] = uprv_openRuleWhiteSpaceSet(rb->fStatus);
131 fRuleSets[kRuleSet_name_char-128] = new UnicodeSet(gRuleSet_name_char_pattern, *rb->fStatus);
132 fRuleSets[kRuleSet_name_start_char-128] = new UnicodeSet(gRuleSet_name_start_char_pattern, *rb->fStatus);
133 fRuleSets[kRuleSet_digit_char-128] = new UnicodeSet(gRuleSet_digit_char_pattern, *rb->fStatus);
134 if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) {
135 // This case happens if ICU's data is missing. UnicodeSet tries to look up property
136 // names from the init string, can't find them, and claims an illegal arguement.
137 // Change the error so that the actual problem will be clearer to users.
138 *rb->fStatus = U_BRK_INIT_ERROR;
139 }
140 if (U_FAILURE(*rb->fStatus)) {
141 return;
142 }
143
144 fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus);
145 fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, NULL, rb->fStatus);
146 uhash_setValueDeleter(fSetTable, RBBISetTable_deleter);
147 }
148
149
150
151 //----------------------------------------------------------------------------------------
152 //
153 // Destructor
154 //
155 //----------------------------------------------------------------------------------------
~RBBIRuleScanner()156 RBBIRuleScanner::~RBBIRuleScanner() {
157 delete fRuleSets[kRuleSet_rule_char-128];
158 delete fRuleSets[kRuleSet_white_space-128];
159 delete fRuleSets[kRuleSet_name_char-128];
160 delete fRuleSets[kRuleSet_name_start_char-128];
161 delete fRuleSets[kRuleSet_digit_char-128];
162
163 delete fSymbolTable;
164 if (fSetTable != NULL) {
165 uhash_close(fSetTable);
166 fSetTable = NULL;
167
168 }
169
170
171 // Node Stack.
172 // Normally has one entry, which is the entire parse tree for the rules.
173 // If errors occured, there may be additional subtrees left on the stack.
174 while (fNodeStackPtr > 0) {
175 delete fNodeStack[fNodeStackPtr];
176 fNodeStackPtr--;
177 }
178
179 }
180
181 //----------------------------------------------------------------------------------------
182 //
183 // doParseAction Do some action during rule parsing.
184 // Called by the parse state machine.
185 // Actions build the parse tree and Unicode Sets,
186 // and maintain the parse stack for nested expressions.
187 //
188 // TODO: unify EParseAction and RBBI_RuleParseAction enum types.
189 // They represent exactly the same thing. They're separate
190 // only to work around enum forward declaration restrictions
191 // in some compilers, while at the same time avoiding multiple
192 // definitions problems. I'm sure that there's a better way.
193 //
194 //----------------------------------------------------------------------------------------
doParseActions(int32_t action)195 UBool RBBIRuleScanner::doParseActions(int32_t action)
196 {
197 RBBINode *n = NULL;
198
199 UBool returnVal = TRUE;
200
201 switch (action) {
202
203 case doExprStart:
204 pushNewNode(RBBINode::opStart);
205 fRuleNum++;
206 break;
207
208
209 case doExprOrOperator:
210 {
211 fixOpStack(RBBINode::precOpCat);
212 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
213 RBBINode *orNode = pushNewNode(RBBINode::opOr);
214 orNode->fLeftChild = operandNode;
215 operandNode->fParent = orNode;
216 }
217 break;
218
219 case doExprCatOperator:
220 // concatenation operator.
221 // For the implicit concatenation of adjacent terms in an expression that are
222 // not separated by any other operator. Action is invoked between the
223 // actions for the two terms.
224 {
225 fixOpStack(RBBINode::precOpCat);
226 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
227 RBBINode *catNode = pushNewNode(RBBINode::opCat);
228 catNode->fLeftChild = operandNode;
229 operandNode->fParent = catNode;
230 }
231 break;
232
233 case doLParen:
234 // Open Paren.
235 // The openParen node is a dummy operation type with a low precedence,
236 // which has the affect of ensuring that any real binary op that
237 // follows within the parens binds more tightly to the operands than
238 // stuff outside of the parens.
239 pushNewNode(RBBINode::opLParen);
240 break;
241
242 case doExprRParen:
243 fixOpStack(RBBINode::precLParen);
244 break;
245
246 case doNOP:
247 break;
248
249 case doStartAssign:
250 // We've just scanned "$variable = "
251 // The top of the node stack has the $variable ref node.
252
253 // Save the start position of the RHS text in the StartExpression node
254 // that precedes the $variableReference node on the stack.
255 // This will eventually be used when saving the full $variable replacement
256 // text as a string.
257 n = fNodeStack[fNodeStackPtr-1];
258 n->fFirstPos = fNextIndex; // move past the '='
259
260 // Push a new start-of-expression node; needed to keep parse of the
261 // RHS expression happy.
262 pushNewNode(RBBINode::opStart);
263 break;
264
265
266
267
268 case doEndAssign:
269 {
270 // We have reached the end of an assignement statement.
271 // Current scan char is the ';' that terminates the assignment.
272
273 // Terminate expression, leaves expression parse tree rooted in TOS node.
274 fixOpStack(RBBINode::precStart);
275
276 RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2];
277 RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1];
278 RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr];
279
280 // Save original text of right side of assignment, excluding the terminating ';'
281 // in the root of the node for the right-hand-side expression.
282 RHSExprNode->fFirstPos = startExprNode->fFirstPos;
283 RHSExprNode->fLastPos = fScanIndex;
284 fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText);
285
286 // Expression parse tree becomes l. child of the $variable reference node.
287 varRefNode->fLeftChild = RHSExprNode;
288 RHSExprNode->fParent = varRefNode;
289
290 // Make a symbol table entry for the $variableRef node.
291 fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus);
292 if (U_FAILURE(*fRB->fStatus)) {
293 // This is a round-about way to get the parse position set
294 // so that duplicate symbols error messages include a line number.
295 UErrorCode t = *fRB->fStatus;
296 *fRB->fStatus = U_ZERO_ERROR;
297 error(t);
298 }
299
300 // Clean up the stack.
301 delete startExprNode;
302 fNodeStackPtr-=3;
303 break;
304 }
305
306 case doEndOfRule:
307 {
308 fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression
309 if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node.
310 break;
311 }
312 #ifdef RBBI_DEBUG
313 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");}
314 #endif
315 U_ASSERT(fNodeStackPtr == 1);
316
317 // If this rule includes a look-ahead '/', add a endMark node to the
318 // expression tree.
319 if (fLookAheadRule) {
320 RBBINode *thisRule = fNodeStack[fNodeStackPtr];
321 RBBINode *endNode = pushNewNode(RBBINode::endMark);
322 RBBINode *catNode = pushNewNode(RBBINode::opCat);
323 fNodeStackPtr -= 2;
324 catNode->fLeftChild = thisRule;
325 catNode->fRightChild = endNode;
326 fNodeStack[fNodeStackPtr] = catNode;
327 endNode->fVal = fRuleNum;
328 endNode->fLookAheadEnd = TRUE;
329 }
330
331 // All rule expressions are ORed together.
332 // The ';' that terminates an expression really just functions as a '|' with
333 // a low operator prededence.
334 //
335 // Each of the four sets of rules are collected separately.
336 // (forward, reverse, safe_forward, safe_reverse)
337 // OR this rule into the appropriate group of them.
338 //
339 RBBINode **destRules = (fReverseRule? &fRB->fReverseTree : fRB->fDefaultTree);
340
341 if (*destRules != NULL) {
342 // This is not the first rule encounted.
343 // OR previous stuff (from *destRules)
344 // with the current rule expression (on the Node Stack)
345 // with the resulting OR expression going to *destRules
346 //
347 RBBINode *thisRule = fNodeStack[fNodeStackPtr];
348 RBBINode *prevRules = *destRules;
349 RBBINode *orNode = pushNewNode(RBBINode::opOr);
350 orNode->fLeftChild = prevRules;
351 prevRules->fParent = orNode;
352 orNode->fRightChild = thisRule;
353 thisRule->fParent = orNode;
354 *destRules = orNode;
355 }
356 else
357 {
358 // This is the first rule encountered (for this direction).
359 // Just move its parse tree from the stack to *destRules.
360 *destRules = fNodeStack[fNodeStackPtr];
361 }
362 fReverseRule = FALSE; // in preparation for the next rule.
363 fLookAheadRule = FALSE;
364 fNodeStackPtr = 0;
365 }
366 break;
367
368
369 case doRuleError:
370 error(U_BRK_RULE_SYNTAX);
371 returnVal = FALSE;
372 break;
373
374
375 case doVariableNameExpectedErr:
376 error(U_BRK_RULE_SYNTAX);
377 break;
378
379
380 //
381 // Unary operands + ? *
382 // These all appear after the operand to which they apply.
383 // When we hit one, the operand (may be a whole sub expression)
384 // will be on the top of the stack.
385 // Unary Operator becomes TOS, with the old TOS as its one child.
386 case doUnaryOpPlus:
387 {
388 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
389 RBBINode *plusNode = pushNewNode(RBBINode::opPlus);
390 plusNode->fLeftChild = operandNode;
391 operandNode->fParent = plusNode;
392 }
393 break;
394
395 case doUnaryOpQuestion:
396 {
397 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
398 RBBINode *qNode = pushNewNode(RBBINode::opQuestion);
399 qNode->fLeftChild = operandNode;
400 operandNode->fParent = qNode;
401 }
402 break;
403
404 case doUnaryOpStar:
405 {
406 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
407 RBBINode *starNode = pushNewNode(RBBINode::opStar);
408 starNode->fLeftChild = operandNode;
409 operandNode->fParent = starNode;
410 }
411 break;
412
413 case doRuleChar:
414 // A "Rule Character" is any single character that is a literal part
415 // of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]"
416 // These are pretty uncommon in break rules; the terms are more commonly
417 // sets. To keep things uniform, treat these characters like as
418 // sets that just happen to contain only one character.
419 {
420 n = pushNewNode(RBBINode::setRef);
421 findSetFor(fC.fChar, n);
422 n->fFirstPos = fScanIndex;
423 n->fLastPos = fNextIndex;
424 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
425 break;
426 }
427
428 case doDotAny:
429 // scanned a ".", meaning match any single character.
430 {
431 n = pushNewNode(RBBINode::setRef);
432 findSetFor(kAny, n);
433 n->fFirstPos = fScanIndex;
434 n->fLastPos = fNextIndex;
435 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
436 break;
437 }
438
439 case doSlash:
440 // Scanned a '/', which identifies a look-ahead break position in a rule.
441 n = pushNewNode(RBBINode::lookAhead);
442 n->fVal = fRuleNum;
443 n->fFirstPos = fScanIndex;
444 n->fLastPos = fNextIndex;
445 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
446 fLookAheadRule = TRUE;
447 break;
448
449
450 case doStartTagValue:
451 // Scanned a '{', the opening delimiter for a tag value within a rule.
452 n = pushNewNode(RBBINode::tag);
453 n->fVal = 0;
454 n->fFirstPos = fScanIndex;
455 n->fLastPos = fNextIndex;
456 break;
457
458 case doTagDigit:
459 // Just scanned a decimal digit that's part of a tag value
460 {
461 n = fNodeStack[fNodeStackPtr];
462 uint32_t v = u_charDigitValue(fC.fChar);
463 U_ASSERT(v < 10);
464 n->fVal = n->fVal*10 + v;
465 break;
466 }
467
468 case doTagValue:
469 n = fNodeStack[fNodeStackPtr];
470 n->fLastPos = fNextIndex;
471 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
472 break;
473
474 case doTagExpectedError:
475 error(U_BRK_MALFORMED_RULE_TAG);
476 returnVal = FALSE;
477 break;
478
479 case doOptionStart:
480 // Scanning a !!option. At the start of string.
481 fOptionStart = fScanIndex;
482 break;
483
484 case doOptionEnd:
485 {
486 UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart);
487 if (opt == UNICODE_STRING("chain", 5)) {
488 fRB->fChainRules = TRUE;
489 } else if (opt == UNICODE_STRING("LBCMNoChain", 11)) {
490 fRB->fLBCMNoChain = TRUE;
491 } else if (opt == UNICODE_STRING("forward", 7)) {
492 fRB->fDefaultTree = &fRB->fForwardTree;
493 } else if (opt == UNICODE_STRING("reverse", 7)) {
494 fRB->fDefaultTree = &fRB->fReverseTree;
495 } else if (opt == UNICODE_STRING("safe_forward", 12)) {
496 fRB->fDefaultTree = &fRB->fSafeFwdTree;
497 } else if (opt == UNICODE_STRING("safe_reverse", 12)) {
498 fRB->fDefaultTree = &fRB->fSafeRevTree;
499 } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) {
500 fRB->fLookAheadHardBreak = TRUE;
501 } else {
502 error(U_BRK_UNRECOGNIZED_OPTION);
503 }
504 }
505 break;
506
507 case doReverseDir:
508 fReverseRule = TRUE;
509 break;
510
511 case doStartVariableName:
512 n = pushNewNode(RBBINode::varRef);
513 if (U_FAILURE(*fRB->fStatus)) {
514 break;
515 }
516 n->fFirstPos = fScanIndex;
517 break;
518
519 case doEndVariableName:
520 n = fNodeStack[fNodeStackPtr];
521 if (n==NULL || n->fType != RBBINode::varRef) {
522 error(U_BRK_INTERNAL_ERROR);
523 break;
524 }
525 n->fLastPos = fScanIndex;
526 fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText);
527 // Look the newly scanned name up in the symbol table
528 // If there's an entry, set the l. child of the var ref to the replacement expression.
529 // (We also pass through here when scanning assignments, but no harm is done, other
530 // than a slight wasted effort that seems hard to avoid. Lookup will be null)
531 n->fLeftChild = fSymbolTable->lookupNode(n->fText);
532 break;
533
534 case doCheckVarDef:
535 n = fNodeStack[fNodeStackPtr];
536 if (n->fLeftChild == NULL) {
537 error(U_BRK_UNDEFINED_VARIABLE);
538 returnVal = FALSE;
539 }
540 break;
541
542 case doExprFinished:
543 break;
544
545 case doRuleErrorAssignExpr:
546 error(U_BRK_ASSIGN_ERROR);
547 returnVal = FALSE;
548 break;
549
550 case doExit:
551 returnVal = FALSE;
552 break;
553
554 case doScanUnicodeSet:
555 scanSet();
556 break;
557
558 default:
559 error(U_BRK_INTERNAL_ERROR);
560 returnVal = FALSE;
561 break;
562 }
563 return returnVal;
564 }
565
566
567
568
569 //----------------------------------------------------------------------------------------
570 //
571 // Error Report a rule parse error.
572 // Only report it if no previous error has been recorded.
573 //
574 //----------------------------------------------------------------------------------------
error(UErrorCode e)575 void RBBIRuleScanner::error(UErrorCode e) {
576 if (U_SUCCESS(*fRB->fStatus)) {
577 *fRB->fStatus = e;
578 fRB->fParseError->line = fLineNum;
579 fRB->fParseError->offset = fCharNum;
580 fRB->fParseError->preContext[0] = 0;
581 fRB->fParseError->preContext[0] = 0;
582 }
583 }
584
585
586
587
588 //----------------------------------------------------------------------------------------
589 //
590 // fixOpStack The parse stack holds partially assembled chunks of the parse tree.
591 // An entry on the stack may be as small as a single setRef node,
592 // or as large as the parse tree
593 // for an entire expression (this will be the one item left on the stack
594 // when the parsing of an RBBI rule completes.
595 //
596 // This function is called when a binary operator is encountered.
597 // It looks back up the stack for operators that are not yet associated
598 // with a right operand, and if the precedence of the stacked operator >=
599 // the precedence of the current operator, binds the operand left,
600 // to the previously encountered operator.
601 //
602 //----------------------------------------------------------------------------------------
fixOpStack(RBBINode::OpPrecedence p)603 void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) {
604 RBBINode *n;
605 // printNodeStack("entering fixOpStack()");
606 for (;;) {
607 n = fNodeStack[fNodeStackPtr-1]; // an operator node
608 if (n->fPrecedence == 0) {
609 RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node");
610 error(U_BRK_INTERNAL_ERROR);
611 return;
612 }
613
614 if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) {
615 // The most recent operand goes with the current operator,
616 // not with the previously stacked one.
617 break;
618 }
619 // Stack operator is a binary op ( '|' or concatenation)
620 // TOS operand becomes right child of this operator.
621 // Resulting subexpression becomes the TOS operand.
622 n->fRightChild = fNodeStack[fNodeStackPtr];
623 fNodeStack[fNodeStackPtr]->fParent = n;
624 fNodeStackPtr--;
625 // printNodeStack("looping in fixOpStack() ");
626 }
627
628 if (p <= RBBINode::precLParen) {
629 // Scan is at a right paren or end of expression.
630 // The scanned item must match the stack, or else there was an error.
631 // Discard the left paren (or start expr) node from the stack,
632 // leaving the completed (sub)expression as TOS.
633 if (n->fPrecedence != p) {
634 // Right paren encountered matched start of expression node, or
635 // end of expression matched with a left paren node.
636 error(U_BRK_MISMATCHED_PAREN);
637 }
638 fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr];
639 fNodeStackPtr--;
640 // Delete the now-discarded LParen or Start node.
641 delete n;
642 }
643 // printNodeStack("leaving fixOpStack()");
644 }
645
646
647
648
649 //----------------------------------------------------------------------------------------
650 //
651 // findSetFor given a UnicodeString,
652 // - find the corresponding Unicode Set (uset node)
653 // (create one if necessary)
654 // - Set fLeftChild of the caller's node (should be a setRef node)
655 // to the uset node
656 // Maintain a hash table of uset nodes, so the same one is always used
657 // for the same string.
658 // If a "to adopt" set is provided and we haven't seen this key before,
659 // add the provided set to the hash table.
660 // If the string is one (32 bit) char in length, the set contains
661 // just one element which is the char in question.
662 // If the string is "any", return a set containing all chars.
663 //
664 //----------------------------------------------------------------------------------------
findSetFor(const UnicodeString & s,RBBINode * node,UnicodeSet * setToAdopt)665 void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) {
666
667 RBBISetTableEl *el;
668
669 // First check whether we've already cached a set for this string.
670 // If so, just use the cached set in the new node.
671 // delete any set provided by the caller, since we own it.
672 el = (RBBISetTableEl *)uhash_get(fSetTable, &s);
673 if (el != NULL) {
674 delete setToAdopt;
675 node->fLeftChild = el->val;
676 U_ASSERT(node->fLeftChild->fType == RBBINode::uset);
677 return;
678 }
679
680 // Haven't seen this set before.
681 // If the caller didn't provide us with a prebuilt set,
682 // create a new UnicodeSet now.
683 if (setToAdopt == NULL) {
684 if (s.compare(kAny, -1) == 0) {
685 setToAdopt = new UnicodeSet(0x000000, 0x10ffff);
686 } else {
687 UChar32 c;
688 c = s.char32At(0);
689 setToAdopt = new UnicodeSet(c, c);
690 }
691 }
692
693 //
694 // Make a new uset node to refer to this UnicodeSet
695 // This new uset node becomes the child of the caller's setReference node.
696 //
697 RBBINode *usetNode = new RBBINode(RBBINode::uset);
698 usetNode->fInputSet = setToAdopt;
699 usetNode->fParent = node;
700 node->fLeftChild = usetNode;
701 usetNode->fText = s;
702
703
704 //
705 // Add the new uset node to the list of all uset nodes.
706 //
707 fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus);
708
709
710 //
711 // Add the new set to the set hash table.
712 //
713 el = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl));
714 UnicodeString *tkey = new UnicodeString(s);
715 if (tkey == NULL || el == NULL || setToAdopt == NULL) {
716 error(U_MEMORY_ALLOCATION_ERROR);
717 return;
718 }
719 el->key = tkey;
720 el->val = usetNode;
721 uhash_put(fSetTable, el->key, el, fRB->fStatus);
722
723 return;
724 }
725
726
727
728 //
729 // Assorted Unicode character constants.
730 // Numeric because there is no portable way to enter them as literals.
731 // (Think EBCDIC).
732 //
733 static const UChar chCR = 0x0d; // New lines, for terminating comments.
734 static const UChar chLF = 0x0a;
735 static const UChar chNEL = 0x85; // NEL newline variant
736 static const UChar chLS = 0x2028; // Unicode Line Separator
737 static const UChar chApos = 0x27; // single quote, for quoted chars.
738 static const UChar chPound = 0x23; // '#', introduces a comment.
739 static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
740 static const UChar chLParen = 0x28;
741 static const UChar chRParen = 0x29;
742
743
744 //----------------------------------------------------------------------------------------
745 //
746 // stripRules Return a rules string without unnecessary
747 // characters.
748 //
749 //----------------------------------------------------------------------------------------
stripRules(const UnicodeString & rules)750 UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) {
751 UnicodeString strippedRules;
752 int rulesLength = rules.length();
753 for (int idx = 0; idx < rulesLength; ) {
754 UChar ch = rules[idx++];
755 if (ch == chPound) {
756 while (idx < rulesLength
757 && ch != chCR && ch != chLF && ch != chNEL)
758 {
759 ch = rules[idx++];
760 }
761 }
762 if (!u_isISOControl(ch)) {
763 strippedRules.append(ch);
764 }
765 }
766 // strippedRules = strippedRules.unescape();
767 return strippedRules;
768 }
769
770
771 //----------------------------------------------------------------------------------------
772 //
773 // nextCharLL Low Level Next Char from rule input source.
774 // Get a char from the input character iterator,
775 // keep track of input position for error reporting.
776 //
777 //----------------------------------------------------------------------------------------
nextCharLL()778 UChar32 RBBIRuleScanner::nextCharLL() {
779 UChar32 ch;
780
781 if (fNextIndex >= fRB->fRules.length()) {
782 return (UChar32)-1;
783 }
784 ch = fRB->fRules.char32At(fNextIndex);
785 fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1);
786
787 if (ch == chCR ||
788 ch == chNEL ||
789 ch == chLS ||
790 ch == chLF && fLastChar != chCR) {
791 // Character is starting a new line. Bump up the line number, and
792 // reset the column to 0.
793 fLineNum++;
794 fCharNum=0;
795 if (fQuoteMode) {
796 error(U_BRK_NEW_LINE_IN_QUOTED_STRING);
797 fQuoteMode = FALSE;
798 }
799 }
800 else {
801 // Character is not starting a new line. Except in the case of a
802 // LF following a CR, increment the column position.
803 if (ch != chLF) {
804 fCharNum++;
805 }
806 }
807 fLastChar = ch;
808 return ch;
809 }
810
811
812 //---------------------------------------------------------------------------------
813 //
814 // nextChar for rules scanning. At this level, we handle stripping
815 // out comments and processing backslash character escapes.
816 // The rest of the rules grammar is handled at the next level up.
817 //
818 //---------------------------------------------------------------------------------
nextChar(RBBIRuleChar & c)819 void RBBIRuleScanner::nextChar(RBBIRuleChar &c) {
820
821 // Unicode Character constants needed for the processing done by nextChar(),
822 // in hex because literals wont work on EBCDIC machines.
823
824 fScanIndex = fNextIndex;
825 c.fChar = nextCharLL();
826 c.fEscaped = FALSE;
827
828 //
829 // check for '' sequence.
830 // These are recognized in all contexts, whether in quoted text or not.
831 //
832 if (c.fChar == chApos) {
833 if (fRB->fRules.char32At(fNextIndex) == chApos) {
834 c.fChar = nextCharLL(); // get nextChar officially so character counts
835 c.fEscaped = TRUE; // stay correct.
836 }
837 else
838 {
839 // Single quote, by itself.
840 // Toggle quoting mode.
841 // Return either '(' or ')', because quotes cause a grouping of the quoted text.
842 fQuoteMode = !fQuoteMode;
843 if (fQuoteMode == TRUE) {
844 c.fChar = chLParen;
845 } else {
846 c.fChar = chRParen;
847 }
848 c.fEscaped = FALSE; // The paren that we return is not escaped.
849 return;
850 }
851 }
852
853 if (fQuoteMode) {
854 c.fEscaped = TRUE;
855 }
856 else
857 {
858 // We are not in a 'quoted region' of the source.
859 //
860 if (c.fChar == chPound) {
861 // Start of a comment. Consume the rest of it.
862 // The new-line char that terminates the comment is always returned.
863 // It will be treated as white-space, and serves to break up anything
864 // that might otherwise incorrectly clump together with a comment in
865 // the middle (a variable name, for example.)
866 for (;;) {
867 c.fChar = nextCharLL();
868 if (c.fChar == (UChar32)-1 || // EOF
869 c.fChar == chCR ||
870 c.fChar == chLF ||
871 c.fChar == chNEL ||
872 c.fChar == chLS) {break;}
873 }
874 }
875 if (c.fChar == (UChar32)-1) {
876 return;
877 }
878
879 //
880 // check for backslash escaped characters.
881 // Use UnicodeString::unescapeAt() to handle them.
882 //
883 if (c.fChar == chBackSlash) {
884 c.fEscaped = TRUE;
885 int32_t startX = fNextIndex;
886 c.fChar = fRB->fRules.unescapeAt(fNextIndex);
887 if (fNextIndex == startX) {
888 error(U_BRK_HEX_DIGITS_EXPECTED);
889 }
890 fCharNum += fNextIndex-startX;
891 }
892 }
893 // putc(c.fChar, stdout);
894 }
895
896 //---------------------------------------------------------------------------------
897 //
898 // Parse RBBI rules. The state machine for rules parsing is here.
899 // The state tables are hand-written in the file rbbirpt.txt,
900 // and converted to the form used here by a perl
901 // script rbbicst.pl
902 //
903 //---------------------------------------------------------------------------------
parse()904 void RBBIRuleScanner::parse() {
905 uint16_t state;
906 const RBBIRuleTableEl *tableEl;
907
908 if (U_FAILURE(*fRB->fStatus)) {
909 return;
910 }
911
912 state = 1;
913 nextChar(fC);
914 //
915 // Main loop for the rule parsing state machine.
916 // Runs once per state transition.
917 // Each time through optionally performs, depending on the state table,
918 // - an advance to the the next input char
919 // - an action to be performed.
920 // - pushing or popping a state to/from the local state return stack.
921 //
922 for (;;) {
923 // Bail out if anything has gone wrong.
924 // RBBI rule file parsing stops on the first error encountered.
925 if (U_FAILURE(*fRB->fStatus)) {
926 break;
927 }
928
929 // Quit if state == 0. This is the normal way to exit the state machine.
930 //
931 if (state == 0) {
932 break;
933 }
934
935 // Find the state table element that matches the input char from the rule, or the
936 // class of the input character. Start with the first table row for this
937 // state, then linearly scan forward until we find a row that matches the
938 // character. The last row for each state always matches all characters, so
939 // the search will stop there, if not before.
940 //
941 tableEl = &gRuleParseStateTable[state];
942 #ifdef RBBI_DEBUG
943 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) {
944 RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ",
945 fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]);
946 }
947 #endif
948
949 for (;;) {
950 #ifdef RBBI_DEBUG
951 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf(".");}
952 #endif
953 if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE && tableEl->fCharClass == fC.fChar) {
954 // Table row specified an individual character, not a set, and
955 // the input character is not escaped, and
956 // the input character matched it.
957 break;
958 }
959 if (tableEl->fCharClass == 255) {
960 // Table row specified default, match anything character class.
961 break;
962 }
963 if (tableEl->fCharClass == 254 && fC.fEscaped) {
964 // Table row specified "escaped" and the char was escaped.
965 break;
966 }
967 if (tableEl->fCharClass == 253 && fC.fEscaped &&
968 (fC.fChar == 0x50 || fC.fChar == 0x70 )) {
969 // Table row specified "escaped P" and the char is either 'p' or 'P'.
970 break;
971 }
972 if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) {
973 // Table row specified eof and we hit eof on the input.
974 break;
975 }
976
977 if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
978 fC.fEscaped == FALSE && // char is not escaped &&
979 fC.fChar != (UChar32)-1) { // char is not EOF
980 UnicodeSet *uniset = fRuleSets[tableEl->fCharClass-128];
981 if (uniset->contains(fC.fChar)) {
982 // Table row specified a character class, or set of characters,
983 // and the current char matches it.
984 break;
985 }
986 }
987
988 // No match on this row, advance to the next row for this state,
989 tableEl++;
990 }
991 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");}
992
993 //
994 // We've found the row of the state table that matches the current input
995 // character from the rules string.
996 // Perform any action specified by this row in the state table.
997 if (doParseActions((int32_t)tableEl->fAction) == FALSE) {
998 // Break out of the state machine loop if the
999 // the action signalled some kind of error, or
1000 // the action was to exit, occurs on normal end-of-rules-input.
1001 break;
1002 }
1003
1004 if (tableEl->fPushState != 0) {
1005 fStackPtr++;
1006 if (fStackPtr >= kStackSize) {
1007 error(U_BRK_INTERNAL_ERROR);
1008 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow.");
1009 fStackPtr--;
1010 }
1011 fStack[fStackPtr] = tableEl->fPushState;
1012 }
1013
1014 if (tableEl->fNextChar) {
1015 nextChar(fC);
1016 }
1017
1018 // Get the next state from the table entry, or from the
1019 // state stack if the next state was specified as "pop".
1020 if (tableEl->fNextState != 255) {
1021 state = tableEl->fNextState;
1022 } else {
1023 state = fStack[fStackPtr];
1024 fStackPtr--;
1025 if (fStackPtr < 0) {
1026 error(U_BRK_INTERNAL_ERROR);
1027 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow.");
1028 fStackPtr++;
1029 }
1030 }
1031
1032 }
1033
1034 //
1035 // If there were NO user specified reverse rules, set up the equivalent of ".*;"
1036 //
1037 if (fRB->fReverseTree == NULL) {
1038 fRB->fReverseTree = pushNewNode(RBBINode::opStar);
1039 RBBINode *operand = pushNewNode(RBBINode::setRef);
1040 findSetFor(kAny, operand);
1041 fRB->fReverseTree->fLeftChild = operand;
1042 operand->fParent = fRB->fReverseTree;
1043 fNodeStackPtr -= 2;
1044 }
1045
1046
1047 //
1048 // Parsing of the input RBBI rules is complete.
1049 // We now have a parse tree for the rule expressions
1050 // and a list of all UnicodeSets that are referenced.
1051 //
1052 #ifdef RBBI_DEBUG
1053 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();}
1054 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree"))
1055 {
1056 RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n");
1057 fRB->fForwardTree->printTree(TRUE);
1058 RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n");
1059 fRB->fReverseTree->printTree(TRUE);
1060 RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n");
1061 fRB->fSafeFwdTree->printTree(TRUE);
1062 RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n");
1063 fRB->fSafeRevTree->printTree(TRUE);
1064 }
1065 #endif
1066 }
1067
1068
1069 //---------------------------------------------------------------------------------
1070 //
1071 // printNodeStack for debugging...
1072 //
1073 //---------------------------------------------------------------------------------
1074 #ifdef RBBI_DEBUG
printNodeStack(const char * title)1075 void RBBIRuleScanner::printNodeStack(const char *title) {
1076 int i;
1077 RBBIDebugPrintf("%s. Dumping node stack...\n", title);
1078 for (i=fNodeStackPtr; i>0; i--) {fNodeStack[i]->printTree(TRUE);}
1079 }
1080 #endif
1081
1082
1083
1084
1085 //---------------------------------------------------------------------------------
1086 //
1087 // pushNewNode create a new RBBINode of the specified type and push it
1088 // onto the stack of nodes.
1089 //
1090 //---------------------------------------------------------------------------------
pushNewNode(RBBINode::NodeType t)1091 RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) {
1092 fNodeStackPtr++;
1093 if (fNodeStackPtr >= kStackSize) {
1094 error(U_BRK_INTERNAL_ERROR);
1095 RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow.");
1096 *fRB->fStatus = U_BRK_INTERNAL_ERROR;
1097 return NULL;
1098 }
1099 fNodeStack[fNodeStackPtr] = new RBBINode(t);
1100 if (fNodeStack[fNodeStackPtr] == NULL) {
1101 *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR;
1102 }
1103 return fNodeStack[fNodeStackPtr];
1104 }
1105
1106
1107
1108 //---------------------------------------------------------------------------------
1109 //
1110 // scanSet Construct a UnicodeSet from the text at the current scan
1111 // position. Advance the scan position to the first character
1112 // after the set.
1113 //
1114 // A new RBBI setref node referring to the set is pushed onto the node
1115 // stack.
1116 //
1117 // The scan position is normally under the control of the state machine
1118 // that controls rule parsing. UnicodeSets, however, are parsed by
1119 // the UnicodeSet constructor, not by the RBBI rule parser.
1120 //
1121 //---------------------------------------------------------------------------------
scanSet()1122 void RBBIRuleScanner::scanSet() {
1123 UnicodeSet *uset;
1124 ParsePosition pos;
1125 int startPos;
1126 int i;
1127
1128 if (U_FAILURE(*fRB->fStatus)) {
1129 return;
1130 }
1131
1132 pos.setIndex(fScanIndex);
1133 startPos = fScanIndex;
1134 UErrorCode localStatus = U_ZERO_ERROR;
1135 uset = new UnicodeSet(fRB->fRules, pos, USET_IGNORE_SPACE,
1136 fSymbolTable,
1137 localStatus);
1138 if (U_FAILURE(localStatus)) {
1139 // TODO: Get more accurate position of the error from UnicodeSet's return info.
1140 // UnicodeSet appears to not be reporting correctly at this time.
1141 #ifdef RBBI_DEBUG
1142 RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex());
1143 #endif
1144 error(localStatus);
1145 delete uset;
1146 return;
1147 }
1148
1149 // Verify that the set contains at least one code point.
1150 //
1151 if (uset->isEmpty()) {
1152 // This set is empty.
1153 // Make it an error, because it almost certainly is not what the user wanted.
1154 // Also, avoids having to think about corner cases in the tree manipulation code
1155 // that occurs later on.
1156 error(U_BRK_RULE_EMPTY_SET);
1157 delete uset;
1158 return;
1159 }
1160
1161
1162 // Advance the RBBI parse postion over the UnicodeSet pattern.
1163 // Don't just set fScanIndex because the line/char positions maintained
1164 // for error reporting would be thrown off.
1165 i = pos.getIndex();
1166 for (;;) {
1167 if (fNextIndex >= i) {
1168 break;
1169 }
1170 nextCharLL();
1171 }
1172
1173 if (U_SUCCESS(*fRB->fStatus)) {
1174 RBBINode *n;
1175
1176 n = pushNewNode(RBBINode::setRef);
1177 n->fFirstPos = startPos;
1178 n->fLastPos = fNextIndex;
1179 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
1180 // findSetFor() serves several purposes here:
1181 // - Adopts storage for the UnicodeSet, will be responsible for deleting.
1182 // - Mantains collection of all sets in use, needed later for establishing
1183 // character categories for run time engine.
1184 // - Eliminates mulitiple instances of the same set.
1185 // - Creates a new uset node if necessary (if this isn't a duplicate.)
1186 findSetFor(n->fText, n, uset);
1187 }
1188
1189 }
1190
1191 U_NAMESPACE_END
1192
1193 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */
1194