1 /*
2 * Misc utility routines for accessing chip-specific features
3 * of the SiliconBackplane-based Broadcom chips.
4 *
5 * Copyright (C) 1999-2009, Broadcom Corporation
6 *
7 * Unless you and Broadcom execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2 (the "GPL"),
10 * available at http://www.broadcom.com/licenses/GPLv2.php, with the
11 * following added to such license:
12 *
13 * As a special exception, the copyright holders of this software give you
14 * permission to link this software with independent modules, and to copy and
15 * distribute the resulting executable under terms of your choice, provided that
16 * you also meet, for each linked independent module, the terms and conditions of
17 * the license of that module. An independent module is a module which is not
18 * derived from this software. The special exception does not apply to any
19 * modifications of the software.
20 *
21 * Notwithstanding the above, under no circumstances may you combine this
22 * software in any way with any other Broadcom software provided under a license
23 * other than the GPL, without Broadcom's express prior written consent.
24 *
25 * $Id: siutils.c,v 1.662.4.4.4.16.4.25 2009/09/22 13:32:03 Exp $
26 */
27
28 #include <typedefs.h>
29 #include <bcmdefs.h>
30 #include <osl.h>
31 #include <bcmutils.h>
32 #include <siutils.h>
33 #include <bcmdevs.h>
34 #include <hndsoc.h>
35 #include <sbchipc.h>
36 #include <pcicfg.h>
37 #include <sbpcmcia.h>
38 #include <sbsocram.h>
39 #include <bcmsdh.h>
40 #include <sdio.h>
41 #include <sbsdio.h>
42 #include <sbhnddma.h>
43 #include <sbsdpcmdev.h>
44 #include <bcmsdpcm.h>
45 #include <hndpmu.h>
46
47 #include "siutils_priv.h"
48
49 /* local prototypes */
50 static si_info_t *si_doattach(si_info_t *sii, uint devid, osl_t *osh, void *regs,
51 uint bustype, void *sdh, char **vars, uint *varsz);
52 static bool si_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh);
53 static bool si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, uint32 savewin,
54 uint *origidx, void *regs);
55
56
57 /* global variable to indicate reservation/release of gpio's */
58 static uint32 si_gpioreservation = 0;
59 static void *common_info_alloced = NULL;
60
61 /* global flag to prevent shared resources from being initialized multiple times in si_attach() */
62
63 /*
64 * Allocate a si handle.
65 * devid - pci device id (used to determine chip#)
66 * osh - opaque OS handle
67 * regs - virtual address of initial core registers
68 * bustype - pci/pcmcia/sb/sdio/etc
69 * vars - pointer to a pointer area for "environment" variables
70 * varsz - pointer to int to return the size of the vars
71 */
72 si_t *
si_attach(uint devid,osl_t * osh,void * regs,uint bustype,void * sdh,char ** vars,uint * varsz)73 si_attach(uint devid, osl_t *osh, void *regs,
74 uint bustype, void *sdh, char **vars, uint *varsz)
75 {
76 si_info_t *sii;
77
78 /* alloc si_info_t */
79 if ((sii = MALLOC(osh, sizeof (si_info_t))) == NULL) {
80 SI_ERROR(("si_attach: malloc failed! malloced %d bytes\n", MALLOCED(osh)));
81 return (NULL);
82 }
83
84 if (si_doattach(sii, devid, osh, regs, bustype, sdh, vars, varsz) == NULL) {
85 if (NULL != sii->common_info)
86 MFREE(osh, sii->common_info, sizeof(si_common_info_t));
87 MFREE(osh, sii, sizeof(si_info_t));
88 return (NULL);
89 }
90 sii->vars = vars ? *vars : NULL;
91 sii->varsz = varsz ? *varsz : 0;
92
93 return (si_t *)sii;
94 }
95
96 /* global kernel resource */
97 static si_info_t ksii;
98
99 static uint32 wd_msticks; /* watchdog timer ticks normalized to ms */
100
101 /* generic kernel variant of si_attach() */
102 si_t *
si_kattach(osl_t * osh)103 si_kattach(osl_t *osh)
104 {
105 static bool ksii_attached = FALSE;
106
107 if (!ksii_attached) {
108 void *regs = REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE);
109
110 if (si_doattach(&ksii, BCM4710_DEVICE_ID, osh, regs,
111 SI_BUS, NULL,
112 osh != SI_OSH ? &ksii.vars : NULL,
113 osh != SI_OSH ? &ksii.varsz : NULL) == NULL) {
114 if (NULL != ksii.common_info)
115 MFREE(osh, ksii.common_info, sizeof(si_common_info_t));
116 SI_ERROR(("si_kattach: si_doattach failed\n"));
117 REG_UNMAP(regs);
118 return NULL;
119 }
120 REG_UNMAP(regs);
121
122 /* save ticks normalized to ms for si_watchdog_ms() */
123 if (PMUCTL_ENAB(&ksii.pub)) {
124 /* based on 32KHz ILP clock */
125 wd_msticks = 32;
126 } else {
127 wd_msticks = ALP_CLOCK / 1000;
128 }
129
130 ksii_attached = TRUE;
131 SI_MSG(("si_kattach done. ccrev = %d, wd_msticks = %d\n",
132 ksii.pub.ccrev, wd_msticks));
133 }
134
135 return &ksii.pub;
136 }
137
138
139 static bool
si_buscore_prep(si_info_t * sii,uint bustype,uint devid,void * sdh)140 si_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh)
141 {
142 /* need to set memseg flag for CF card first before any sb registers access */
143 if (BUSTYPE(bustype) == PCMCIA_BUS)
144 sii->memseg = TRUE;
145
146
147 if (BUSTYPE(bustype) == SDIO_BUS) {
148 int err;
149 uint8 clkset;
150
151 /* Try forcing SDIO core to do ALPAvail request only */
152 clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ;
153 bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
154 if (!err) {
155 uint8 clkval;
156
157 /* If register supported, wait for ALPAvail and then force ALP */
158 clkval = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, NULL);
159 if ((clkval & ~SBSDIO_AVBITS) == clkset) {
160 SPINWAIT(((clkval = bcmsdh_cfg_read(sdh, SDIO_FUNC_1,
161 SBSDIO_FUNC1_CHIPCLKCSR, NULL)), !SBSDIO_ALPAV(clkval)),
162 PMU_MAX_TRANSITION_DLY);
163 if (!SBSDIO_ALPAV(clkval)) {
164 SI_ERROR(("timeout on ALPAV wait, clkval 0x%02x\n",
165 clkval));
166 return FALSE;
167 }
168 clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP;
169 bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR,
170 clkset, &err);
171 OSL_DELAY(65);
172 }
173 }
174
175 /* Also, disable the extra SDIO pull-ups */
176 bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL);
177 }
178
179
180 return TRUE;
181 }
182
183 static bool
si_buscore_setup(si_info_t * sii,chipcregs_t * cc,uint bustype,uint32 savewin,uint * origidx,void * regs)184 si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, uint32 savewin,
185 uint *origidx, void *regs)
186 {
187 bool pci, pcie;
188 uint i;
189 uint pciidx, pcieidx, pcirev, pcierev;
190
191 cc = si_setcoreidx(&sii->pub, SI_CC_IDX);
192 ASSERT((uintptr)cc);
193
194 /* get chipcommon rev */
195 sii->pub.ccrev = (int)si_corerev(&sii->pub);
196
197 /* get chipcommon chipstatus */
198 if (sii->pub.ccrev >= 11)
199 sii->pub.chipst = R_REG(sii->osh, &cc->chipstatus);
200
201 /* get chipcommon capabilites */
202 sii->pub.cccaps = R_REG(sii->osh, &cc->capabilities);
203
204 /* get pmu rev and caps */
205 if (sii->pub.cccaps & CC_CAP_PMU) {
206 sii->pub.pmucaps = R_REG(sii->osh, &cc->pmucapabilities);
207 sii->pub.pmurev = sii->pub.pmucaps & PCAP_REV_MASK;
208 }
209
210 SI_MSG(("Chipc: rev %d, caps 0x%x, chipst 0x%x pmurev %d, pmucaps 0x%x\n",
211 sii->pub.ccrev, sii->pub.cccaps, sii->pub.chipst, sii->pub.pmurev,
212 sii->pub.pmucaps));
213
214 /* figure out bus/orignal core idx */
215 sii->pub.buscoretype = NODEV_CORE_ID;
216 sii->pub.buscorerev = NOREV;
217 sii->pub.buscoreidx = BADIDX;
218
219 pci = pcie = FALSE;
220 pcirev = pcierev = NOREV;
221 pciidx = pcieidx = BADIDX;
222
223 for (i = 0; i < sii->numcores; i++) {
224 uint cid, crev;
225
226 si_setcoreidx(&sii->pub, i);
227 cid = si_coreid(&sii->pub);
228 crev = si_corerev(&sii->pub);
229
230 /* Display cores found */
231 SI_MSG(("CORE[%d]: id 0x%x rev %d base 0x%x regs 0x%p\n",
232 i, cid, crev, sii->common_info->coresba[i], sii->common_info->regs[i]));
233
234 if (BUSTYPE(bustype) == PCI_BUS) {
235 if (cid == PCI_CORE_ID) {
236 pciidx = i;
237 pcirev = crev;
238 pci = TRUE;
239 } else if (cid == PCIE_CORE_ID) {
240 pcieidx = i;
241 pcierev = crev;
242 pcie = TRUE;
243 }
244 } else if ((BUSTYPE(bustype) == PCMCIA_BUS) &&
245 (cid == PCMCIA_CORE_ID)) {
246 sii->pub.buscorerev = crev;
247 sii->pub.buscoretype = cid;
248 sii->pub.buscoreidx = i;
249 }
250 else if (((BUSTYPE(bustype) == SDIO_BUS) ||
251 (BUSTYPE(bustype) == SPI_BUS)) &&
252 ((cid == PCMCIA_CORE_ID) ||
253 (cid == SDIOD_CORE_ID))) {
254 sii->pub.buscorerev = crev;
255 sii->pub.buscoretype = cid;
256 sii->pub.buscoreidx = i;
257 }
258
259 /* find the core idx before entering this func. */
260 if ((savewin && (savewin == sii->common_info->coresba[i])) ||
261 (regs == sii->common_info->regs[i]))
262 *origidx = i;
263 }
264
265
266 SI_MSG(("Buscore id/type/rev %d/0x%x/%d\n", sii->pub.buscoreidx, sii->pub.buscoretype,
267 sii->pub.buscorerev));
268
269 if (BUSTYPE(sii->pub.bustype) == SI_BUS && (CHIPID(sii->pub.chip) == BCM4712_CHIP_ID) &&
270 (sii->pub.chippkg != BCM4712LARGE_PKG_ID) && (sii->pub.chiprev <= 3))
271 OR_REG(sii->osh, &cc->slow_clk_ctl, SCC_SS_XTAL);
272
273
274 /* Make sure any on-chip ARM is off (in case strapping is wrong), or downloaded code was
275 * already running.
276 */
277 if ((BUSTYPE(bustype) == SDIO_BUS) || (BUSTYPE(bustype) == SPI_BUS)) {
278 if (si_setcore(&sii->pub, ARM7S_CORE_ID, 0) ||
279 si_setcore(&sii->pub, ARMCM3_CORE_ID, 0))
280 si_core_disable(&sii->pub, 0);
281 }
282
283 /* return to the original core */
284 si_setcoreidx(&sii->pub, *origidx);
285
286 return TRUE;
287 }
288
289
290
291 static si_info_t *
si_doattach(si_info_t * sii,uint devid,osl_t * osh,void * regs,uint bustype,void * sdh,char ** vars,uint * varsz)292 si_doattach(si_info_t *sii, uint devid, osl_t *osh, void *regs,
293 uint bustype, void *sdh, char **vars, uint *varsz)
294 {
295 struct si_pub *sih = &sii->pub;
296 uint32 w, savewin;
297 chipcregs_t *cc;
298 char *pvars = NULL;
299 uint origidx;
300
301 ASSERT(GOODREGS(regs));
302
303 bzero((uchar*)sii, sizeof(si_info_t));
304
305
306 {
307 if (NULL == (common_info_alloced = (void *)MALLOC(osh, sizeof(si_common_info_t)))) {
308 SI_ERROR(("si_doattach: malloc failed! malloced %dbytes\n", MALLOCED(osh)));
309 return (NULL);
310 }
311 bzero((uchar*)(common_info_alloced), sizeof(si_common_info_t));
312 }
313 sii->common_info = (si_common_info_t *)common_info_alloced;
314 sii->common_info->attach_count++;
315
316 savewin = 0;
317
318 sih->buscoreidx = BADIDX;
319
320 sii->curmap = regs;
321 sii->sdh = sdh;
322 sii->osh = osh;
323
324
325 /* find Chipcommon address */
326 if (bustype == PCI_BUS) {
327 savewin = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32));
328 if (!GOODCOREADDR(savewin, SI_ENUM_BASE))
329 savewin = SI_ENUM_BASE;
330 OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, SI_ENUM_BASE);
331 cc = (chipcregs_t *)regs;
332 } else
333 if ((bustype == SDIO_BUS) || (bustype == SPI_BUS)) {
334 cc = (chipcregs_t *)sii->curmap;
335 } else {
336 cc = (chipcregs_t *)REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE);
337 }
338
339 sih->bustype = bustype;
340 if (bustype != BUSTYPE(bustype)) {
341 SI_ERROR(("si_doattach: bus type %d does not match configured bus type %d\n",
342 bustype, BUSTYPE(bustype)));
343 return NULL;
344 }
345
346 /* bus/core/clk setup for register access */
347 if (!si_buscore_prep(sii, bustype, devid, sdh)) {
348 SI_ERROR(("si_doattach: si_core_clk_prep failed %d\n", bustype));
349 return NULL;
350 }
351
352 /* ChipID recognition.
353 * We assume we can read chipid at offset 0 from the regs arg.
354 * If we add other chiptypes (or if we need to support old sdio hosts w/o chipcommon),
355 * some way of recognizing them needs to be added here.
356 */
357 w = R_REG(osh, &cc->chipid);
358 sih->socitype = (w & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
359 /* Might as wll fill in chip id rev & pkg */
360 sih->chip = w & CID_ID_MASK;
361 sih->chiprev = (w & CID_REV_MASK) >> CID_REV_SHIFT;
362 sih->chippkg = (w & CID_PKG_MASK) >> CID_PKG_SHIFT;
363 if ((CHIPID(sih->chip) == BCM4329_CHIP_ID) && (sih->chippkg != BCM4329_289PIN_PKG_ID))
364 sih->chippkg = BCM4329_182PIN_PKG_ID;
365 sih->issim = IS_SIM(sih->chippkg);
366
367 /* scan for cores */
368 if (CHIPTYPE(sii->pub.socitype) == SOCI_SB) {
369 SI_MSG(("Found chip type SB (0x%08x)\n", w));
370 sb_scan(&sii->pub, regs, devid);
371 } else if (CHIPTYPE(sii->pub.socitype) == SOCI_AI) {
372 SI_MSG(("Found chip type AI (0x%08x)\n", w));
373 /* pass chipc address instead of original core base */
374 ai_scan(&sii->pub, (void *)cc, devid);
375 } else {
376 SI_ERROR(("Found chip of unkown type (0x%08x)\n", w));
377 return NULL;
378 }
379 /* no cores found, bail out */
380 if (sii->numcores == 0) {
381 SI_ERROR(("si_doattach: could not find any cores\n"));
382 return NULL;
383 }
384 /* bus/core/clk setup */
385 origidx = SI_CC_IDX;
386 if (!si_buscore_setup(sii, cc, bustype, savewin, &origidx, regs)) {
387 SI_ERROR(("si_doattach: si_buscore_setup failed\n"));
388 return NULL;
389 }
390
391 pvars = NULL;
392
393
394
395 if (sii->pub.ccrev >= 20) {
396 cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
397 W_REG(osh, &cc->gpiopullup, 0);
398 W_REG(osh, &cc->gpiopulldown, 0);
399 si_setcoreidx(sih, origidx);
400 }
401
402 /* Skip PMU initialization from the Dongle Host.
403 * Firmware will take care of it when it comes up.
404 */
405
406
407
408 return (sii);
409 }
410
411 /* may be called with core in reset */
412 void
si_detach(si_t * sih)413 si_detach(si_t *sih)
414 {
415 si_info_t *sii;
416 uint idx;
417
418 sii = SI_INFO(sih);
419
420 if (sii == NULL)
421 return;
422
423 if (BUSTYPE(sih->bustype) == SI_BUS)
424 for (idx = 0; idx < SI_MAXCORES; idx++)
425 if (sii->common_info->regs[idx]) {
426 REG_UNMAP(sii->common_info->regs[idx]);
427 sii->common_info->regs[idx] = NULL;
428 }
429
430
431 if (1 == sii->common_info->attach_count--) {
432 MFREE(sii->osh, sii->common_info, sizeof(si_common_info_t));
433 common_info_alloced = NULL;
434 }
435
436 #if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SI_BUS)
437 if (sii != &ksii)
438 #endif /* !BCMBUSTYPE || (BCMBUSTYPE == SI_BUS) */
439 MFREE(sii->osh, sii, sizeof(si_info_t));
440 }
441
442 void *
si_osh(si_t * sih)443 si_osh(si_t *sih)
444 {
445 si_info_t *sii;
446
447 sii = SI_INFO(sih);
448 return sii->osh;
449 }
450
451 void
si_setosh(si_t * sih,osl_t * osh)452 si_setosh(si_t *sih, osl_t *osh)
453 {
454 si_info_t *sii;
455
456 sii = SI_INFO(sih);
457 if (sii->osh != NULL) {
458 SI_ERROR(("osh is already set....\n"));
459 ASSERT(!sii->osh);
460 }
461 sii->osh = osh;
462 }
463
464 /* register driver interrupt disabling and restoring callback functions */
465 void
si_register_intr_callback(si_t * sih,void * intrsoff_fn,void * intrsrestore_fn,void * intrsenabled_fn,void * intr_arg)466 si_register_intr_callback(si_t *sih, void *intrsoff_fn, void *intrsrestore_fn,
467 void *intrsenabled_fn, void *intr_arg)
468 {
469 si_info_t *sii;
470
471 sii = SI_INFO(sih);
472 sii->intr_arg = intr_arg;
473 sii->intrsoff_fn = (si_intrsoff_t)intrsoff_fn;
474 sii->intrsrestore_fn = (si_intrsrestore_t)intrsrestore_fn;
475 sii->intrsenabled_fn = (si_intrsenabled_t)intrsenabled_fn;
476 /* save current core id. when this function called, the current core
477 * must be the core which provides driver functions(il, et, wl, etc.)
478 */
479 sii->dev_coreid = sii->common_info->coreid[sii->curidx];
480 }
481
482 void
si_deregister_intr_callback(si_t * sih)483 si_deregister_intr_callback(si_t *sih)
484 {
485 si_info_t *sii;
486
487 sii = SI_INFO(sih);
488 sii->intrsoff_fn = NULL;
489 }
490
491 uint
si_intflag(si_t * sih)492 si_intflag(si_t *sih)
493 {
494 si_info_t *sii = SI_INFO(sih);
495 if (CHIPTYPE(sih->socitype) == SOCI_SB) {
496 sbconfig_t *ccsbr = (sbconfig_t *)((uintptr)((ulong)
497 (sii->common_info->coresba[SI_CC_IDX]) + SBCONFIGOFF));
498 return R_REG(sii->osh, &ccsbr->sbflagst);
499 } else if (CHIPTYPE(sih->socitype) == SOCI_AI)
500 return R_REG(sii->osh, ((uint32 *)(uintptr)
501 (sii->common_info->oob_router + OOB_STATUSA)));
502 else {
503 ASSERT(0);
504 return 0;
505 }
506 }
507
508 uint
si_flag(si_t * sih)509 si_flag(si_t *sih)
510 {
511 if (CHIPTYPE(sih->socitype) == SOCI_SB)
512 return sb_flag(sih);
513 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
514 return ai_flag(sih);
515 else {
516 ASSERT(0);
517 return 0;
518 }
519 }
520
521 void
si_setint(si_t * sih,int siflag)522 si_setint(si_t *sih, int siflag)
523 {
524 if (CHIPTYPE(sih->socitype) == SOCI_SB)
525 sb_setint(sih, siflag);
526 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
527 ai_setint(sih, siflag);
528 else
529 ASSERT(0);
530 }
531
532 uint
si_coreid(si_t * sih)533 si_coreid(si_t *sih)
534 {
535 si_info_t *sii;
536
537 sii = SI_INFO(sih);
538 return sii->common_info->coreid[sii->curidx];
539 }
540
541 uint
si_coreidx(si_t * sih)542 si_coreidx(si_t *sih)
543 {
544 si_info_t *sii;
545
546 sii = SI_INFO(sih);
547 return sii->curidx;
548 }
549
550 /* return the core-type instantiation # of the current core */
551 uint
si_coreunit(si_t * sih)552 si_coreunit(si_t *sih)
553 {
554 si_info_t *sii;
555 uint idx;
556 uint coreid;
557 uint coreunit;
558 uint i;
559
560 sii = SI_INFO(sih);
561 coreunit = 0;
562
563 idx = sii->curidx;
564
565 ASSERT(GOODREGS(sii->curmap));
566 coreid = si_coreid(sih);
567
568 /* count the cores of our type */
569 for (i = 0; i < idx; i++)
570 if (sii->common_info->coreid[i] == coreid)
571 coreunit++;
572
573 return (coreunit);
574 }
575
576 uint
si_corevendor(si_t * sih)577 si_corevendor(si_t *sih)
578 {
579 if (CHIPTYPE(sih->socitype) == SOCI_SB)
580 return sb_corevendor(sih);
581 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
582 return ai_corevendor(sih);
583 else {
584 ASSERT(0);
585 return 0;
586 }
587 }
588
589 bool
si_backplane64(si_t * sih)590 si_backplane64(si_t *sih)
591 {
592 return ((sih->cccaps & CC_CAP_BKPLN64) != 0);
593 }
594
595 uint
si_corerev(si_t * sih)596 si_corerev(si_t *sih)
597 {
598 if (CHIPTYPE(sih->socitype) == SOCI_SB)
599 return sb_corerev(sih);
600 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
601 return ai_corerev(sih);
602 else {
603 ASSERT(0);
604 return 0;
605 }
606 }
607
608 /* return index of coreid or BADIDX if not found */
609 uint
si_findcoreidx(si_t * sih,uint coreid,uint coreunit)610 si_findcoreidx(si_t *sih, uint coreid, uint coreunit)
611 {
612 si_info_t *sii;
613 uint found;
614 uint i;
615
616 sii = SI_INFO(sih);
617
618 found = 0;
619
620 for (i = 0; i < sii->numcores; i++)
621 if (sii->common_info->coreid[i] == coreid) {
622 if (found == coreunit)
623 return (i);
624 found++;
625 }
626
627 return (BADIDX);
628 }
629
630 /* return list of found cores */
631 uint
si_corelist(si_t * sih,uint coreid[])632 si_corelist(si_t *sih, uint coreid[])
633 {
634 si_info_t *sii;
635
636 sii = SI_INFO(sih);
637
638 bcopy((uchar*)sii->common_info->coreid, (uchar*)coreid, (sii->numcores * sizeof(uint)));
639 return (sii->numcores);
640 }
641
642 /* return current register mapping */
643 void *
si_coreregs(si_t * sih)644 si_coreregs(si_t *sih)
645 {
646 si_info_t *sii;
647
648 sii = SI_INFO(sih);
649 ASSERT(GOODREGS(sii->curmap));
650
651 return (sii->curmap);
652 }
653
654 /*
655 * This function changes logical "focus" to the indicated core;
656 * must be called with interrupts off.
657 * Moreover, callers should keep interrupts off during switching out of and back to d11 core
658 */
659 void *
si_setcore(si_t * sih,uint coreid,uint coreunit)660 si_setcore(si_t *sih, uint coreid, uint coreunit)
661 {
662 uint idx;
663
664 idx = si_findcoreidx(sih, coreid, coreunit);
665 if (!GOODIDX(idx))
666 return (NULL);
667
668 if (CHIPTYPE(sih->socitype) == SOCI_SB)
669 return sb_setcoreidx(sih, idx);
670 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
671 return ai_setcoreidx(sih, idx);
672 else {
673 ASSERT(0);
674 return NULL;
675 }
676 }
677
678 void *
si_setcoreidx(si_t * sih,uint coreidx)679 si_setcoreidx(si_t *sih, uint coreidx)
680 {
681 if (CHIPTYPE(sih->socitype) == SOCI_SB)
682 return sb_setcoreidx(sih, coreidx);
683 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
684 return ai_setcoreidx(sih, coreidx);
685 else {
686 ASSERT(0);
687 return NULL;
688 }
689 }
690
691 /* Turn off interrupt as required by sb_setcore, before switch core */
si_switch_core(si_t * sih,uint coreid,uint * origidx,uint * intr_val)692 void *si_switch_core(si_t *sih, uint coreid, uint *origidx, uint *intr_val)
693 {
694 void *cc;
695 si_info_t *sii;
696
697 sii = SI_INFO(sih);
698
699 INTR_OFF(sii, *intr_val);
700 *origidx = sii->curidx;
701 cc = si_setcore(sih, coreid, 0);
702 ASSERT(cc != NULL);
703
704 return cc;
705 }
706
707 /* restore coreidx and restore interrupt */
si_restore_core(si_t * sih,uint coreid,uint intr_val)708 void si_restore_core(si_t *sih, uint coreid, uint intr_val)
709 {
710 si_info_t *sii;
711
712 sii = SI_INFO(sih);
713
714 si_setcoreidx(sih, coreid);
715 INTR_RESTORE(sii, intr_val);
716 }
717
718 int
si_numaddrspaces(si_t * sih)719 si_numaddrspaces(si_t *sih)
720 {
721 if (CHIPTYPE(sih->socitype) == SOCI_SB)
722 return sb_numaddrspaces(sih);
723 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
724 return ai_numaddrspaces(sih);
725 else {
726 ASSERT(0);
727 return 0;
728 }
729 }
730
731 uint32
si_addrspace(si_t * sih,uint asidx)732 si_addrspace(si_t *sih, uint asidx)
733 {
734 if (CHIPTYPE(sih->socitype) == SOCI_SB)
735 return sb_addrspace(sih, asidx);
736 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
737 return ai_addrspace(sih, asidx);
738 else {
739 ASSERT(0);
740 return 0;
741 }
742 }
743
744 uint32
si_addrspacesize(si_t * sih,uint asidx)745 si_addrspacesize(si_t *sih, uint asidx)
746 {
747 if (CHIPTYPE(sih->socitype) == SOCI_SB)
748 return sb_addrspacesize(sih, asidx);
749 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
750 return ai_addrspacesize(sih, asidx);
751 else {
752 ASSERT(0);
753 return 0;
754 }
755 }
756
757 uint32
si_core_cflags(si_t * sih,uint32 mask,uint32 val)758 si_core_cflags(si_t *sih, uint32 mask, uint32 val)
759 {
760 if (CHIPTYPE(sih->socitype) == SOCI_SB)
761 return sb_core_cflags(sih, mask, val);
762 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
763 return ai_core_cflags(sih, mask, val);
764 else {
765 ASSERT(0);
766 return 0;
767 }
768 }
769
770 void
si_core_cflags_wo(si_t * sih,uint32 mask,uint32 val)771 si_core_cflags_wo(si_t *sih, uint32 mask, uint32 val)
772 {
773 if (CHIPTYPE(sih->socitype) == SOCI_SB)
774 sb_core_cflags_wo(sih, mask, val);
775 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
776 ai_core_cflags_wo(sih, mask, val);
777 else
778 ASSERT(0);
779 }
780
781 uint32
si_core_sflags(si_t * sih,uint32 mask,uint32 val)782 si_core_sflags(si_t *sih, uint32 mask, uint32 val)
783 {
784 if (CHIPTYPE(sih->socitype) == SOCI_SB)
785 return sb_core_sflags(sih, mask, val);
786 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
787 return ai_core_sflags(sih, mask, val);
788 else {
789 ASSERT(0);
790 return 0;
791 }
792 }
793
794 bool
si_iscoreup(si_t * sih)795 si_iscoreup(si_t *sih)
796 {
797 if (CHIPTYPE(sih->socitype) == SOCI_SB)
798 return sb_iscoreup(sih);
799 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
800 return ai_iscoreup(sih);
801 else {
802 ASSERT(0);
803 return FALSE;
804 }
805 }
806
807 void
si_write_wrapperreg(si_t * sih,uint32 offset,uint32 val)808 si_write_wrapperreg(si_t *sih, uint32 offset, uint32 val)
809 {
810 /* only for 4319, no requirement for SOCI_SB */
811 if (CHIPTYPE(sih->socitype) == SOCI_AI) {
812 ai_write_wrap_reg(sih, offset, val);
813 }
814 else
815 return;
816
817 return;
818 }
819
820 uint
si_corereg(si_t * sih,uint coreidx,uint regoff,uint mask,uint val)821 si_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
822 {
823 if (CHIPTYPE(sih->socitype) == SOCI_SB)
824 return sb_corereg(sih, coreidx, regoff, mask, val);
825 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
826 return ai_corereg(sih, coreidx, regoff, mask, val);
827 else {
828 ASSERT(0);
829 return 0;
830 }
831 }
832
833 void
si_core_disable(si_t * sih,uint32 bits)834 si_core_disable(si_t *sih, uint32 bits)
835 {
836 if (CHIPTYPE(sih->socitype) == SOCI_SB)
837 sb_core_disable(sih, bits);
838 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
839 ai_core_disable(sih, bits);
840 }
841
842 void
si_core_reset(si_t * sih,uint32 bits,uint32 resetbits)843 si_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
844 {
845 if (CHIPTYPE(sih->socitype) == SOCI_SB)
846 sb_core_reset(sih, bits, resetbits);
847 else if (CHIPTYPE(sih->socitype) == SOCI_AI)
848 ai_core_reset(sih, bits, resetbits);
849 }
850
851 void
si_core_tofixup(si_t * sih)852 si_core_tofixup(si_t *sih)
853 {
854 if (CHIPTYPE(sih->socitype) == SOCI_SB)
855 sb_core_tofixup(sih);
856 }
857
858 /* Run bist on current core. Caller needs to take care of core-specific bist hazards */
859 int
si_corebist(si_t * sih)860 si_corebist(si_t *sih)
861 {
862 uint32 cflags;
863 int result = 0;
864
865 /* Read core control flags */
866 cflags = si_core_cflags(sih, 0, 0);
867
868 /* Set bist & fgc */
869 si_core_cflags(sih, 0, (SICF_BIST_EN | SICF_FGC));
870
871 /* Wait for bist done */
872 SPINWAIT(((si_core_sflags(sih, 0, 0) & SISF_BIST_DONE) == 0), 100000);
873
874 if (si_core_sflags(sih, 0, 0) & SISF_BIST_ERROR)
875 result = BCME_ERROR;
876
877 /* Reset core control flags */
878 si_core_cflags(sih, 0xffff, cflags);
879
880 return result;
881 }
882
883 static uint32
factor6(uint32 x)884 factor6(uint32 x)
885 {
886 switch (x) {
887 case CC_F6_2: return 2;
888 case CC_F6_3: return 3;
889 case CC_F6_4: return 4;
890 case CC_F6_5: return 5;
891 case CC_F6_6: return 6;
892 case CC_F6_7: return 7;
893 default: return 0;
894 }
895 }
896
897 /* calculate the speed the SI would run at given a set of clockcontrol values */
898 uint32
si_clock_rate(uint32 pll_type,uint32 n,uint32 m)899 si_clock_rate(uint32 pll_type, uint32 n, uint32 m)
900 {
901 uint32 n1, n2, clock, m1, m2, m3, mc;
902
903 n1 = n & CN_N1_MASK;
904 n2 = (n & CN_N2_MASK) >> CN_N2_SHIFT;
905
906 if (pll_type == PLL_TYPE6) {
907 if (m & CC_T6_MMASK)
908 return CC_T6_M1;
909 else
910 return CC_T6_M0;
911 } else if ((pll_type == PLL_TYPE1) ||
912 (pll_type == PLL_TYPE3) ||
913 (pll_type == PLL_TYPE4) ||
914 (pll_type == PLL_TYPE7)) {
915 n1 = factor6(n1);
916 n2 += CC_F5_BIAS;
917 } else if (pll_type == PLL_TYPE2) {
918 n1 += CC_T2_BIAS;
919 n2 += CC_T2_BIAS;
920 ASSERT((n1 >= 2) && (n1 <= 7));
921 ASSERT((n2 >= 5) && (n2 <= 23));
922 } else if (pll_type == PLL_TYPE5) {
923 return (100000000);
924 } else
925 ASSERT(0);
926 /* PLL types 3 and 7 use BASE2 (25Mhz) */
927 if ((pll_type == PLL_TYPE3) ||
928 (pll_type == PLL_TYPE7)) {
929 clock = CC_CLOCK_BASE2 * n1 * n2;
930 } else
931 clock = CC_CLOCK_BASE1 * n1 * n2;
932
933 if (clock == 0)
934 return 0;
935
936 m1 = m & CC_M1_MASK;
937 m2 = (m & CC_M2_MASK) >> CC_M2_SHIFT;
938 m3 = (m & CC_M3_MASK) >> CC_M3_SHIFT;
939 mc = (m & CC_MC_MASK) >> CC_MC_SHIFT;
940
941 if ((pll_type == PLL_TYPE1) ||
942 (pll_type == PLL_TYPE3) ||
943 (pll_type == PLL_TYPE4) ||
944 (pll_type == PLL_TYPE7)) {
945 m1 = factor6(m1);
946 if ((pll_type == PLL_TYPE1) || (pll_type == PLL_TYPE3))
947 m2 += CC_F5_BIAS;
948 else
949 m2 = factor6(m2);
950 m3 = factor6(m3);
951
952 switch (mc) {
953 case CC_MC_BYPASS: return (clock);
954 case CC_MC_M1: return (clock / m1);
955 case CC_MC_M1M2: return (clock / (m1 * m2));
956 case CC_MC_M1M2M3: return (clock / (m1 * m2 * m3));
957 case CC_MC_M1M3: return (clock / (m1 * m3));
958 default: return (0);
959 }
960 } else {
961 ASSERT(pll_type == PLL_TYPE2);
962
963 m1 += CC_T2_BIAS;
964 m2 += CC_T2M2_BIAS;
965 m3 += CC_T2_BIAS;
966 ASSERT((m1 >= 2) && (m1 <= 7));
967 ASSERT((m2 >= 3) && (m2 <= 10));
968 ASSERT((m3 >= 2) && (m3 <= 7));
969
970 if ((mc & CC_T2MC_M1BYP) == 0)
971 clock /= m1;
972 if ((mc & CC_T2MC_M2BYP) == 0)
973 clock /= m2;
974 if ((mc & CC_T2MC_M3BYP) == 0)
975 clock /= m3;
976
977 return (clock);
978 }
979 }
980
981
982 /* set chip watchdog reset timer to fire in 'ticks' */
983 void
si_watchdog(si_t * sih,uint ticks)984 si_watchdog(si_t *sih, uint ticks)
985 {
986 if (PMUCTL_ENAB(sih)) {
987
988 if ((sih->chip == BCM4319_CHIP_ID) && (sih->chiprev == 0) && (ticks != 0)) {
989 si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, clk_ctl_st), ~0, 0x2);
990 si_setcore(sih, USB20D_CORE_ID, 0);
991 si_core_disable(sih, 1);
992 si_setcore(sih, CC_CORE_ID, 0);
993 }
994
995 if (ticks == 1)
996 ticks = 2;
997 si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, pmuwatchdog), ~0, ticks);
998 } else {
999 /* instant NMI */
1000 si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, watchdog), ~0, ticks);
1001 }
1002 }
1003
1004 #if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SI_BUS)
1005 /* trigger watchdog reset after ms milliseconds */
1006 void
si_watchdog_ms(si_t * sih,uint32 ms)1007 si_watchdog_ms(si_t *sih, uint32 ms)
1008 {
1009 si_info_t *sii;
1010
1011 sii = SI_INFO(sih);
1012
1013 si_watchdog(sih, wd_msticks * ms);
1014 }
1015 #endif
1016
1017
1018
1019 /* initialize the sdio core */
1020 void
si_sdio_init(si_t * sih)1021 si_sdio_init(si_t *sih)
1022 {
1023 si_info_t *sii = SI_INFO(sih);
1024
1025 if (((sih->buscoretype == PCMCIA_CORE_ID) && (sih->buscorerev >= 8)) ||
1026 (sih->buscoretype == SDIOD_CORE_ID)) {
1027 uint idx;
1028 sdpcmd_regs_t *sdpregs;
1029
1030 /* get the current core index */
1031 idx = sii->curidx;
1032 ASSERT(idx == si_findcoreidx(sih, D11_CORE_ID, 0));
1033
1034 /* switch to sdio core */
1035 if (!(sdpregs = (sdpcmd_regs_t *)si_setcore(sih, PCMCIA_CORE_ID, 0)))
1036 sdpregs = (sdpcmd_regs_t *)si_setcore(sih, SDIOD_CORE_ID, 0);
1037 ASSERT(sdpregs);
1038
1039 SI_MSG(("si_sdio_init: For PCMCIA/SDIO Corerev %d, enable ints from core %d " \
1040 "through SD core %d (%p)\n",
1041 sih->buscorerev, idx, sii->curidx, sdpregs));
1042
1043 /* enable backplane error and core interrupts */
1044 W_REG(sii->osh, &sdpregs->hostintmask, I_SBINT);
1045 W_REG(sii->osh, &sdpregs->sbintmask, (I_SB_SERR | I_SB_RESPERR | (1 << idx)));
1046
1047 /* switch back to previous core */
1048 si_setcoreidx(sih, idx);
1049 }
1050
1051 /* enable interrupts */
1052 bcmsdh_intr_enable(sii->sdh);
1053
1054 }
1055
1056
1057 /* change logical "focus" to the gpio core for optimized access */
1058 void *
si_gpiosetcore(si_t * sih)1059 si_gpiosetcore(si_t *sih)
1060 {
1061 return (si_setcoreidx(sih, SI_CC_IDX));
1062 }
1063
1064 /* mask&set gpiocontrol bits */
1065 uint32
si_gpiocontrol(si_t * sih,uint32 mask,uint32 val,uint8 priority)1066 si_gpiocontrol(si_t *sih, uint32 mask, uint32 val, uint8 priority)
1067 {
1068 uint regoff;
1069
1070 regoff = 0;
1071
1072 /* gpios could be shared on router platforms
1073 * ignore reservation if it's high priority (e.g., test apps)
1074 */
1075 if ((priority != GPIO_HI_PRIORITY) &&
1076 (BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
1077 mask = priority ? (si_gpioreservation & mask) :
1078 ((si_gpioreservation | mask) & ~(si_gpioreservation));
1079 val &= mask;
1080 }
1081
1082 regoff = OFFSETOF(chipcregs_t, gpiocontrol);
1083 return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
1084 }
1085
1086 /* mask&set gpio output enable bits */
1087 uint32
si_gpioouten(si_t * sih,uint32 mask,uint32 val,uint8 priority)1088 si_gpioouten(si_t *sih, uint32 mask, uint32 val, uint8 priority)
1089 {
1090 uint regoff;
1091
1092 regoff = 0;
1093
1094 /* gpios could be shared on router platforms
1095 * ignore reservation if it's high priority (e.g., test apps)
1096 */
1097 if ((priority != GPIO_HI_PRIORITY) &&
1098 (BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
1099 mask = priority ? (si_gpioreservation & mask) :
1100 ((si_gpioreservation | mask) & ~(si_gpioreservation));
1101 val &= mask;
1102 }
1103
1104 regoff = OFFSETOF(chipcregs_t, gpioouten);
1105 return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
1106 }
1107
1108 /* mask&set gpio output bits */
1109 uint32
si_gpioout(si_t * sih,uint32 mask,uint32 val,uint8 priority)1110 si_gpioout(si_t *sih, uint32 mask, uint32 val, uint8 priority)
1111 {
1112 uint regoff;
1113
1114 regoff = 0;
1115
1116 /* gpios could be shared on router platforms
1117 * ignore reservation if it's high priority (e.g., test apps)
1118 */
1119 if ((priority != GPIO_HI_PRIORITY) &&
1120 (BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
1121 mask = priority ? (si_gpioreservation & mask) :
1122 ((si_gpioreservation | mask) & ~(si_gpioreservation));
1123 val &= mask;
1124 }
1125
1126 regoff = OFFSETOF(chipcregs_t, gpioout);
1127 return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
1128 }
1129
1130 /* reserve one gpio */
1131 uint32
si_gpioreserve(si_t * sih,uint32 gpio_bitmask,uint8 priority)1132 si_gpioreserve(si_t *sih, uint32 gpio_bitmask, uint8 priority)
1133 {
1134 si_info_t *sii;
1135
1136 sii = SI_INFO(sih);
1137
1138 /* only cores on SI_BUS share GPIO's and only applcation users need to
1139 * reserve/release GPIO
1140 */
1141 if ((BUSTYPE(sih->bustype) != SI_BUS) || (!priority)) {
1142 ASSERT((BUSTYPE(sih->bustype) == SI_BUS) && (priority));
1143 return -1;
1144 }
1145 /* make sure only one bit is set */
1146 if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
1147 ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1)));
1148 return -1;
1149 }
1150
1151 /* already reserved */
1152 if (si_gpioreservation & gpio_bitmask)
1153 return -1;
1154 /* set reservation */
1155 si_gpioreservation |= gpio_bitmask;
1156
1157 return si_gpioreservation;
1158 }
1159
1160 /* release one gpio */
1161 /*
1162 * releasing the gpio doesn't change the current value on the GPIO last write value
1163 * persists till some one overwrites it
1164 */
1165
1166 uint32
si_gpiorelease(si_t * sih,uint32 gpio_bitmask,uint8 priority)1167 si_gpiorelease(si_t *sih, uint32 gpio_bitmask, uint8 priority)
1168 {
1169 si_info_t *sii;
1170
1171 sii = SI_INFO(sih);
1172
1173 /* only cores on SI_BUS share GPIO's and only applcation users need to
1174 * reserve/release GPIO
1175 */
1176 if ((BUSTYPE(sih->bustype) != SI_BUS) || (!priority)) {
1177 ASSERT((BUSTYPE(sih->bustype) == SI_BUS) && (priority));
1178 return -1;
1179 }
1180 /* make sure only one bit is set */
1181 if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
1182 ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1)));
1183 return -1;
1184 }
1185
1186 /* already released */
1187 if (!(si_gpioreservation & gpio_bitmask))
1188 return -1;
1189
1190 /* clear reservation */
1191 si_gpioreservation &= ~gpio_bitmask;
1192
1193 return si_gpioreservation;
1194 }
1195
1196 /* return the current gpioin register value */
1197 uint32
si_gpioin(si_t * sih)1198 si_gpioin(si_t *sih)
1199 {
1200 si_info_t *sii;
1201 uint regoff;
1202
1203 sii = SI_INFO(sih);
1204 regoff = 0;
1205
1206 regoff = OFFSETOF(chipcregs_t, gpioin);
1207 return (si_corereg(sih, SI_CC_IDX, regoff, 0, 0));
1208 }
1209
1210 /* mask&set gpio interrupt polarity bits */
1211 uint32
si_gpiointpolarity(si_t * sih,uint32 mask,uint32 val,uint8 priority)1212 si_gpiointpolarity(si_t *sih, uint32 mask, uint32 val, uint8 priority)
1213 {
1214 si_info_t *sii;
1215 uint regoff;
1216
1217 sii = SI_INFO(sih);
1218 regoff = 0;
1219
1220 /* gpios could be shared on router platforms */
1221 if ((BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
1222 mask = priority ? (si_gpioreservation & mask) :
1223 ((si_gpioreservation | mask) & ~(si_gpioreservation));
1224 val &= mask;
1225 }
1226
1227 regoff = OFFSETOF(chipcregs_t, gpiointpolarity);
1228 return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
1229 }
1230
1231 /* mask&set gpio interrupt mask bits */
1232 uint32
si_gpiointmask(si_t * sih,uint32 mask,uint32 val,uint8 priority)1233 si_gpiointmask(si_t *sih, uint32 mask, uint32 val, uint8 priority)
1234 {
1235 si_info_t *sii;
1236 uint regoff;
1237
1238 sii = SI_INFO(sih);
1239 regoff = 0;
1240
1241 /* gpios could be shared on router platforms */
1242 if ((BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
1243 mask = priority ? (si_gpioreservation & mask) :
1244 ((si_gpioreservation | mask) & ~(si_gpioreservation));
1245 val &= mask;
1246 }
1247
1248 regoff = OFFSETOF(chipcregs_t, gpiointmask);
1249 return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
1250 }
1251
1252 /* assign the gpio to an led */
1253 uint32
si_gpioled(si_t * sih,uint32 mask,uint32 val)1254 si_gpioled(si_t *sih, uint32 mask, uint32 val)
1255 {
1256 si_info_t *sii;
1257
1258 sii = SI_INFO(sih);
1259 if (sih->ccrev < 16)
1260 return -1;
1261
1262 /* gpio led powersave reg */
1263 return (si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, gpiotimeroutmask), mask, val));
1264 }
1265
1266 /* mask&set gpio timer val */
1267 uint32
si_gpiotimerval(si_t * sih,uint32 mask,uint32 gpiotimerval)1268 si_gpiotimerval(si_t *sih, uint32 mask, uint32 gpiotimerval)
1269 {
1270 si_info_t *sii;
1271
1272 sii = SI_INFO(sih);
1273
1274 if (sih->ccrev < 16)
1275 return -1;
1276
1277 return (si_corereg(sih, SI_CC_IDX,
1278 OFFSETOF(chipcregs_t, gpiotimerval), mask, gpiotimerval));
1279 }
1280
1281 uint32
si_gpiopull(si_t * sih,bool updown,uint32 mask,uint32 val)1282 si_gpiopull(si_t *sih, bool updown, uint32 mask, uint32 val)
1283 {
1284 si_info_t *sii;
1285 uint offs;
1286
1287 sii = SI_INFO(sih);
1288 if (sih->ccrev < 20)
1289 return -1;
1290
1291 offs = (updown ? OFFSETOF(chipcregs_t, gpiopulldown) : OFFSETOF(chipcregs_t, gpiopullup));
1292 return (si_corereg(sih, SI_CC_IDX, offs, mask, val));
1293 }
1294
1295 uint32
si_gpioevent(si_t * sih,uint regtype,uint32 mask,uint32 val)1296 si_gpioevent(si_t *sih, uint regtype, uint32 mask, uint32 val)
1297 {
1298 si_info_t *sii;
1299 uint offs;
1300
1301 sii = SI_INFO(sih);
1302 if (sih->ccrev < 11)
1303 return -1;
1304
1305 if (regtype == GPIO_REGEVT)
1306 offs = OFFSETOF(chipcregs_t, gpioevent);
1307 else if (regtype == GPIO_REGEVT_INTMSK)
1308 offs = OFFSETOF(chipcregs_t, gpioeventintmask);
1309 else if (regtype == GPIO_REGEVT_INTPOL)
1310 offs = OFFSETOF(chipcregs_t, gpioeventintpolarity);
1311 else
1312 return -1;
1313
1314 return (si_corereg(sih, SI_CC_IDX, offs, mask, val));
1315 }
1316
1317 void *
si_gpio_handler_register(si_t * sih,uint32 event,bool level,gpio_handler_t cb,void * arg)1318 si_gpio_handler_register(si_t *sih, uint32 event,
1319 bool level, gpio_handler_t cb, void *arg)
1320 {
1321 si_info_t *sii;
1322 gpioh_item_t *gi;
1323
1324 ASSERT(event);
1325 ASSERT(cb != NULL);
1326
1327 sii = SI_INFO(sih);
1328 if (sih->ccrev < 11)
1329 return NULL;
1330
1331 if ((gi = MALLOC(sii->osh, sizeof(gpioh_item_t))) == NULL)
1332 return NULL;
1333
1334 bzero(gi, sizeof(gpioh_item_t));
1335 gi->event = event;
1336 gi->handler = cb;
1337 gi->arg = arg;
1338 gi->level = level;
1339
1340 gi->next = sii->gpioh_head;
1341 sii->gpioh_head = gi;
1342
1343 return (void *)(gi);
1344 }
1345
1346 void
si_gpio_handler_unregister(si_t * sih,void * gpioh)1347 si_gpio_handler_unregister(si_t *sih, void *gpioh)
1348 {
1349 si_info_t *sii;
1350 gpioh_item_t *p, *n;
1351
1352 sii = SI_INFO(sih);
1353 if (sih->ccrev < 11)
1354 return;
1355
1356 ASSERT(sii->gpioh_head != NULL);
1357 if ((void*)sii->gpioh_head == gpioh) {
1358 sii->gpioh_head = sii->gpioh_head->next;
1359 MFREE(sii->osh, gpioh, sizeof(gpioh_item_t));
1360 return;
1361 } else {
1362 p = sii->gpioh_head;
1363 n = p->next;
1364 while (n) {
1365 if ((void*)n == gpioh) {
1366 p->next = n->next;
1367 MFREE(sii->osh, gpioh, sizeof(gpioh_item_t));
1368 return;
1369 }
1370 p = n;
1371 n = n->next;
1372 }
1373 }
1374
1375 ASSERT(0); /* Not found in list */
1376 }
1377
1378 void
si_gpio_handler_process(si_t * sih)1379 si_gpio_handler_process(si_t *sih)
1380 {
1381 si_info_t *sii;
1382 gpioh_item_t *h;
1383 uint32 status;
1384 uint32 level = si_gpioin(sih);
1385 uint32 edge = si_gpioevent(sih, GPIO_REGEVT, 0, 0);
1386
1387 sii = SI_INFO(sih);
1388 for (h = sii->gpioh_head; h != NULL; h = h->next) {
1389 if (h->handler) {
1390 status = (h->level ? level : edge);
1391
1392 if (status & h->event)
1393 h->handler(status, h->arg);
1394 }
1395 }
1396
1397 si_gpioevent(sih, GPIO_REGEVT, edge, edge); /* clear edge-trigger status */
1398 }
1399
1400 uint32
si_gpio_int_enable(si_t * sih,bool enable)1401 si_gpio_int_enable(si_t *sih, bool enable)
1402 {
1403 si_info_t *sii;
1404 uint offs;
1405
1406 sii = SI_INFO(sih);
1407 if (sih->ccrev < 11)
1408 return -1;
1409
1410 offs = OFFSETOF(chipcregs_t, intmask);
1411 return (si_corereg(sih, SI_CC_IDX, offs, CI_GPIO, (enable ? CI_GPIO : 0)));
1412 }
1413
1414
1415 /* Return the RAM size of the SOCRAM core */
1416 uint32
si_socram_size(si_t * sih)1417 si_socram_size(si_t *sih)
1418 {
1419 si_info_t *sii;
1420 uint origidx;
1421 uint intr_val = 0;
1422
1423 sbsocramregs_t *regs;
1424 bool wasup;
1425 uint corerev;
1426 uint32 coreinfo;
1427 uint memsize = 0;
1428
1429 sii = SI_INFO(sih);
1430
1431 /* Block ints and save current core */
1432 INTR_OFF(sii, intr_val);
1433 origidx = si_coreidx(sih);
1434
1435 /* Switch to SOCRAM core */
1436 if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
1437 goto done;
1438
1439 /* Get info for determining size */
1440 if (!(wasup = si_iscoreup(sih)))
1441 si_core_reset(sih, 0, 0);
1442 corerev = si_corerev(sih);
1443 coreinfo = R_REG(sii->osh, ®s->coreinfo);
1444
1445 /* Calculate size from coreinfo based on rev */
1446 if (corerev == 0)
1447 memsize = 1 << (16 + (coreinfo & SRCI_MS0_MASK));
1448 else if (corerev < 3) {
1449 memsize = 1 << (SR_BSZ_BASE + (coreinfo & SRCI_SRBSZ_MASK));
1450 memsize *= (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
1451 } else {
1452 uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
1453 uint bsz = (coreinfo & SRCI_SRBSZ_MASK);
1454 uint lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
1455 if (lss != 0)
1456 nb --;
1457 memsize = nb * (1 << (bsz + SR_BSZ_BASE));
1458 if (lss != 0)
1459 memsize += (1 << ((lss - 1) + SR_BSZ_BASE));
1460 }
1461
1462 /* Return to previous state and core */
1463 if (!wasup)
1464 si_core_disable(sih, 0);
1465 si_setcoreidx(sih, origidx);
1466
1467 done:
1468 INTR_RESTORE(sii, intr_val);
1469
1470 return memsize;
1471 }
1472
1473
1474 void
si_btcgpiowar(si_t * sih)1475 si_btcgpiowar(si_t *sih)
1476 {
1477 si_info_t *sii;
1478 uint origidx;
1479 uint intr_val = 0;
1480 chipcregs_t *cc;
1481
1482 sii = SI_INFO(sih);
1483
1484 /* Make sure that there is ChipCommon core present &&
1485 * UART_TX is strapped to 1
1486 */
1487 if (!(sih->cccaps & CC_CAP_UARTGPIO))
1488 return;
1489
1490 /* si_corereg cannot be used as we have to guarantee 8-bit read/writes */
1491 INTR_OFF(sii, intr_val);
1492
1493 origidx = si_coreidx(sih);
1494
1495 cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
1496 ASSERT(cc != NULL);
1497
1498 W_REG(sii->osh, &cc->uart0mcr, R_REG(sii->osh, &cc->uart0mcr) | 0x04);
1499
1500 /* restore the original index */
1501 si_setcoreidx(sih, origidx);
1502
1503 INTR_RESTORE(sii, intr_val);
1504 }
1505
1506 /* check if the device is removed */
1507 bool
si_deviceremoved(si_t * sih)1508 si_deviceremoved(si_t *sih)
1509 {
1510 uint32 w;
1511 si_info_t *sii;
1512
1513 sii = SI_INFO(sih);
1514
1515 switch (BUSTYPE(sih->bustype)) {
1516 case PCI_BUS:
1517 ASSERT(sii->osh != NULL);
1518 w = OSL_PCI_READ_CONFIG(sii->osh, PCI_CFG_VID, sizeof(uint32));
1519 if ((w & 0xFFFF) != VENDOR_BROADCOM)
1520 return TRUE;
1521 else
1522 return FALSE;
1523 default:
1524 return FALSE;
1525 }
1526 return FALSE;
1527 }
1528