• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Contributed to the OpenSSL Project by the American Registry for
3  * Internet Numbers ("ARIN").
4  */
5 /* ====================================================================
6  * Copyright (c) 2006 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    licensing@OpenSSL.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  */
57 
58 /*
59  * Implementation of RFC 3779 section 2.2.
60  */
61 
62 #include <stdio.h>
63 #include <stdlib.h>
64 #include <assert.h>
65 #include "cryptlib.h"
66 #include <openssl/conf.h>
67 #include <openssl/asn1.h>
68 #include <openssl/asn1t.h>
69 #include <openssl/buffer.h>
70 #include <openssl/x509v3.h>
71 
72 #ifndef OPENSSL_NO_RFC3779
73 
74 /*
75  * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76  */
77 
78 ASN1_SEQUENCE(IPAddressRange) = {
79   ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80   ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81 } ASN1_SEQUENCE_END(IPAddressRange)
82 
83 ASN1_CHOICE(IPAddressOrRange) = {
84   ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85   ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
86 } ASN1_CHOICE_END(IPAddressOrRange)
87 
88 ASN1_CHOICE(IPAddressChoice) = {
89   ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
90   ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91 } ASN1_CHOICE_END(IPAddressChoice)
92 
93 ASN1_SEQUENCE(IPAddressFamily) = {
94   ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
95   ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96 } ASN1_SEQUENCE_END(IPAddressFamily)
97 
98 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99   ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100 			IPAddrBlocks, IPAddressFamily)
101 ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102 
103 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107 
108 /*
109  * How much buffer space do we need for a raw address?
110  */
111 #define ADDR_RAW_BUF_LEN	16
112 
113 /*
114  * What's the address length associated with this AFI?
115  */
116 static int length_from_afi(const unsigned afi)
117 {
118   switch (afi) {
119   case IANA_AFI_IPV4:
120     return 4;
121   case IANA_AFI_IPV6:
122     return 16;
123   default:
124     return 0;
125   }
126 }
127 
128 /*
129  * Extract the AFI from an IPAddressFamily.
130  */
v3_addr_get_afi(const IPAddressFamily * f)131 unsigned v3_addr_get_afi(const IPAddressFamily *f)
132 {
133   return ((f != NULL &&
134 	   f->addressFamily != NULL &&
135 	   f->addressFamily->data != NULL)
136 	  ? ((f->addressFamily->data[0] << 8) |
137 	     (f->addressFamily->data[1]))
138 	  : 0);
139 }
140 
141 /*
142  * Expand the bitstring form of an address into a raw byte array.
143  * At the moment this is coded for simplicity, not speed.
144  */
addr_expand(unsigned char * addr,const ASN1_BIT_STRING * bs,const int length,const unsigned char fill)145 static void addr_expand(unsigned char *addr,
146 			const ASN1_BIT_STRING *bs,
147 			const int length,
148 			const unsigned char fill)
149 {
150   assert(bs->length >= 0 && bs->length <= length);
151   if (bs->length > 0) {
152     memcpy(addr, bs->data, bs->length);
153     if ((bs->flags & 7) != 0) {
154       unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
155       if (fill == 0)
156 	addr[bs->length - 1] &= ~mask;
157       else
158 	addr[bs->length - 1] |= mask;
159     }
160   }
161   memset(addr + bs->length, fill, length - bs->length);
162 }
163 
164 /*
165  * Extract the prefix length from a bitstring.
166  */
167 #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
168 
169 /*
170  * i2r handler for one address bitstring.
171  */
i2r_address(BIO * out,const unsigned afi,const unsigned char fill,const ASN1_BIT_STRING * bs)172 static int i2r_address(BIO *out,
173 		       const unsigned afi,
174 		       const unsigned char fill,
175 		       const ASN1_BIT_STRING *bs)
176 {
177   unsigned char addr[ADDR_RAW_BUF_LEN];
178   int i, n;
179 
180   switch (afi) {
181   case IANA_AFI_IPV4:
182     addr_expand(addr, bs, 4, fill);
183     BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
184     break;
185   case IANA_AFI_IPV6:
186     addr_expand(addr, bs, 16, fill);
187     for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)
188       ;
189     for (i = 0; i < n; i += 2)
190       BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
191     if (i < 16)
192       BIO_puts(out, ":");
193     break;
194   default:
195     for (i = 0; i < bs->length; i++)
196       BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
197     BIO_printf(out, "[%d]", (int) (bs->flags & 7));
198     break;
199   }
200   return 1;
201 }
202 
203 /*
204  * i2r handler for a sequence of addresses and ranges.
205  */
i2r_IPAddressOrRanges(BIO * out,const int indent,const IPAddressOrRanges * aors,const unsigned afi)206 static int i2r_IPAddressOrRanges(BIO *out,
207 				 const int indent,
208 				 const IPAddressOrRanges *aors,
209 				 const unsigned afi)
210 {
211   int i;
212   for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
213     const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
214     BIO_printf(out, "%*s", indent, "");
215     switch (aor->type) {
216     case IPAddressOrRange_addressPrefix:
217       if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
218 	return 0;
219       BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
220       continue;
221     case IPAddressOrRange_addressRange:
222       if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
223 	return 0;
224       BIO_puts(out, "-");
225       if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
226 	return 0;
227       BIO_puts(out, "\n");
228       continue;
229     }
230   }
231   return 1;
232 }
233 
234 /*
235  * i2r handler for an IPAddrBlocks extension.
236  */
i2r_IPAddrBlocks(X509V3_EXT_METHOD * method,void * ext,BIO * out,int indent)237 static int i2r_IPAddrBlocks(X509V3_EXT_METHOD *method,
238 			    void *ext,
239 			    BIO *out,
240 			    int indent)
241 {
242   const IPAddrBlocks *addr = ext;
243   int i;
244   for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
245     IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
246     const unsigned afi = v3_addr_get_afi(f);
247     switch (afi) {
248     case IANA_AFI_IPV4:
249       BIO_printf(out, "%*sIPv4", indent, "");
250       break;
251     case IANA_AFI_IPV6:
252       BIO_printf(out, "%*sIPv6", indent, "");
253       break;
254     default:
255       BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
256       break;
257     }
258     if (f->addressFamily->length > 2) {
259       switch (f->addressFamily->data[2]) {
260       case   1:
261 	BIO_puts(out, " (Unicast)");
262 	break;
263       case   2:
264 	BIO_puts(out, " (Multicast)");
265 	break;
266       case   3:
267 	BIO_puts(out, " (Unicast/Multicast)");
268 	break;
269       case   4:
270 	BIO_puts(out, " (MPLS)");
271 	break;
272       case  64:
273 	BIO_puts(out, " (Tunnel)");
274 	break;
275       case  65:
276 	BIO_puts(out, " (VPLS)");
277 	break;
278       case  66:
279 	BIO_puts(out, " (BGP MDT)");
280 	break;
281       case 128:
282 	BIO_puts(out, " (MPLS-labeled VPN)");
283 	break;
284       default:
285 	BIO_printf(out, " (Unknown SAFI %u)",
286 		   (unsigned) f->addressFamily->data[2]);
287 	break;
288       }
289     }
290     switch (f->ipAddressChoice->type) {
291     case IPAddressChoice_inherit:
292       BIO_puts(out, ": inherit\n");
293       break;
294     case IPAddressChoice_addressesOrRanges:
295       BIO_puts(out, ":\n");
296       if (!i2r_IPAddressOrRanges(out,
297 				 indent + 2,
298 				 f->ipAddressChoice->u.addressesOrRanges,
299 				 afi))
300 	return 0;
301       break;
302     }
303   }
304   return 1;
305 }
306 
307 /*
308  * Sort comparison function for a sequence of IPAddressOrRange
309  * elements.
310  */
IPAddressOrRange_cmp(const IPAddressOrRange * a,const IPAddressOrRange * b,const int length)311 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
312 				const IPAddressOrRange *b,
313 				const int length)
314 {
315   unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
316   int prefixlen_a = 0;
317   int prefixlen_b = 0;
318   int r;
319 
320   switch (a->type) {
321   case IPAddressOrRange_addressPrefix:
322     addr_expand(addr_a, a->u.addressPrefix, length, 0x00);
323     prefixlen_a = addr_prefixlen(a->u.addressPrefix);
324     break;
325   case IPAddressOrRange_addressRange:
326     addr_expand(addr_a, a->u.addressRange->min, length, 0x00);
327     prefixlen_a = length * 8;
328     break;
329   }
330 
331   switch (b->type) {
332   case IPAddressOrRange_addressPrefix:
333     addr_expand(addr_b, b->u.addressPrefix, length, 0x00);
334     prefixlen_b = addr_prefixlen(b->u.addressPrefix);
335     break;
336   case IPAddressOrRange_addressRange:
337     addr_expand(addr_b, b->u.addressRange->min, length, 0x00);
338     prefixlen_b = length * 8;
339     break;
340   }
341 
342   if ((r = memcmp(addr_a, addr_b, length)) != 0)
343     return r;
344   else
345     return prefixlen_a - prefixlen_b;
346 }
347 
348 /*
349  * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
350  * comparision routines are only allowed two arguments.
351  */
v4IPAddressOrRange_cmp(const IPAddressOrRange * const * a,const IPAddressOrRange * const * b)352 static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
353 				  const IPAddressOrRange * const *b)
354 {
355   return IPAddressOrRange_cmp(*a, *b, 4);
356 }
357 
358 /*
359  * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
360  * comparision routines are only allowed two arguments.
361  */
v6IPAddressOrRange_cmp(const IPAddressOrRange * const * a,const IPAddressOrRange * const * b)362 static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
363 				  const IPAddressOrRange * const *b)
364 {
365   return IPAddressOrRange_cmp(*a, *b, 16);
366 }
367 
368 /*
369  * Calculate whether a range collapses to a prefix.
370  * See last paragraph of RFC 3779 2.2.3.7.
371  */
range_should_be_prefix(const unsigned char * min,const unsigned char * max,const int length)372 static int range_should_be_prefix(const unsigned char *min,
373 				  const unsigned char *max,
374 				  const int length)
375 {
376   unsigned char mask;
377   int i, j;
378 
379   for (i = 0; i < length && min[i] == max[i]; i++)
380     ;
381   for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
382     ;
383   if (i < j)
384     return -1;
385   if (i > j)
386     return i * 8;
387   mask = min[i] ^ max[i];
388   switch (mask) {
389   case 0x01: j = 7; break;
390   case 0x03: j = 6; break;
391   case 0x07: j = 5; break;
392   case 0x0F: j = 4; break;
393   case 0x1F: j = 3; break;
394   case 0x3F: j = 2; break;
395   case 0x7F: j = 1; break;
396   default:   return -1;
397   }
398   if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
399     return -1;
400   else
401     return i * 8 + j;
402 }
403 
404 /*
405  * Construct a prefix.
406  */
make_addressPrefix(IPAddressOrRange ** result,unsigned char * addr,const int prefixlen)407 static int make_addressPrefix(IPAddressOrRange **result,
408 			      unsigned char *addr,
409 			      const int prefixlen)
410 {
411   int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
412   IPAddressOrRange *aor = IPAddressOrRange_new();
413 
414   if (aor == NULL)
415     return 0;
416   aor->type = IPAddressOrRange_addressPrefix;
417   if (aor->u.addressPrefix == NULL &&
418       (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
419     goto err;
420   if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
421     goto err;
422   aor->u.addressPrefix->flags &= ~7;
423   aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
424   if (bitlen > 0) {
425     aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
426     aor->u.addressPrefix->flags |= 8 - bitlen;
427   }
428 
429   *result = aor;
430   return 1;
431 
432  err:
433   IPAddressOrRange_free(aor);
434   return 0;
435 }
436 
437 /*
438  * Construct a range.  If it can be expressed as a prefix,
439  * return a prefix instead.  Doing this here simplifies
440  * the rest of the code considerably.
441  */
make_addressRange(IPAddressOrRange ** result,unsigned char * min,unsigned char * max,const int length)442 static int make_addressRange(IPAddressOrRange **result,
443 			     unsigned char *min,
444 			     unsigned char *max,
445 			     const int length)
446 {
447   IPAddressOrRange *aor;
448   int i, prefixlen;
449 
450   if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
451     return make_addressPrefix(result, min, prefixlen);
452 
453   if ((aor = IPAddressOrRange_new()) == NULL)
454     return 0;
455   aor->type = IPAddressOrRange_addressRange;
456   assert(aor->u.addressRange == NULL);
457   if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
458     goto err;
459   if (aor->u.addressRange->min == NULL &&
460       (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
461     goto err;
462   if (aor->u.addressRange->max == NULL &&
463       (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
464     goto err;
465 
466   for (i = length; i > 0 && min[i - 1] == 0x00; --i)
467     ;
468   if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
469     goto err;
470   aor->u.addressRange->min->flags &= ~7;
471   aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
472   if (i > 0) {
473     unsigned char b = min[i - 1];
474     int j = 1;
475     while ((b & (0xFFU >> j)) != 0)
476       ++j;
477     aor->u.addressRange->min->flags |= 8 - j;
478   }
479 
480   for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
481     ;
482   if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
483     goto err;
484   aor->u.addressRange->max->flags &= ~7;
485   aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
486   if (i > 0) {
487     unsigned char b = max[i - 1];
488     int j = 1;
489     while ((b & (0xFFU >> j)) != (0xFFU >> j))
490       ++j;
491     aor->u.addressRange->max->flags |= 8 - j;
492   }
493 
494   *result = aor;
495   return 1;
496 
497  err:
498   IPAddressOrRange_free(aor);
499   return 0;
500 }
501 
502 /*
503  * Construct a new address family or find an existing one.
504  */
make_IPAddressFamily(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)505 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
506 					     const unsigned afi,
507 					     const unsigned *safi)
508 {
509   IPAddressFamily *f;
510   unsigned char key[3];
511   unsigned keylen;
512   int i;
513 
514   key[0] = (afi >> 8) & 0xFF;
515   key[1] = afi & 0xFF;
516   if (safi != NULL) {
517     key[2] = *safi & 0xFF;
518     keylen = 3;
519   } else {
520     keylen = 2;
521   }
522 
523   for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
524     f = sk_IPAddressFamily_value(addr, i);
525     assert(f->addressFamily->data != NULL);
526     if (f->addressFamily->length == keylen &&
527 	!memcmp(f->addressFamily->data, key, keylen))
528       return f;
529   }
530 
531   if ((f = IPAddressFamily_new()) == NULL)
532     goto err;
533   if (f->ipAddressChoice == NULL &&
534       (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
535     goto err;
536   if (f->addressFamily == NULL &&
537       (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
538     goto err;
539   if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
540     goto err;
541   if (!sk_IPAddressFamily_push(addr, f))
542     goto err;
543 
544   return f;
545 
546  err:
547   IPAddressFamily_free(f);
548   return NULL;
549 }
550 
551 /*
552  * Add an inheritance element.
553  */
v3_addr_add_inherit(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)554 int v3_addr_add_inherit(IPAddrBlocks *addr,
555 			const unsigned afi,
556 			const unsigned *safi)
557 {
558   IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
559   if (f == NULL ||
560       f->ipAddressChoice == NULL ||
561       (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
562        f->ipAddressChoice->u.addressesOrRanges != NULL))
563     return 0;
564   if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
565       f->ipAddressChoice->u.inherit != NULL)
566     return 1;
567   if (f->ipAddressChoice->u.inherit == NULL &&
568       (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
569     return 0;
570   f->ipAddressChoice->type = IPAddressChoice_inherit;
571   return 1;
572 }
573 
574 /*
575  * Construct an IPAddressOrRange sequence, or return an existing one.
576  */
make_prefix_or_range(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)577 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
578 					       const unsigned afi,
579 					       const unsigned *safi)
580 {
581   IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
582   IPAddressOrRanges *aors = NULL;
583 
584   if (f == NULL ||
585       f->ipAddressChoice == NULL ||
586       (f->ipAddressChoice->type == IPAddressChoice_inherit &&
587        f->ipAddressChoice->u.inherit != NULL))
588     return NULL;
589   if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
590     aors = f->ipAddressChoice->u.addressesOrRanges;
591   if (aors != NULL)
592     return aors;
593   if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
594     return NULL;
595   switch (afi) {
596   case IANA_AFI_IPV4:
597     sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
598     break;
599   case IANA_AFI_IPV6:
600     sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
601     break;
602   }
603   f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
604   f->ipAddressChoice->u.addressesOrRanges = aors;
605   return aors;
606 }
607 
608 /*
609  * Add a prefix.
610  */
v3_addr_add_prefix(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi,unsigned char * a,const int prefixlen)611 int v3_addr_add_prefix(IPAddrBlocks *addr,
612 		       const unsigned afi,
613 		       const unsigned *safi,
614 		       unsigned char *a,
615 		       const int prefixlen)
616 {
617   IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
618   IPAddressOrRange *aor;
619   if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
620     return 0;
621   if (sk_IPAddressOrRange_push(aors, aor))
622     return 1;
623   IPAddressOrRange_free(aor);
624   return 0;
625 }
626 
627 /*
628  * Add a range.
629  */
v3_addr_add_range(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi,unsigned char * min,unsigned char * max)630 int v3_addr_add_range(IPAddrBlocks *addr,
631 		      const unsigned afi,
632 		      const unsigned *safi,
633 		      unsigned char *min,
634 		      unsigned char *max)
635 {
636   IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
637   IPAddressOrRange *aor;
638   int length = length_from_afi(afi);
639   if (aors == NULL)
640     return 0;
641   if (!make_addressRange(&aor, min, max, length))
642     return 0;
643   if (sk_IPAddressOrRange_push(aors, aor))
644     return 1;
645   IPAddressOrRange_free(aor);
646   return 0;
647 }
648 
649 /*
650  * Extract min and max values from an IPAddressOrRange.
651  */
extract_min_max(IPAddressOrRange * aor,unsigned char * min,unsigned char * max,int length)652 static void extract_min_max(IPAddressOrRange *aor,
653 			    unsigned char *min,
654 			    unsigned char *max,
655 			    int length)
656 {
657   assert(aor != NULL && min != NULL && max != NULL);
658   switch (aor->type) {
659   case IPAddressOrRange_addressPrefix:
660     addr_expand(min, aor->u.addressPrefix, length, 0x00);
661     addr_expand(max, aor->u.addressPrefix, length, 0xFF);
662     return;
663   case IPAddressOrRange_addressRange:
664     addr_expand(min, aor->u.addressRange->min, length, 0x00);
665     addr_expand(max, aor->u.addressRange->max, length, 0xFF);
666     return;
667   }
668 }
669 
670 /*
671  * Public wrapper for extract_min_max().
672  */
v3_addr_get_range(IPAddressOrRange * aor,const unsigned afi,unsigned char * min,unsigned char * max,const int length)673 int v3_addr_get_range(IPAddressOrRange *aor,
674 		      const unsigned afi,
675 		      unsigned char *min,
676 		      unsigned char *max,
677 		      const int length)
678 {
679   int afi_length = length_from_afi(afi);
680   if (aor == NULL || min == NULL || max == NULL ||
681       afi_length == 0 || length < afi_length ||
682       (aor->type != IPAddressOrRange_addressPrefix &&
683        aor->type != IPAddressOrRange_addressRange))
684     return 0;
685   extract_min_max(aor, min, max, afi_length);
686   return afi_length;
687 }
688 
689 /*
690  * Sort comparision function for a sequence of IPAddressFamily.
691  *
692  * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
693  * the ordering: I can read it as meaning that IPv6 without a SAFI
694  * comes before IPv4 with a SAFI, which seems pretty weird.  The
695  * examples in appendix B suggest that the author intended the
696  * null-SAFI rule to apply only within a single AFI, which is what I
697  * would have expected and is what the following code implements.
698  */
IPAddressFamily_cmp(const IPAddressFamily * const * a_,const IPAddressFamily * const * b_)699 static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
700 			       const IPAddressFamily * const *b_)
701 {
702   const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
703   const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
704   int len = ((a->length <= b->length) ? a->length : b->length);
705   int cmp = memcmp(a->data, b->data, len);
706   return cmp ? cmp : a->length - b->length;
707 }
708 
709 /*
710  * Check whether an IPAddrBLocks is in canonical form.
711  */
v3_addr_is_canonical(IPAddrBlocks * addr)712 int v3_addr_is_canonical(IPAddrBlocks *addr)
713 {
714   unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
715   unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
716   IPAddressOrRanges *aors;
717   int i, j, k;
718 
719   /*
720    * Empty extension is cannonical.
721    */
722   if (addr == NULL)
723     return 1;
724 
725   /*
726    * Check whether the top-level list is in order.
727    */
728   for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
729     const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
730     const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
731     if (IPAddressFamily_cmp(&a, &b) >= 0)
732       return 0;
733   }
734 
735   /*
736    * Top level's ok, now check each address family.
737    */
738   for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
739     IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
740     int length = length_from_afi(v3_addr_get_afi(f));
741 
742     /*
743      * Inheritance is canonical.  Anything other than inheritance or
744      * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
745      */
746     if (f == NULL || f->ipAddressChoice == NULL)
747       return 0;
748     switch (f->ipAddressChoice->type) {
749     case IPAddressChoice_inherit:
750       continue;
751     case IPAddressChoice_addressesOrRanges:
752       break;
753     default:
754       return 0;
755     }
756 
757     /*
758      * It's an IPAddressOrRanges sequence, check it.
759      */
760     aors = f->ipAddressChoice->u.addressesOrRanges;
761     if (sk_IPAddressOrRange_num(aors) == 0)
762       return 0;
763     for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
764       IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
765       IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
766 
767       extract_min_max(a, a_min, a_max, length);
768       extract_min_max(b, b_min, b_max, length);
769 
770       /*
771        * Punt misordered list, overlapping start, or inverted range.
772        */
773       if (memcmp(a_min, b_min, length) >= 0 ||
774 	  memcmp(a_min, a_max, length) > 0 ||
775 	  memcmp(b_min, b_max, length) > 0)
776 	return 0;
777 
778       /*
779        * Punt if adjacent or overlapping.  Check for adjacency by
780        * subtracting one from b_min first.
781        */
782       for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
783 	;
784       if (memcmp(a_max, b_min, length) >= 0)
785 	return 0;
786 
787       /*
788        * Check for range that should be expressed as a prefix.
789        */
790       if (a->type == IPAddressOrRange_addressRange &&
791 	  range_should_be_prefix(a_min, a_max, length) >= 0)
792 	return 0;
793     }
794 
795     /*
796      * Check final range to see if it should be a prefix.
797      */
798     j = sk_IPAddressOrRange_num(aors) - 1;
799     {
800       IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
801       if (a->type == IPAddressOrRange_addressRange) {
802 	extract_min_max(a, a_min, a_max, length);
803 	if (range_should_be_prefix(a_min, a_max, length) >= 0)
804 	  return 0;
805       }
806     }
807   }
808 
809   /*
810    * If we made it through all that, we're happy.
811    */
812   return 1;
813 }
814 
815 /*
816  * Whack an IPAddressOrRanges into canonical form.
817  */
IPAddressOrRanges_canonize(IPAddressOrRanges * aors,const unsigned afi)818 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
819 				      const unsigned afi)
820 {
821   int i, j, length = length_from_afi(afi);
822 
823   /*
824    * Sort the IPAddressOrRanges sequence.
825    */
826   sk_IPAddressOrRange_sort(aors);
827 
828   /*
829    * Clean up representation issues, punt on duplicates or overlaps.
830    */
831   for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
832     IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
833     IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
834     unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
835     unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
836 
837     extract_min_max(a, a_min, a_max, length);
838     extract_min_max(b, b_min, b_max, length);
839 
840     /*
841      * Punt overlaps.
842      */
843     if (memcmp(a_max, b_min, length) >= 0)
844       return 0;
845 
846     /*
847      * Merge if a and b are adjacent.  We check for
848      * adjacency by subtracting one from b_min first.
849      */
850     for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
851       ;
852     if (memcmp(a_max, b_min, length) == 0) {
853       IPAddressOrRange *merged;
854       if (!make_addressRange(&merged, a_min, b_max, length))
855 	return 0;
856       sk_IPAddressOrRange_set(aors, i, merged);
857       sk_IPAddressOrRange_delete(aors, i + 1);
858       IPAddressOrRange_free(a);
859       IPAddressOrRange_free(b);
860       --i;
861       continue;
862     }
863   }
864 
865   return 1;
866 }
867 
868 /*
869  * Whack an IPAddrBlocks extension into canonical form.
870  */
v3_addr_canonize(IPAddrBlocks * addr)871 int v3_addr_canonize(IPAddrBlocks *addr)
872 {
873   int i;
874   for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
875     IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
876     if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
877 	!IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
878 				    v3_addr_get_afi(f)))
879       return 0;
880   }
881   sk_IPAddressFamily_sort(addr);
882   assert(v3_addr_is_canonical(addr));
883   return 1;
884 }
885 
886 /*
887  * v2i handler for the IPAddrBlocks extension.
888  */
v2i_IPAddrBlocks(struct v3_ext_method * method,struct v3_ext_ctx * ctx,STACK_OF (CONF_VALUE)* values)889 static void *v2i_IPAddrBlocks(struct v3_ext_method *method,
890 			      struct v3_ext_ctx *ctx,
891 			      STACK_OF(CONF_VALUE) *values)
892 {
893   static const char v4addr_chars[] = "0123456789.";
894   static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
895   IPAddrBlocks *addr = NULL;
896   char *s = NULL, *t;
897   int i;
898 
899   if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
900     X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
901     return NULL;
902   }
903 
904   for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
905     CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
906     unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
907     unsigned afi, *safi = NULL, safi_;
908     const char *addr_chars;
909     int prefixlen, i1, i2, delim, length;
910 
911     if (       !name_cmp(val->name, "IPv4")) {
912       afi = IANA_AFI_IPV4;
913     } else if (!name_cmp(val->name, "IPv6")) {
914       afi = IANA_AFI_IPV6;
915     } else if (!name_cmp(val->name, "IPv4-SAFI")) {
916       afi = IANA_AFI_IPV4;
917       safi = &safi_;
918     } else if (!name_cmp(val->name, "IPv6-SAFI")) {
919       afi = IANA_AFI_IPV6;
920       safi = &safi_;
921     } else {
922       X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
923       X509V3_conf_err(val);
924       goto err;
925     }
926 
927     switch (afi) {
928     case IANA_AFI_IPV4:
929       addr_chars = v4addr_chars;
930       break;
931     case IANA_AFI_IPV6:
932       addr_chars = v6addr_chars;
933       break;
934     }
935 
936     length = length_from_afi(afi);
937 
938     /*
939      * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
940      * the other input values.
941      */
942     if (safi != NULL) {
943       *safi = strtoul(val->value, &t, 0);
944       t += strspn(t, " \t");
945       if (*safi > 0xFF || *t++ != ':') {
946 	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
947 	X509V3_conf_err(val);
948 	goto err;
949       }
950       t += strspn(t, " \t");
951       s = BUF_strdup(t);
952     } else {
953       s = BUF_strdup(val->value);
954     }
955     if (s == NULL) {
956       X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
957       goto err;
958     }
959 
960     /*
961      * Check for inheritance.  Not worth additional complexity to
962      * optimize this (seldom-used) case.
963      */
964     if (!strcmp(s, "inherit")) {
965       if (!v3_addr_add_inherit(addr, afi, safi)) {
966 	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
967 	X509V3_conf_err(val);
968 	goto err;
969       }
970       OPENSSL_free(s);
971       s = NULL;
972       continue;
973     }
974 
975     i1 = strspn(s, addr_chars);
976     i2 = i1 + strspn(s + i1, " \t");
977     delim = s[i2++];
978     s[i1] = '\0';
979 
980     if (a2i_ipadd(min, s) != length) {
981       X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
982       X509V3_conf_err(val);
983       goto err;
984     }
985 
986     switch (delim) {
987     case '/':
988       prefixlen = (int) strtoul(s + i2, &t, 10);
989       if (t == s + i2 || *t != '\0') {
990 	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
991 	X509V3_conf_err(val);
992 	goto err;
993       }
994       if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
995 	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
996 	goto err;
997       }
998       break;
999     case '-':
1000       i1 = i2 + strspn(s + i2, " \t");
1001       i2 = i1 + strspn(s + i1, addr_chars);
1002       if (i1 == i2 || s[i2] != '\0') {
1003 	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1004 	X509V3_conf_err(val);
1005 	goto err;
1006       }
1007       if (a2i_ipadd(max, s + i1) != length) {
1008 	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1009 	X509V3_conf_err(val);
1010 	goto err;
1011       }
1012       if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1013 	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1014 	goto err;
1015       }
1016       break;
1017     case '\0':
1018       if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1019 	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1020 	goto err;
1021       }
1022       break;
1023     default:
1024       X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1025       X509V3_conf_err(val);
1026       goto err;
1027     }
1028 
1029     OPENSSL_free(s);
1030     s = NULL;
1031   }
1032 
1033   /*
1034    * Canonize the result, then we're done.
1035    */
1036   if (!v3_addr_canonize(addr))
1037     goto err;
1038   return addr;
1039 
1040  err:
1041   OPENSSL_free(s);
1042   sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1043   return NULL;
1044 }
1045 
1046 /*
1047  * OpenSSL dispatch
1048  */
1049 const X509V3_EXT_METHOD v3_addr = {
1050   NID_sbgp_ipAddrBlock,		/* nid */
1051   0,				/* flags */
1052   ASN1_ITEM_ref(IPAddrBlocks),	/* template */
1053   0, 0, 0, 0,			/* old functions, ignored */
1054   0,				/* i2s */
1055   0,				/* s2i */
1056   0,				/* i2v */
1057   v2i_IPAddrBlocks,		/* v2i */
1058   i2r_IPAddrBlocks,		/* i2r */
1059   0,				/* r2i */
1060   NULL				/* extension-specific data */
1061 };
1062 
1063 /*
1064  * Figure out whether extension sues inheritance.
1065  */
v3_addr_inherits(IPAddrBlocks * addr)1066 int v3_addr_inherits(IPAddrBlocks *addr)
1067 {
1068   int i;
1069   if (addr == NULL)
1070     return 0;
1071   for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1072     IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1073     if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1074       return 1;
1075   }
1076   return 0;
1077 }
1078 
1079 /*
1080  * Figure out whether parent contains child.
1081  */
addr_contains(IPAddressOrRanges * parent,IPAddressOrRanges * child,int length)1082 static int addr_contains(IPAddressOrRanges *parent,
1083 			 IPAddressOrRanges *child,
1084 			 int length)
1085 {
1086   unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1087   unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1088   int p, c;
1089 
1090   if (child == NULL || parent == child)
1091     return 1;
1092   if (parent == NULL)
1093     return 0;
1094 
1095   p = 0;
1096   for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1097     extract_min_max(sk_IPAddressOrRange_value(child, c),
1098 		    c_min, c_max, length);
1099     for (;; p++) {
1100       if (p >= sk_IPAddressOrRange_num(parent))
1101 	return 0;
1102       extract_min_max(sk_IPAddressOrRange_value(parent, p),
1103 		      p_min, p_max, length);
1104       if (memcmp(p_max, c_max, length) < 0)
1105 	continue;
1106       if (memcmp(p_min, c_min, length) > 0)
1107 	return 0;
1108       break;
1109     }
1110   }
1111 
1112   return 1;
1113 }
1114 
1115 /*
1116  * Test whether a is a subset of b.
1117  */
v3_addr_subset(IPAddrBlocks * a,IPAddrBlocks * b)1118 int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1119 {
1120   int i;
1121   if (a == NULL || a == b)
1122     return 1;
1123   if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1124     return 0;
1125   sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1126   for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1127     IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1128     int j = sk_IPAddressFamily_find(b, fa);
1129     IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);
1130     if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1131 		       fa->ipAddressChoice->u.addressesOrRanges,
1132 		       length_from_afi(v3_addr_get_afi(fb))))
1133       return 0;
1134   }
1135   return 1;
1136 }
1137 
1138 /*
1139  * Validation error handling via callback.
1140  */
1141 #define validation_err(_err_)		\
1142   do {					\
1143     if (ctx != NULL) {			\
1144       ctx->error = _err_;		\
1145       ctx->error_depth = i;		\
1146       ctx->current_cert = x;		\
1147       ret = ctx->verify_cb(0, ctx);	\
1148     } else {				\
1149       ret = 0;				\
1150     }					\
1151     if (!ret)				\
1152       goto done;			\
1153   } while (0)
1154 
1155 /*
1156  * Core code for RFC 3779 2.3 path validation.
1157  */
v3_addr_validate_path_internal(X509_STORE_CTX * ctx,STACK_OF (X509)* chain,IPAddrBlocks * ext)1158 static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1159 					  STACK_OF(X509) *chain,
1160 					  IPAddrBlocks *ext)
1161 {
1162   IPAddrBlocks *child = NULL;
1163   int i, j, ret = 1;
1164   X509 *x = NULL;
1165 
1166   assert(chain != NULL && sk_X509_num(chain) > 0);
1167   assert(ctx != NULL || ext != NULL);
1168   assert(ctx == NULL || ctx->verify_cb != NULL);
1169 
1170   /*
1171    * Figure out where to start.  If we don't have an extension to
1172    * check, we're done.  Otherwise, check canonical form and
1173    * set up for walking up the chain.
1174    */
1175   if (ext != NULL) {
1176     i = -1;
1177   } else {
1178     i = 0;
1179     x = sk_X509_value(chain, i);
1180     assert(x != NULL);
1181     if ((ext = x->rfc3779_addr) == NULL)
1182       goto done;
1183   }
1184   if (!v3_addr_is_canonical(ext))
1185     validation_err(X509_V_ERR_INVALID_EXTENSION);
1186   sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1187   if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1188     X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
1189     ret = 0;
1190     goto done;
1191   }
1192 
1193   /*
1194    * Now walk up the chain.  No cert may list resources that its
1195    * parent doesn't list.
1196    */
1197   for (i++; i < sk_X509_num(chain); i++) {
1198     x = sk_X509_value(chain, i);
1199     assert(x != NULL);
1200     if (!v3_addr_is_canonical(x->rfc3779_addr))
1201       validation_err(X509_V_ERR_INVALID_EXTENSION);
1202     if (x->rfc3779_addr == NULL) {
1203       for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1204 	IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1205 	if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1206 	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1207 	  break;
1208 	}
1209       }
1210       continue;
1211     }
1212     sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp);
1213     for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1214       IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1215       int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1216       IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
1217       if (fp == NULL) {
1218 	if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1219 	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1220 	  break;
1221 	}
1222 	continue;
1223       }
1224       if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1225 	if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
1226 	    addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1227 			  fc->ipAddressChoice->u.addressesOrRanges,
1228 			  length_from_afi(v3_addr_get_afi(fc))))
1229 	  sk_IPAddressFamily_set(child, j, fp);
1230 	else
1231 	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1232       }
1233     }
1234   }
1235 
1236   /*
1237    * Trust anchor can't inherit.
1238    */
1239   if (x->rfc3779_addr != NULL) {
1240     for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1241       IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1242       if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
1243 	  sk_IPAddressFamily_find(child, fp) >= 0)
1244 	validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1245     }
1246   }
1247 
1248  done:
1249   sk_IPAddressFamily_free(child);
1250   return ret;
1251 }
1252 
1253 #undef validation_err
1254 
1255 /*
1256  * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1257  */
v3_addr_validate_path(X509_STORE_CTX * ctx)1258 int v3_addr_validate_path(X509_STORE_CTX *ctx)
1259 {
1260   return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1261 }
1262 
1263 /*
1264  * RFC 3779 2.3 path validation of an extension.
1265  * Test whether chain covers extension.
1266  */
v3_addr_validate_resource_set(STACK_OF (X509)* chain,IPAddrBlocks * ext,int allow_inheritance)1267 int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1268 				  IPAddrBlocks *ext,
1269 				  int allow_inheritance)
1270 {
1271   if (ext == NULL)
1272     return 1;
1273   if (chain == NULL || sk_X509_num(chain) == 0)
1274     return 0;
1275   if (!allow_inheritance && v3_addr_inherits(ext))
1276     return 0;
1277   return v3_addr_validate_path_internal(NULL, chain, ext);
1278 }
1279 
1280 #endif /* OPENSSL_NO_RFC3779 */
1281