1 // Copyright 2009 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "bootstrapper.h"
31 #include "codegen-inl.h"
32 #include "debug.h"
33 #include "oprofile-agent.h"
34 #include "prettyprinter.h"
35 #include "register-allocator-inl.h"
36 #include "rewriter.h"
37 #include "runtime.h"
38 #include "scopeinfo.h"
39 #include "stub-cache.h"
40
41 namespace v8 {
42 namespace internal {
43
44
45 CodeGenerator* CodeGeneratorScope::top_ = NULL;
46
47
DeferredCode()48 DeferredCode::DeferredCode()
49 : masm_(CodeGeneratorScope::Current()->masm()),
50 statement_position_(masm_->current_statement_position()),
51 position_(masm_->current_position()) {
52 ASSERT(statement_position_ != RelocInfo::kNoPosition);
53 ASSERT(position_ != RelocInfo::kNoPosition);
54
55 CodeGeneratorScope::Current()->AddDeferred(this);
56 #ifdef DEBUG
57 comment_ = "";
58 #endif
59
60 // Copy the register locations from the code generator's frame.
61 // These are the registers that will be spilled on entry to the
62 // deferred code and restored on exit.
63 VirtualFrame* frame = CodeGeneratorScope::Current()->frame();
64 int sp_offset = frame->fp_relative(frame->stack_pointer_);
65 for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
66 int loc = frame->register_location(i);
67 if (loc == VirtualFrame::kIllegalIndex) {
68 registers_[i] = kIgnore;
69 } else if (frame->elements_[loc].is_synced()) {
70 // Needs to be restored on exit but not saved on entry.
71 registers_[i] = frame->fp_relative(loc) | kSyncedFlag;
72 } else {
73 int offset = frame->fp_relative(loc);
74 registers_[i] = (offset < sp_offset) ? kPush : offset;
75 }
76 }
77 }
78
79
ProcessDeferred()80 void CodeGenerator::ProcessDeferred() {
81 while (!deferred_.is_empty()) {
82 DeferredCode* code = deferred_.RemoveLast();
83 ASSERT(masm_ == code->masm());
84 // Record position of deferred code stub.
85 masm_->RecordStatementPosition(code->statement_position());
86 if (code->position() != RelocInfo::kNoPosition) {
87 masm_->RecordPosition(code->position());
88 }
89 // Generate the code.
90 Comment cmnt(masm_, code->comment());
91 masm_->bind(code->entry_label());
92 code->SaveRegisters();
93 code->Generate();
94 code->RestoreRegisters();
95 masm_->jmp(code->exit_label());
96 }
97 }
98
99
SetFrame(VirtualFrame * new_frame,RegisterFile * non_frame_registers)100 void CodeGenerator::SetFrame(VirtualFrame* new_frame,
101 RegisterFile* non_frame_registers) {
102 RegisterFile saved_counts;
103 if (has_valid_frame()) {
104 frame_->DetachFromCodeGenerator();
105 // The remaining register reference counts are the non-frame ones.
106 allocator_->SaveTo(&saved_counts);
107 }
108
109 if (new_frame != NULL) {
110 // Restore the non-frame register references that go with the new frame.
111 allocator_->RestoreFrom(non_frame_registers);
112 new_frame->AttachToCodeGenerator();
113 }
114
115 frame_ = new_frame;
116 saved_counts.CopyTo(non_frame_registers);
117 }
118
119
DeleteFrame()120 void CodeGenerator::DeleteFrame() {
121 if (has_valid_frame()) {
122 frame_->DetachFromCodeGenerator();
123 frame_ = NULL;
124 }
125 }
126
127
128 // Generate the code. Takes a function literal, generates code for it, assemble
129 // all the pieces into a Code object. This function is only to be called by
130 // the compiler.cc code.
MakeCode(FunctionLiteral * flit,Handle<Script> script,bool is_eval)131 Handle<Code> CodeGenerator::MakeCode(FunctionLiteral* flit,
132 Handle<Script> script,
133 bool is_eval) {
134 #ifdef ENABLE_DISASSEMBLER
135 bool print_code = Bootstrapper::IsActive()
136 ? FLAG_print_builtin_code
137 : FLAG_print_code;
138 #endif
139
140 #ifdef DEBUG
141 bool print_source = false;
142 bool print_ast = false;
143 const char* ftype;
144
145 if (Bootstrapper::IsActive()) {
146 print_source = FLAG_print_builtin_source;
147 print_ast = FLAG_print_builtin_ast;
148 ftype = "builtin";
149 } else {
150 print_source = FLAG_print_source;
151 print_ast = FLAG_print_ast;
152 ftype = "user-defined";
153 }
154
155 if (FLAG_trace_codegen || print_source || print_ast) {
156 PrintF("*** Generate code for %s function: ", ftype);
157 flit->name()->ShortPrint();
158 PrintF(" ***\n");
159 }
160
161 if (print_source) {
162 PrintF("--- Source from AST ---\n%s\n", PrettyPrinter().PrintProgram(flit));
163 }
164
165 if (print_ast) {
166 PrintF("--- AST ---\n%s\n", AstPrinter().PrintProgram(flit));
167 }
168 #endif // DEBUG
169
170 // Generate code.
171 const int initial_buffer_size = 4 * KB;
172 CodeGenerator cgen(initial_buffer_size, script, is_eval);
173 CodeGeneratorScope scope(&cgen);
174 cgen.GenCode(flit);
175 if (cgen.HasStackOverflow()) {
176 ASSERT(!Top::has_pending_exception());
177 return Handle<Code>::null();
178 }
179
180 // Allocate and install the code. Time the rest of this function as
181 // code creation.
182 HistogramTimerScope timer(&Counters::code_creation);
183 CodeDesc desc;
184 cgen.masm()->GetCode(&desc);
185 ZoneScopeInfo sinfo(flit->scope());
186 InLoopFlag in_loop = (cgen.loop_nesting() != 0) ? IN_LOOP : NOT_IN_LOOP;
187 Code::Flags flags = Code::ComputeFlags(Code::FUNCTION, in_loop);
188 Handle<Code> code = Factory::NewCode(desc,
189 &sinfo,
190 flags,
191 cgen.masm()->CodeObject());
192
193 // Add unresolved entries in the code to the fixup list.
194 Bootstrapper::AddFixup(*code, cgen.masm());
195
196 #ifdef ENABLE_DISASSEMBLER
197 if (print_code) {
198 // Print the source code if available.
199 if (!script->IsUndefined() && !script->source()->IsUndefined()) {
200 PrintF("--- Raw source ---\n");
201 StringInputBuffer stream(String::cast(script->source()));
202 stream.Seek(flit->start_position());
203 // flit->end_position() points to the last character in the stream. We
204 // need to compensate by adding one to calculate the length.
205 int source_len = flit->end_position() - flit->start_position() + 1;
206 for (int i = 0; i < source_len; i++) {
207 if (stream.has_more()) PrintF("%c", stream.GetNext());
208 }
209 PrintF("\n\n");
210 }
211 PrintF("--- Code ---\n");
212 code->Disassemble(*flit->name()->ToCString());
213 }
214 #endif // ENABLE_DISASSEMBLER
215
216 if (!code.is_null()) {
217 Counters::total_compiled_code_size.Increment(code->instruction_size());
218 }
219
220 return code;
221 }
222
223
224 #ifdef ENABLE_LOGGING_AND_PROFILING
225
ShouldGenerateLog(Expression * type)226 bool CodeGenerator::ShouldGenerateLog(Expression* type) {
227 ASSERT(type != NULL);
228 if (!Logger::is_logging()) return false;
229 Handle<String> name = Handle<String>::cast(type->AsLiteral()->handle());
230 if (FLAG_log_regexp) {
231 static Vector<const char> kRegexp = CStrVector("regexp");
232 if (name->IsEqualTo(kRegexp))
233 return true;
234 }
235 return false;
236 }
237
238 #endif
239
240
241 // Sets the function info on a function.
242 // The start_position points to the first '(' character after the function name
243 // in the full script source. When counting characters in the script source the
244 // the first character is number 0 (not 1).
SetFunctionInfo(Handle<JSFunction> fun,FunctionLiteral * lit,bool is_toplevel,Handle<Script> script)245 void CodeGenerator::SetFunctionInfo(Handle<JSFunction> fun,
246 FunctionLiteral* lit,
247 bool is_toplevel,
248 Handle<Script> script) {
249 fun->shared()->set_length(lit->num_parameters());
250 fun->shared()->set_formal_parameter_count(lit->num_parameters());
251 fun->shared()->set_script(*script);
252 fun->shared()->set_function_token_position(lit->function_token_position());
253 fun->shared()->set_start_position(lit->start_position());
254 fun->shared()->set_end_position(lit->end_position());
255 fun->shared()->set_is_expression(lit->is_expression());
256 fun->shared()->set_is_toplevel(is_toplevel);
257 fun->shared()->set_inferred_name(*lit->inferred_name());
258 fun->shared()->SetThisPropertyAssignmentsInfo(
259 lit->has_only_this_property_assignments(),
260 lit->has_only_simple_this_property_assignments(),
261 *lit->this_property_assignments());
262 }
263
264
ComputeLazyCompile(int argc)265 static Handle<Code> ComputeLazyCompile(int argc) {
266 CALL_HEAP_FUNCTION(StubCache::ComputeLazyCompile(argc), Code);
267 }
268
269
BuildBoilerplate(FunctionLiteral * node)270 Handle<JSFunction> CodeGenerator::BuildBoilerplate(FunctionLiteral* node) {
271 #ifdef DEBUG
272 // We should not try to compile the same function literal more than
273 // once.
274 node->mark_as_compiled();
275 #endif
276
277 // Determine if the function can be lazily compiled. This is
278 // necessary to allow some of our builtin JS files to be lazily
279 // compiled. These builtins cannot be handled lazily by the parser,
280 // since we have to know if a function uses the special natives
281 // syntax, which is something the parser records.
282 bool allow_lazy = node->AllowsLazyCompilation();
283
284 // Generate code
285 Handle<Code> code;
286 if (FLAG_lazy && allow_lazy) {
287 code = ComputeLazyCompile(node->num_parameters());
288 } else {
289 // The bodies of function literals have not yet been visited by
290 // the AST optimizer/analyzer.
291 if (!Rewriter::Optimize(node)) {
292 return Handle<JSFunction>::null();
293 }
294
295 code = MakeCode(node, script_, false);
296
297 // Check for stack-overflow exception.
298 if (code.is_null()) {
299 SetStackOverflow();
300 return Handle<JSFunction>::null();
301 }
302
303 // Function compilation complete.
304 LOG(CodeCreateEvent(Logger::FUNCTION_TAG, *code, *node->name()));
305
306 #ifdef ENABLE_OPROFILE_AGENT
307 OProfileAgent::CreateNativeCodeRegion(*node->name(),
308 code->instruction_start(),
309 code->instruction_size());
310 #endif
311 }
312
313 // Create a boilerplate function.
314 Handle<JSFunction> function =
315 Factory::NewFunctionBoilerplate(node->name(),
316 node->materialized_literal_count(),
317 node->contains_array_literal(),
318 code);
319 CodeGenerator::SetFunctionInfo(function, node, false, script_);
320
321 #ifdef ENABLE_DEBUGGER_SUPPORT
322 // Notify debugger that a new function has been added.
323 Debugger::OnNewFunction(function);
324 #endif
325
326 // Set the expected number of properties for instances and return
327 // the resulting function.
328 SetExpectedNofPropertiesFromEstimate(function,
329 node->expected_property_count());
330 return function;
331 }
332
333
ComputeCallInitialize(int argc,InLoopFlag in_loop)334 Handle<Code> CodeGenerator::ComputeCallInitialize(
335 int argc,
336 InLoopFlag in_loop) {
337 if (in_loop == IN_LOOP) {
338 // Force the creation of the corresponding stub outside loops,
339 // because it may be used when clearing the ICs later - it is
340 // possible for a series of IC transitions to lose the in-loop
341 // information, and the IC clearing code can't generate a stub
342 // that it needs so we need to ensure it is generated already.
343 ComputeCallInitialize(argc, NOT_IN_LOOP);
344 }
345 CALL_HEAP_FUNCTION(StubCache::ComputeCallInitialize(argc, in_loop), Code);
346 }
347
348
ProcessDeclarations(ZoneList<Declaration * > * declarations)349 void CodeGenerator::ProcessDeclarations(ZoneList<Declaration*>* declarations) {
350 int length = declarations->length();
351 int globals = 0;
352 for (int i = 0; i < length; i++) {
353 Declaration* node = declarations->at(i);
354 Variable* var = node->proxy()->var();
355 Slot* slot = var->slot();
356
357 // If it was not possible to allocate the variable at compile
358 // time, we need to "declare" it at runtime to make sure it
359 // actually exists in the local context.
360 if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) {
361 VisitDeclaration(node);
362 } else {
363 // Count global variables and functions for later processing
364 globals++;
365 }
366 }
367
368 // Return in case of no declared global functions or variables.
369 if (globals == 0) return;
370
371 // Compute array of global variable and function declarations.
372 Handle<FixedArray> array = Factory::NewFixedArray(2 * globals, TENURED);
373 for (int j = 0, i = 0; i < length; i++) {
374 Declaration* node = declarations->at(i);
375 Variable* var = node->proxy()->var();
376 Slot* slot = var->slot();
377
378 if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) {
379 // Skip - already processed.
380 } else {
381 array->set(j++, *(var->name()));
382 if (node->fun() == NULL) {
383 if (var->mode() == Variable::CONST) {
384 // In case this is const property use the hole.
385 array->set_the_hole(j++);
386 } else {
387 array->set_undefined(j++);
388 }
389 } else {
390 Handle<JSFunction> function = BuildBoilerplate(node->fun());
391 // Check for stack-overflow exception.
392 if (HasStackOverflow()) return;
393 array->set(j++, *function);
394 }
395 }
396 }
397
398 // Invoke the platform-dependent code generator to do the actual
399 // declaration the global variables and functions.
400 DeclareGlobals(array);
401 }
402
403
404
405 // Special cases: These 'runtime calls' manipulate the current
406 // frame and are only used 1 or two places, so we generate them
407 // inline instead of generating calls to them. They are used
408 // for implementing Function.prototype.call() and
409 // Function.prototype.apply().
410 CodeGenerator::InlineRuntimeLUT CodeGenerator::kInlineRuntimeLUT[] = {
411 {&CodeGenerator::GenerateIsSmi, "_IsSmi"},
412 {&CodeGenerator::GenerateIsNonNegativeSmi, "_IsNonNegativeSmi"},
413 {&CodeGenerator::GenerateIsArray, "_IsArray"},
414 {&CodeGenerator::GenerateIsConstructCall, "_IsConstructCall"},
415 {&CodeGenerator::GenerateArgumentsLength, "_ArgumentsLength"},
416 {&CodeGenerator::GenerateArgumentsAccess, "_Arguments"},
417 {&CodeGenerator::GenerateClassOf, "_ClassOf"},
418 {&CodeGenerator::GenerateValueOf, "_ValueOf"},
419 {&CodeGenerator::GenerateSetValueOf, "_SetValueOf"},
420 {&CodeGenerator::GenerateFastCharCodeAt, "_FastCharCodeAt"},
421 {&CodeGenerator::GenerateObjectEquals, "_ObjectEquals"},
422 {&CodeGenerator::GenerateLog, "_Log"},
423 {&CodeGenerator::GenerateRandomPositiveSmi, "_RandomPositiveSmi"},
424 {&CodeGenerator::GenerateMathSin, "_Math_sin"},
425 {&CodeGenerator::GenerateMathCos, "_Math_cos"}
426 };
427
428
FindInlineRuntimeLUT(Handle<String> name)429 CodeGenerator::InlineRuntimeLUT* CodeGenerator::FindInlineRuntimeLUT(
430 Handle<String> name) {
431 const int entries_count =
432 sizeof(kInlineRuntimeLUT) / sizeof(InlineRuntimeLUT);
433 for (int i = 0; i < entries_count; i++) {
434 InlineRuntimeLUT* entry = &kInlineRuntimeLUT[i];
435 if (name->IsEqualTo(CStrVector(entry->name))) {
436 return entry;
437 }
438 }
439 return NULL;
440 }
441
442
CheckForInlineRuntimeCall(CallRuntime * node)443 bool CodeGenerator::CheckForInlineRuntimeCall(CallRuntime* node) {
444 ZoneList<Expression*>* args = node->arguments();
445 Handle<String> name = node->name();
446 if (name->length() > 0 && name->Get(0) == '_') {
447 InlineRuntimeLUT* entry = FindInlineRuntimeLUT(name);
448 if (entry != NULL) {
449 ((*this).*(entry->method))(args);
450 return true;
451 }
452 }
453 return false;
454 }
455
456
PatchInlineRuntimeEntry(Handle<String> name,const CodeGenerator::InlineRuntimeLUT & new_entry,CodeGenerator::InlineRuntimeLUT * old_entry)457 bool CodeGenerator::PatchInlineRuntimeEntry(Handle<String> name,
458 const CodeGenerator::InlineRuntimeLUT& new_entry,
459 CodeGenerator::InlineRuntimeLUT* old_entry) {
460 InlineRuntimeLUT* entry = FindInlineRuntimeLUT(name);
461 if (entry == NULL) return false;
462 if (old_entry != NULL) {
463 old_entry->name = entry->name;
464 old_entry->method = entry->method;
465 }
466 entry->name = new_entry.name;
467 entry->method = new_entry.method;
468 return true;
469 }
470
471
CodeForFunctionPosition(FunctionLiteral * fun)472 void CodeGenerator::CodeForFunctionPosition(FunctionLiteral* fun) {
473 if (FLAG_debug_info) {
474 int pos = fun->start_position();
475 if (pos != RelocInfo::kNoPosition) {
476 masm()->RecordStatementPosition(pos);
477 masm()->RecordPosition(pos);
478 }
479 }
480 }
481
482
CodeForReturnPosition(FunctionLiteral * fun)483 void CodeGenerator::CodeForReturnPosition(FunctionLiteral* fun) {
484 if (FLAG_debug_info) {
485 int pos = fun->end_position();
486 if (pos != RelocInfo::kNoPosition) {
487 masm()->RecordStatementPosition(pos);
488 masm()->RecordPosition(pos);
489 }
490 }
491 }
492
493
CodeForStatementPosition(AstNode * node)494 void CodeGenerator::CodeForStatementPosition(AstNode* node) {
495 if (FLAG_debug_info) {
496 int pos = node->statement_pos();
497 if (pos != RelocInfo::kNoPosition) {
498 masm()->RecordStatementPosition(pos);
499 masm()->RecordPosition(pos);
500 }
501 }
502 }
503
504
CodeForSourcePosition(int pos)505 void CodeGenerator::CodeForSourcePosition(int pos) {
506 if (FLAG_debug_info) {
507 if (pos != RelocInfo::kNoPosition) {
508 masm()->RecordPosition(pos);
509 }
510 }
511 }
512
513
GetName()514 const char* RuntimeStub::GetName() {
515 return Runtime::FunctionForId(id_)->stub_name;
516 }
517
518
Generate(MacroAssembler * masm)519 void RuntimeStub::Generate(MacroAssembler* masm) {
520 masm->TailCallRuntime(ExternalReference(id_), num_arguments_);
521 }
522
523
Generate(MacroAssembler * masm)524 void ArgumentsAccessStub::Generate(MacroAssembler* masm) {
525 switch (type_) {
526 case READ_LENGTH: GenerateReadLength(masm); break;
527 case READ_ELEMENT: GenerateReadElement(masm); break;
528 case NEW_OBJECT: GenerateNewObject(masm); break;
529 }
530 }
531
532
533 } } // namespace v8::internal
534