• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 //
3 //  file:  rbbiscan.cpp
4 //
5 //  Copyright (C) 2002-2007, International Business Machines Corporation and others.
6 //  All Rights Reserved.
7 //
8 //  This file contains the Rule Based Break Iterator Rule Builder functions for
9 //   scanning the rules and assembling a parse tree.  This is the first phase
10 //   of compiling the rules.
11 //
12 //  The overall of the rules is managed by class RBBIRuleBuilder, which will
13 //  create and use an instance of this class as part of the process.
14 //
15 
16 #include "unicode/utypes.h"
17 
18 #if !UCONFIG_NO_BREAK_ITERATION
19 
20 #include "unicode/unistr.h"
21 #include "unicode/uniset.h"
22 #include "unicode/uchar.h"
23 #include "unicode/uchriter.h"
24 #include "unicode/parsepos.h"
25 #include "unicode/parseerr.h"
26 #include "util.h"
27 #include "cmemory.h"
28 #include "cstring.h"
29 
30 #include "rbbirpt.h"   // Contains state table for the rbbi rules parser.
31                        //   generated by a Perl script.
32 #include "rbbirb.h"
33 #include "rbbinode.h"
34 #include "rbbiscan.h"
35 #include "rbbitblb.h"
36 
37 #include "uassert.h"
38 
39 
40 //----------------------------------------------------------------------------------------
41 //
42 // Unicode Set init strings for each of the character classes needed for parsing a rule file.
43 //               (Initialized with hex values for portability to EBCDIC based machines.
44 //                Really ugly, but there's no good way to avoid it.)
45 //
46 //              The sets are referred to by name in the rbbirpt.txt, which is the
47 //              source form of the state transition table for the RBBI rule parser.
48 //
49 //----------------------------------------------------------------------------------------
50 static const UChar gRuleSet_rule_char_pattern[]       = {
51  //   [    ^      [    \     p     {      Z     }     \     u    0      0    2      0
52     0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30,
53  //   -    \      u    0     0     7      f     ]     -     [    \      p
54     0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70,
55  //   {     L     }    ]     -     [      \     p     {     N    }      ]     ]
56     0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0};
57 
58 static const UChar gRuleSet_name_char_pattern[]       = {
59 //    [    _      \    p     {     L      }     \     p     {    N      }     ]
60     0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0};
61 
62 static const UChar gRuleSet_digit_char_pattern[] = {
63 //    [    0      -    9     ]
64     0x5b, 0x30, 0x2d, 0x39, 0x5d, 0};
65 
66 static const UChar gRuleSet_name_start_char_pattern[] = {
67 //    [    _      \    p     {     L      }     ]
68     0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 };
69 
70 static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00};  // "any"
71 
72 
73 U_CDECL_BEGIN
RBBISetTable_deleter(void * p)74 static void U_CALLCONV RBBISetTable_deleter(void *p) {
75     U_NAMESPACE_QUALIFIER RBBISetTableEl *px = (U_NAMESPACE_QUALIFIER RBBISetTableEl *)p;
76     delete px->key;
77     // Note:  px->val is owned by the linked list "fSetsListHead" in scanner.
78     //        Don't delete the value nodes here.
79     uprv_free(px);
80 }
81 U_CDECL_END
82 
83 U_NAMESPACE_BEGIN
84 
85 //----------------------------------------------------------------------------------------
86 //
87 //  Constructor.
88 //
89 //----------------------------------------------------------------------------------------
RBBIRuleScanner(RBBIRuleBuilder * rb)90 RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb)
91 {
92     fRB                 = rb;
93     fStackPtr           = 0;
94     fStack[fStackPtr]   = 0;
95     fNodeStackPtr       = 0;
96     fRuleNum            = 0;
97     fNodeStack[0]       = NULL;
98 
99     fRuleSets[kRuleSet_rule_char-128]       = NULL;
100     fRuleSets[kRuleSet_white_space-128]     = NULL;
101     fRuleSets[kRuleSet_name_char-128]       = NULL;
102     fRuleSets[kRuleSet_name_start_char-128] = NULL;
103     fRuleSets[kRuleSet_digit_char-128]      = NULL;
104     fSymbolTable                            = NULL;
105     fSetTable                               = NULL;
106 
107     fScanIndex = 0;
108     fNextIndex = 0;
109 
110     fReverseRule        = FALSE;
111     fLookAheadRule      = FALSE;
112 
113     fLineNum    = 1;
114     fCharNum    = 0;
115     fQuoteMode  = FALSE;
116 
117     // Do not check status until after all critical fields are sufficiently initialized
118     //   that the destructor can run cleanly.
119     if (U_FAILURE(*rb->fStatus)) {
120         return;
121     }
122 
123     //
124     //  Set up the constant Unicode Sets.
125     //     Note:  These could be made static, lazily initialized, and shared among
126     //            all instances of RBBIRuleScanners.  BUT this is quite a bit simpler,
127     //            and the time to build these few sets should be small compared to a
128     //            full break iterator build.
129     fRuleSets[kRuleSet_rule_char-128]       = new UnicodeSet(gRuleSet_rule_char_pattern,       *rb->fStatus);
130     fRuleSets[kRuleSet_white_space-128]     = uprv_openRuleWhiteSpaceSet(rb->fStatus);
131     fRuleSets[kRuleSet_name_char-128]       = new UnicodeSet(gRuleSet_name_char_pattern,       *rb->fStatus);
132     fRuleSets[kRuleSet_name_start_char-128] = new UnicodeSet(gRuleSet_name_start_char_pattern, *rb->fStatus);
133     fRuleSets[kRuleSet_digit_char-128]      = new UnicodeSet(gRuleSet_digit_char_pattern,      *rb->fStatus);
134     if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) {
135         // This case happens if ICU's data is missing.  UnicodeSet tries to look up property
136         //   names from the init string, can't find them, and claims an illegal arguement.
137         //   Change the error so that the actual problem will be clearer to users.
138         *rb->fStatus = U_BRK_INIT_ERROR;
139     }
140     if (U_FAILURE(*rb->fStatus)) {
141         return;
142     }
143 
144     fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus);
145     fSetTable    = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, NULL, rb->fStatus);
146     uhash_setValueDeleter(fSetTable, RBBISetTable_deleter);
147 }
148 
149 
150 
151 //----------------------------------------------------------------------------------------
152 //
153 //  Destructor
154 //
155 //----------------------------------------------------------------------------------------
~RBBIRuleScanner()156 RBBIRuleScanner::~RBBIRuleScanner() {
157     delete fRuleSets[kRuleSet_rule_char-128];
158     delete fRuleSets[kRuleSet_white_space-128];
159     delete fRuleSets[kRuleSet_name_char-128];
160     delete fRuleSets[kRuleSet_name_start_char-128];
161     delete fRuleSets[kRuleSet_digit_char-128];
162 
163     delete fSymbolTable;
164     if (fSetTable != NULL) {
165          uhash_close(fSetTable);
166          fSetTable = NULL;
167 
168     }
169 
170 
171     // Node Stack.
172     //   Normally has one entry, which is the entire parse tree for the rules.
173     //   If errors occured, there may be additional subtrees left on the stack.
174     while (fNodeStackPtr > 0) {
175         delete fNodeStack[fNodeStackPtr];
176         fNodeStackPtr--;
177     }
178 
179 }
180 
181 //----------------------------------------------------------------------------------------
182 //
183 //  doParseAction        Do some action during rule parsing.
184 //                       Called by the parse state machine.
185 //                       Actions build the parse tree and Unicode Sets,
186 //                       and maintain the parse stack for nested expressions.
187 //
188 //                       TODO:  unify EParseAction and RBBI_RuleParseAction enum types.
189 //                              They represent exactly the same thing.  They're separate
190 //                              only to work around enum forward declaration restrictions
191 //                              in some compilers, while at the same time avoiding multiple
192 //                              definitions problems.  I'm sure that there's a better way.
193 //
194 //----------------------------------------------------------------------------------------
doParseActions(int32_t action)195 UBool RBBIRuleScanner::doParseActions(int32_t action)
196 {
197     RBBINode *n       = NULL;
198 
199     UBool   returnVal = TRUE;
200 
201     switch (action) {
202 
203     case doExprStart:
204         pushNewNode(RBBINode::opStart);
205         fRuleNum++;
206         break;
207 
208 
209     case doExprOrOperator:
210         {
211             fixOpStack(RBBINode::precOpCat);
212             RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
213             RBBINode  *orNode      = pushNewNode(RBBINode::opOr);
214             orNode->fLeftChild     = operandNode;
215             operandNode->fParent   = orNode;
216         }
217         break;
218 
219     case doExprCatOperator:
220         // concatenation operator.
221         // For the implicit concatenation of adjacent terms in an expression that are
222         //   not separated by any other operator.  Action is invoked between the
223         //   actions for the two terms.
224         {
225             fixOpStack(RBBINode::precOpCat);
226             RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
227             RBBINode  *catNode     = pushNewNode(RBBINode::opCat);
228             catNode->fLeftChild    = operandNode;
229             operandNode->fParent   = catNode;
230         }
231         break;
232 
233     case doLParen:
234         // Open Paren.
235         //   The openParen node is a dummy operation type with a low precedence,
236         //     which has the affect of ensuring that any real binary op that
237         //     follows within the parens binds more tightly to the operands than
238         //     stuff outside of the parens.
239         pushNewNode(RBBINode::opLParen);
240         break;
241 
242     case doExprRParen:
243         fixOpStack(RBBINode::precLParen);
244         break;
245 
246     case doNOP:
247         break;
248 
249     case doStartAssign:
250         // We've just scanned "$variable = "
251         // The top of the node stack has the $variable ref node.
252 
253         // Save the start position of the RHS text in the StartExpression node
254         //   that precedes the $variableReference node on the stack.
255         //   This will eventually be used when saving the full $variable replacement
256         //   text as a string.
257         n = fNodeStack[fNodeStackPtr-1];
258         n->fFirstPos = fNextIndex;              // move past the '='
259 
260         // Push a new start-of-expression node; needed to keep parse of the
261         //   RHS expression happy.
262         pushNewNode(RBBINode::opStart);
263         break;
264 
265 
266 
267 
268     case doEndAssign:
269         {
270             // We have reached the end of an assignement statement.
271             //   Current scan char is the ';' that terminates the assignment.
272 
273             // Terminate expression, leaves expression parse tree rooted in TOS node.
274             fixOpStack(RBBINode::precStart);
275 
276             RBBINode *startExprNode  = fNodeStack[fNodeStackPtr-2];
277             RBBINode *varRefNode     = fNodeStack[fNodeStackPtr-1];
278             RBBINode *RHSExprNode    = fNodeStack[fNodeStackPtr];
279 
280             // Save original text of right side of assignment, excluding the terminating ';'
281             //  in the root of the node for the right-hand-side expression.
282             RHSExprNode->fFirstPos = startExprNode->fFirstPos;
283             RHSExprNode->fLastPos  = fScanIndex;
284             fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText);
285 
286             // Expression parse tree becomes l. child of the $variable reference node.
287             varRefNode->fLeftChild = RHSExprNode;
288             RHSExprNode->fParent   = varRefNode;
289 
290             // Make a symbol table entry for the $variableRef node.
291             fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus);
292             if (U_FAILURE(*fRB->fStatus)) {
293                 // This is a round-about way to get the parse position set
294                 //  so that duplicate symbols error messages include a line number.
295                 UErrorCode t = *fRB->fStatus;
296                 *fRB->fStatus = U_ZERO_ERROR;
297                 error(t);
298             }
299 
300             // Clean up the stack.
301             delete startExprNode;
302             fNodeStackPtr-=3;
303             break;
304         }
305 
306     case doEndOfRule:
307         {
308         fixOpStack(RBBINode::precStart);      // Terminate expression, leaves expression
309         if (U_FAILURE(*fRB->fStatus)) {       //   parse tree rooted in TOS node.
310             break;
311         }
312 #ifdef RBBI_DEBUG
313         if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");}
314 #endif
315         U_ASSERT(fNodeStackPtr == 1);
316 
317         // If this rule includes a look-ahead '/', add a endMark node to the
318         //   expression tree.
319         if (fLookAheadRule) {
320             RBBINode  *thisRule       = fNodeStack[fNodeStackPtr];
321             RBBINode  *endNode        = pushNewNode(RBBINode::endMark);
322             RBBINode  *catNode        = pushNewNode(RBBINode::opCat);
323             fNodeStackPtr -= 2;
324             catNode->fLeftChild       = thisRule;
325             catNode->fRightChild      = endNode;
326             fNodeStack[fNodeStackPtr] = catNode;
327             endNode->fVal             = fRuleNum;
328             endNode->fLookAheadEnd    = TRUE;
329         }
330 
331         // All rule expressions are ORed together.
332         // The ';' that terminates an expression really just functions as a '|' with
333         //   a low operator prededence.
334         //
335         // Each of the four sets of rules are collected separately.
336         //  (forward, reverse, safe_forward, safe_reverse)
337         //  OR this rule into the appropriate group of them.
338         //
339         RBBINode **destRules = (fReverseRule? &fRB->fReverseTree : fRB->fDefaultTree);
340 
341         if (*destRules != NULL) {
342             // This is not the first rule encounted.
343             // OR previous stuff  (from *destRules)
344             // with the current rule expression (on the Node Stack)
345             //  with the resulting OR expression going to *destRules
346             //
347             RBBINode  *thisRule    = fNodeStack[fNodeStackPtr];
348             RBBINode  *prevRules   = *destRules;
349             RBBINode  *orNode      = pushNewNode(RBBINode::opOr);
350             orNode->fLeftChild     = prevRules;
351             prevRules->fParent     = orNode;
352             orNode->fRightChild    = thisRule;
353             thisRule->fParent      = orNode;
354             *destRules             = orNode;
355         }
356         else
357         {
358             // This is the first rule encountered (for this direction).
359             // Just move its parse tree from the stack to *destRules.
360             *destRules = fNodeStack[fNodeStackPtr];
361         }
362         fReverseRule   = FALSE;   // in preparation for the next rule.
363         fLookAheadRule = FALSE;
364         fNodeStackPtr  = 0;
365         }
366         break;
367 
368 
369     case doRuleError:
370         error(U_BRK_RULE_SYNTAX);
371         returnVal = FALSE;
372         break;
373 
374 
375     case doVariableNameExpectedErr:
376         error(U_BRK_RULE_SYNTAX);
377         break;
378 
379 
380     //
381     //  Unary operands  + ? *
382     //    These all appear after the operand to which they apply.
383     //    When we hit one, the operand (may be a whole sub expression)
384     //    will be on the top of the stack.
385     //    Unary Operator becomes TOS, with the old TOS as its one child.
386     case doUnaryOpPlus:
387         {
388             RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
389             RBBINode  *plusNode    = pushNewNode(RBBINode::opPlus);
390             plusNode->fLeftChild   = operandNode;
391             operandNode->fParent   = plusNode;
392         }
393         break;
394 
395     case doUnaryOpQuestion:
396         {
397             RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
398             RBBINode  *qNode       = pushNewNode(RBBINode::opQuestion);
399             qNode->fLeftChild      = operandNode;
400             operandNode->fParent   = qNode;
401         }
402         break;
403 
404     case doUnaryOpStar:
405         {
406             RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
407             RBBINode  *starNode    = pushNewNode(RBBINode::opStar);
408             starNode->fLeftChild   = operandNode;
409             operandNode->fParent   = starNode;
410         }
411         break;
412 
413     case doRuleChar:
414         // A "Rule Character" is any single character that is a literal part
415         // of the regular expression.  Like a, b and c in the expression "(abc*) | [:L:]"
416         // These are pretty uncommon in break rules; the terms are more commonly
417         //  sets.  To keep things uniform, treat these characters like as
418         // sets that just happen to contain only one character.
419         {
420             n = pushNewNode(RBBINode::setRef);
421             findSetFor(fC.fChar, n);
422             n->fFirstPos = fScanIndex;
423             n->fLastPos  = fNextIndex;
424             fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
425             break;
426         }
427 
428     case doDotAny:
429         // scanned a ".", meaning match any single character.
430         {
431             n = pushNewNode(RBBINode::setRef);
432             findSetFor(kAny, n);
433             n->fFirstPos = fScanIndex;
434             n->fLastPos  = fNextIndex;
435             fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
436             break;
437         }
438 
439     case doSlash:
440         // Scanned a '/', which identifies a look-ahead break position in a rule.
441         n = pushNewNode(RBBINode::lookAhead);
442         n->fVal      = fRuleNum;
443         n->fFirstPos = fScanIndex;
444         n->fLastPos  = fNextIndex;
445         fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
446         fLookAheadRule = TRUE;
447         break;
448 
449 
450     case doStartTagValue:
451         // Scanned a '{', the opening delimiter for a tag value within a rule.
452         n = pushNewNode(RBBINode::tag);
453         n->fVal      = 0;
454         n->fFirstPos = fScanIndex;
455         n->fLastPos  = fNextIndex;
456         break;
457 
458     case doTagDigit:
459         // Just scanned a decimal digit that's part of a tag value
460         {
461             n = fNodeStack[fNodeStackPtr];
462             uint32_t v = u_charDigitValue(fC.fChar);
463             U_ASSERT(v < 10);
464             n->fVal = n->fVal*10 + v;
465             break;
466         }
467 
468     case doTagValue:
469         n = fNodeStack[fNodeStackPtr];
470         n->fLastPos = fNextIndex;
471         fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
472         break;
473 
474     case doTagExpectedError:
475         error(U_BRK_MALFORMED_RULE_TAG);
476         returnVal = FALSE;
477         break;
478 
479     case doOptionStart:
480         // Scanning a !!option.   At the start of string.
481         fOptionStart = fScanIndex;
482         break;
483 
484     case doOptionEnd:
485         {
486             UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart);
487             if (opt == UNICODE_STRING("chain", 5)) {
488                 fRB->fChainRules = TRUE;
489             } else if (opt == UNICODE_STRING("LBCMNoChain", 11)) {
490                 fRB->fLBCMNoChain = TRUE;
491             } else if (opt == UNICODE_STRING("forward", 7)) {
492                 fRB->fDefaultTree   = &fRB->fForwardTree;
493             } else if (opt == UNICODE_STRING("reverse", 7)) {
494                 fRB->fDefaultTree   = &fRB->fReverseTree;
495             } else if (opt == UNICODE_STRING("safe_forward", 12)) {
496                 fRB->fDefaultTree   = &fRB->fSafeFwdTree;
497             } else if (opt == UNICODE_STRING("safe_reverse", 12)) {
498                 fRB->fDefaultTree   = &fRB->fSafeRevTree;
499             } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) {
500                 fRB->fLookAheadHardBreak = TRUE;
501             } else {
502                 error(U_BRK_UNRECOGNIZED_OPTION);
503             }
504         }
505         break;
506 
507     case doReverseDir:
508         fReverseRule = TRUE;
509         break;
510 
511     case doStartVariableName:
512         n = pushNewNode(RBBINode::varRef);
513         if (U_FAILURE(*fRB->fStatus)) {
514             break;
515         }
516         n->fFirstPos = fScanIndex;
517         break;
518 
519     case doEndVariableName:
520         n = fNodeStack[fNodeStackPtr];
521         if (n==NULL || n->fType != RBBINode::varRef) {
522             error(U_BRK_INTERNAL_ERROR);
523             break;
524         }
525         n->fLastPos = fScanIndex;
526         fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText);
527         // Look the newly scanned name up in the symbol table
528         //   If there's an entry, set the l. child of the var ref to the replacement expression.
529         //   (We also pass through here when scanning assignments, but no harm is done, other
530         //    than a slight wasted effort that seems hard to avoid.  Lookup will be null)
531         n->fLeftChild = fSymbolTable->lookupNode(n->fText);
532         break;
533 
534     case doCheckVarDef:
535         n = fNodeStack[fNodeStackPtr];
536         if (n->fLeftChild == NULL) {
537             error(U_BRK_UNDEFINED_VARIABLE);
538             returnVal = FALSE;
539         }
540         break;
541 
542     case doExprFinished:
543         break;
544 
545     case doRuleErrorAssignExpr:
546         error(U_BRK_ASSIGN_ERROR);
547         returnVal = FALSE;
548         break;
549 
550     case doExit:
551         returnVal = FALSE;
552         break;
553 
554     case doScanUnicodeSet:
555         scanSet();
556         break;
557 
558     default:
559         error(U_BRK_INTERNAL_ERROR);
560         returnVal = FALSE;
561         break;
562     }
563     return returnVal;
564 }
565 
566 
567 
568 
569 //----------------------------------------------------------------------------------------
570 //
571 //  Error         Report a rule parse error.
572 //                Only report it if no previous error has been recorded.
573 //
574 //----------------------------------------------------------------------------------------
error(UErrorCode e)575 void RBBIRuleScanner::error(UErrorCode e) {
576     if (U_SUCCESS(*fRB->fStatus)) {
577         *fRB->fStatus = e;
578         fRB->fParseError->line  = fLineNum;
579         fRB->fParseError->offset = fCharNum;
580         fRB->fParseError->preContext[0] = 0;
581         fRB->fParseError->preContext[0] = 0;
582     }
583 }
584 
585 
586 
587 
588 //----------------------------------------------------------------------------------------
589 //
590 //  fixOpStack   The parse stack holds partially assembled chunks of the parse tree.
591 //               An entry on the stack may be as small as a single setRef node,
592 //               or as large as the parse tree
593 //               for an entire expression (this will be the one item left on the stack
594 //               when the parsing of an RBBI rule completes.
595 //
596 //               This function is called when a binary operator is encountered.
597 //               It looks back up the stack for operators that are not yet associated
598 //               with a right operand, and if the precedence of the stacked operator >=
599 //               the precedence of the current operator, binds the operand left,
600 //               to the previously encountered operator.
601 //
602 //----------------------------------------------------------------------------------------
fixOpStack(RBBINode::OpPrecedence p)603 void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) {
604     RBBINode *n;
605     // printNodeStack("entering fixOpStack()");
606     for (;;) {
607         n = fNodeStack[fNodeStackPtr-1];   // an operator node
608         if (n->fPrecedence == 0) {
609             RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node");
610             error(U_BRK_INTERNAL_ERROR);
611             return;
612         }
613 
614         if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) {
615             // The most recent operand goes with the current operator,
616             //   not with the previously stacked one.
617             break;
618         }
619             // Stack operator is a binary op  ( '|' or concatenation)
620             //   TOS operand becomes right child of this operator.
621             //   Resulting subexpression becomes the TOS operand.
622             n->fRightChild = fNodeStack[fNodeStackPtr];
623             fNodeStack[fNodeStackPtr]->fParent = n;
624             fNodeStackPtr--;
625         // printNodeStack("looping in fixOpStack()   ");
626     }
627 
628     if (p <= RBBINode::precLParen) {
629         // Scan is at a right paren or end of expression.
630         //  The scanned item must match the stack, or else there was an error.
631         //  Discard the left paren (or start expr) node from the stack,
632             //  leaving the completed (sub)expression as TOS.
633             if (n->fPrecedence != p) {
634                 // Right paren encountered matched start of expression node, or
635                 // end of expression matched with a left paren node.
636                 error(U_BRK_MISMATCHED_PAREN);
637             }
638             fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr];
639             fNodeStackPtr--;
640             // Delete the now-discarded LParen or Start node.
641             delete n;
642     }
643     // printNodeStack("leaving fixOpStack()");
644 }
645 
646 
647 
648 
649 //----------------------------------------------------------------------------------------
650 //
651 //   findSetFor    given a UnicodeString,
652 //                  - find the corresponding Unicode Set  (uset node)
653 //                         (create one if necessary)
654 //                  - Set fLeftChild of the caller's node (should be a setRef node)
655 //                         to the uset node
656 //                 Maintain a hash table of uset nodes, so the same one is always used
657 //                    for the same string.
658 //                 If a "to adopt" set is provided and we haven't seen this key before,
659 //                    add the provided set to the hash table.
660 //                 If the string is one (32 bit) char in length, the set contains
661 //                    just one element which is the char in question.
662 //                 If the string is "any", return a set containing all chars.
663 //
664 //----------------------------------------------------------------------------------------
findSetFor(const UnicodeString & s,RBBINode * node,UnicodeSet * setToAdopt)665 void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) {
666 
667     RBBISetTableEl   *el;
668 
669     // First check whether we've already cached a set for this string.
670     // If so, just use the cached set in the new node.
671     //   delete any set provided by the caller, since we own it.
672     el = (RBBISetTableEl *)uhash_get(fSetTable, &s);
673     if (el != NULL) {
674         delete setToAdopt;
675         node->fLeftChild = el->val;
676         U_ASSERT(node->fLeftChild->fType == RBBINode::uset);
677         return;
678     }
679 
680     // Haven't seen this set before.
681     // If the caller didn't provide us with a prebuilt set,
682     //   create a new UnicodeSet now.
683     if (setToAdopt == NULL) {
684         if (s.compare(kAny, -1) == 0) {
685             setToAdopt = new UnicodeSet(0x000000, 0x10ffff);
686         } else {
687             UChar32 c;
688             c = s.char32At(0);
689             setToAdopt = new UnicodeSet(c, c);
690         }
691     }
692 
693     //
694     // Make a new uset node to refer to this UnicodeSet
695     // This new uset node becomes the child of the caller's setReference node.
696     //
697     RBBINode *usetNode    = new RBBINode(RBBINode::uset);
698     usetNode->fInputSet   = setToAdopt;
699     usetNode->fParent     = node;
700     node->fLeftChild      = usetNode;
701     usetNode->fText = s;
702 
703 
704     //
705     // Add the new uset node to the list of all uset nodes.
706     //
707     fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus);
708 
709 
710     //
711     // Add the new set to the set hash table.
712     //
713     el      = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl));
714     UnicodeString *tkey = new UnicodeString(s);
715     if (tkey == NULL || el == NULL || setToAdopt == NULL) {
716         error(U_MEMORY_ALLOCATION_ERROR);
717         return;
718     }
719     el->key = tkey;
720     el->val = usetNode;
721     uhash_put(fSetTable, el->key, el, fRB->fStatus);
722 
723     return;
724 }
725 
726 
727 
728 //
729 //  Assorted Unicode character constants.
730 //     Numeric because there is no portable way to enter them as literals.
731 //     (Think EBCDIC).
732 //
733 static const UChar      chCR        = 0x0d;      // New lines, for terminating comments.
734 static const UChar      chLF        = 0x0a;
735 static const UChar      chNEL       = 0x85;      //    NEL newline variant
736 static const UChar      chLS        = 0x2028;    //    Unicode Line Separator
737 static const UChar      chApos      = 0x27;      //  single quote, for quoted chars.
738 static const UChar      chPound     = 0x23;      // '#', introduces a comment.
739 static const UChar      chBackSlash = 0x5c;      // '\'  introduces a char escape
740 static const UChar      chLParen    = 0x28;
741 static const UChar      chRParen    = 0x29;
742 
743 
744 //----------------------------------------------------------------------------------------
745 //
746 //  stripRules    Return a rules string without unnecessary
747 //                characters.
748 //
749 //----------------------------------------------------------------------------------------
stripRules(const UnicodeString & rules)750 UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) {
751     UnicodeString strippedRules;
752     int rulesLength = rules.length();
753     for (int idx = 0; idx < rulesLength; ) {
754         UChar ch = rules[idx++];
755         if (ch == chPound) {
756             while (idx < rulesLength
757                 && ch != chCR && ch != chLF && ch != chNEL)
758             {
759                 ch = rules[idx++];
760             }
761         }
762         if (!u_isISOControl(ch)) {
763             strippedRules.append(ch);
764         }
765     }
766     // strippedRules = strippedRules.unescape();
767     return strippedRules;
768 }
769 
770 
771 //----------------------------------------------------------------------------------------
772 //
773 //  nextCharLL    Low Level Next Char from rule input source.
774 //                Get a char from the input character iterator,
775 //                keep track of input position for error reporting.
776 //
777 //----------------------------------------------------------------------------------------
nextCharLL()778 UChar32  RBBIRuleScanner::nextCharLL() {
779     UChar32  ch;
780 
781     if (fNextIndex >= fRB->fRules.length()) {
782         return (UChar32)-1;
783     }
784     ch         = fRB->fRules.char32At(fNextIndex);
785     fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1);
786 
787     if (ch == chCR ||
788         ch == chNEL ||
789         ch == chLS   ||
790         ch == chLF && fLastChar != chCR) {
791         // Character is starting a new line.  Bump up the line number, and
792         //  reset the column to 0.
793         fLineNum++;
794         fCharNum=0;
795         if (fQuoteMode) {
796             error(U_BRK_NEW_LINE_IN_QUOTED_STRING);
797             fQuoteMode = FALSE;
798         }
799     }
800     else {
801         // Character is not starting a new line.  Except in the case of a
802         //   LF following a CR, increment the column position.
803         if (ch != chLF) {
804             fCharNum++;
805         }
806     }
807     fLastChar = ch;
808     return ch;
809 }
810 
811 
812 //---------------------------------------------------------------------------------
813 //
814 //   nextChar     for rules scanning.  At this level, we handle stripping
815 //                out comments and processing backslash character escapes.
816 //                The rest of the rules grammar is handled at the next level up.
817 //
818 //---------------------------------------------------------------------------------
nextChar(RBBIRuleChar & c)819 void RBBIRuleScanner::nextChar(RBBIRuleChar &c) {
820 
821     // Unicode Character constants needed for the processing done by nextChar(),
822     //   in hex because literals wont work on EBCDIC machines.
823 
824     fScanIndex = fNextIndex;
825     c.fChar    = nextCharLL();
826     c.fEscaped = FALSE;
827 
828     //
829     //  check for '' sequence.
830     //  These are recognized in all contexts, whether in quoted text or not.
831     //
832     if (c.fChar == chApos) {
833         if (fRB->fRules.char32At(fNextIndex) == chApos) {
834             c.fChar    = nextCharLL();        // get nextChar officially so character counts
835             c.fEscaped = TRUE;                //   stay correct.
836         }
837         else
838         {
839             // Single quote, by itself.
840             //   Toggle quoting mode.
841             //   Return either '('  or ')', because quotes cause a grouping of the quoted text.
842             fQuoteMode = !fQuoteMode;
843             if (fQuoteMode == TRUE) {
844                 c.fChar = chLParen;
845             } else {
846                 c.fChar = chRParen;
847             }
848             c.fEscaped = FALSE;      // The paren that we return is not escaped.
849             return;
850         }
851     }
852 
853     if (fQuoteMode) {
854         c.fEscaped = TRUE;
855     }
856     else
857     {
858         // We are not in a 'quoted region' of the source.
859         //
860         if (c.fChar == chPound) {
861             // Start of a comment.  Consume the rest of it.
862             //  The new-line char that terminates the comment is always returned.
863             //  It will be treated as white-space, and serves to break up anything
864             //    that might otherwise incorrectly clump together with a comment in
865             //    the middle (a variable name, for example.)
866             for (;;) {
867                 c.fChar = nextCharLL();
868                 if (c.fChar == (UChar32)-1 ||  // EOF
869                     c.fChar == chCR     ||
870                     c.fChar == chLF     ||
871                     c.fChar == chNEL    ||
872                     c.fChar == chLS)       {break;}
873             }
874         }
875         if (c.fChar == (UChar32)-1) {
876             return;
877         }
878 
879         //
880         //  check for backslash escaped characters.
881         //  Use UnicodeString::unescapeAt() to handle them.
882         //
883         if (c.fChar == chBackSlash) {
884             c.fEscaped = TRUE;
885             int32_t startX = fNextIndex;
886             c.fChar = fRB->fRules.unescapeAt(fNextIndex);
887             if (fNextIndex == startX) {
888                 error(U_BRK_HEX_DIGITS_EXPECTED);
889             }
890             fCharNum += fNextIndex-startX;
891         }
892     }
893     // putc(c.fChar, stdout);
894 }
895 
896 //---------------------------------------------------------------------------------
897 //
898 //  Parse RBBI rules.   The state machine for rules parsing is here.
899 //                      The state tables are hand-written in the file rbbirpt.txt,
900 //                      and converted to the form used here by a perl
901 //                      script rbbicst.pl
902 //
903 //---------------------------------------------------------------------------------
parse()904 void RBBIRuleScanner::parse() {
905     uint16_t                state;
906     const RBBIRuleTableEl  *tableEl;
907 
908     if (U_FAILURE(*fRB->fStatus)) {
909         return;
910     }
911 
912     state = 1;
913     nextChar(fC);
914     //
915     // Main loop for the rule parsing state machine.
916     //   Runs once per state transition.
917     //   Each time through optionally performs, depending on the state table,
918     //      - an advance to the the next input char
919     //      - an action to be performed.
920     //      - pushing or popping a state to/from the local state return stack.
921     //
922     for (;;) {
923         //  Bail out if anything has gone wrong.
924         //  RBBI rule file parsing stops on the first error encountered.
925         if (U_FAILURE(*fRB->fStatus)) {
926             break;
927         }
928 
929         // Quit if state == 0.  This is the normal way to exit the state machine.
930         //
931         if (state == 0) {
932             break;
933         }
934 
935         // Find the state table element that matches the input char from the rule, or the
936         //    class of the input character.  Start with the first table row for this
937         //    state, then linearly scan forward until we find a row that matches the
938         //    character.  The last row for each state always matches all characters, so
939         //    the search will stop there, if not before.
940         //
941         tableEl = &gRuleParseStateTable[state];
942         #ifdef RBBI_DEBUG
943             if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) {
944                 RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d)    state=%s ",
945                     fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]);
946             }
947         #endif
948 
949         for (;;) {
950             #ifdef RBBI_DEBUG
951                 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf(".");}
952             #endif
953             if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE &&   tableEl->fCharClass == fC.fChar) {
954                 // Table row specified an individual character, not a set, and
955                 //   the input character is not escaped, and
956                 //   the input character matched it.
957                 break;
958             }
959             if (tableEl->fCharClass == 255) {
960                 // Table row specified default, match anything character class.
961                 break;
962             }
963             if (tableEl->fCharClass == 254 && fC.fEscaped)  {
964                 // Table row specified "escaped" and the char was escaped.
965                 break;
966             }
967             if (tableEl->fCharClass == 253 && fC.fEscaped &&
968                 (fC.fChar == 0x50 || fC.fChar == 0x70 ))  {
969                 // Table row specified "escaped P" and the char is either 'p' or 'P'.
970                 break;
971             }
972             if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1)  {
973                 // Table row specified eof and we hit eof on the input.
974                 break;
975             }
976 
977             if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 &&   // Table specs a char class &&
978                 fC.fEscaped == FALSE &&                                      //   char is not escaped &&
979                 fC.fChar != (UChar32)-1) {                                   //   char is not EOF
980                 UnicodeSet *uniset = fRuleSets[tableEl->fCharClass-128];
981                 if (uniset->contains(fC.fChar)) {
982                     // Table row specified a character class, or set of characters,
983                     //   and the current char matches it.
984                     break;
985                 }
986             }
987 
988             // No match on this row, advance to the next  row for this state,
989             tableEl++;
990         }
991         if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");}
992 
993         //
994         // We've found the row of the state table that matches the current input
995         //   character from the rules string.
996         // Perform any action specified  by this row in the state table.
997         if (doParseActions((int32_t)tableEl->fAction) == FALSE) {
998             // Break out of the state machine loop if the
999             //   the action signalled some kind of error, or
1000             //   the action was to exit, occurs on normal end-of-rules-input.
1001             break;
1002         }
1003 
1004         if (tableEl->fPushState != 0) {
1005             fStackPtr++;
1006             if (fStackPtr >= kStackSize) {
1007                 error(U_BRK_INTERNAL_ERROR);
1008                 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow.");
1009                 fStackPtr--;
1010             }
1011             fStack[fStackPtr] = tableEl->fPushState;
1012         }
1013 
1014         if (tableEl->fNextChar) {
1015             nextChar(fC);
1016         }
1017 
1018         // Get the next state from the table entry, or from the
1019         //   state stack if the next state was specified as "pop".
1020         if (tableEl->fNextState != 255) {
1021             state = tableEl->fNextState;
1022         } else {
1023             state = fStack[fStackPtr];
1024             fStackPtr--;
1025             if (fStackPtr < 0) {
1026                 error(U_BRK_INTERNAL_ERROR);
1027                 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow.");
1028                 fStackPtr++;
1029             }
1030         }
1031 
1032     }
1033 
1034     //
1035     // If there were NO user specified reverse rules, set up the equivalent of ".*;"
1036     //
1037     if (fRB->fReverseTree == NULL) {
1038         fRB->fReverseTree  = pushNewNode(RBBINode::opStar);
1039         RBBINode  *operand = pushNewNode(RBBINode::setRef);
1040         findSetFor(kAny, operand);
1041         fRB->fReverseTree->fLeftChild = operand;
1042         operand->fParent              = fRB->fReverseTree;
1043         fNodeStackPtr -= 2;
1044     }
1045 
1046 
1047     //
1048     // Parsing of the input RBBI rules is complete.
1049     // We now have a parse tree for the rule expressions
1050     // and a list of all UnicodeSets that are referenced.
1051     //
1052 #ifdef RBBI_DEBUG
1053     if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();}
1054     if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree"))
1055     {
1056         RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n");
1057         fRB->fForwardTree->printTree(TRUE);
1058         RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n");
1059         fRB->fReverseTree->printTree(TRUE);
1060         RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n");
1061         fRB->fSafeFwdTree->printTree(TRUE);
1062         RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n");
1063         fRB->fSafeRevTree->printTree(TRUE);
1064     }
1065 #endif
1066 }
1067 
1068 
1069 //---------------------------------------------------------------------------------
1070 //
1071 //  printNodeStack     for debugging...
1072 //
1073 //---------------------------------------------------------------------------------
1074 #ifdef RBBI_DEBUG
printNodeStack(const char * title)1075 void RBBIRuleScanner::printNodeStack(const char *title) {
1076     int i;
1077     RBBIDebugPrintf("%s.  Dumping node stack...\n", title);
1078     for (i=fNodeStackPtr; i>0; i--) {fNodeStack[i]->printTree(TRUE);}
1079 }
1080 #endif
1081 
1082 
1083 
1084 
1085 //---------------------------------------------------------------------------------
1086 //
1087 //  pushNewNode   create a new RBBINode of the specified type and push it
1088 //                onto the stack of nodes.
1089 //
1090 //---------------------------------------------------------------------------------
pushNewNode(RBBINode::NodeType t)1091 RBBINode  *RBBIRuleScanner::pushNewNode(RBBINode::NodeType  t) {
1092     fNodeStackPtr++;
1093     if (fNodeStackPtr >= kStackSize) {
1094         error(U_BRK_INTERNAL_ERROR);
1095         RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow.");
1096         *fRB->fStatus = U_BRK_INTERNAL_ERROR;
1097         return NULL;
1098     }
1099     fNodeStack[fNodeStackPtr] = new RBBINode(t);
1100     if (fNodeStack[fNodeStackPtr] == NULL) {
1101         *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR;
1102     }
1103     return fNodeStack[fNodeStackPtr];
1104 }
1105 
1106 
1107 
1108 //---------------------------------------------------------------------------------
1109 //
1110 //  scanSet    Construct a UnicodeSet from the text at the current scan
1111 //             position.  Advance the scan position to the first character
1112 //             after the set.
1113 //
1114 //             A new RBBI setref node referring to the set is pushed onto the node
1115 //             stack.
1116 //
1117 //             The scan position is normally under the control of the state machine
1118 //             that controls rule parsing.  UnicodeSets, however, are parsed by
1119 //             the UnicodeSet constructor, not by the RBBI rule parser.
1120 //
1121 //---------------------------------------------------------------------------------
scanSet()1122 void RBBIRuleScanner::scanSet() {
1123     UnicodeSet    *uset;
1124     ParsePosition  pos;
1125     int            startPos;
1126     int            i;
1127 
1128     if (U_FAILURE(*fRB->fStatus)) {
1129         return;
1130     }
1131 
1132     pos.setIndex(fScanIndex);
1133     startPos = fScanIndex;
1134     UErrorCode localStatus = U_ZERO_ERROR;
1135     uset = new UnicodeSet(fRB->fRules, pos, USET_IGNORE_SPACE,
1136                          fSymbolTable,
1137                          localStatus);
1138     if (U_FAILURE(localStatus)) {
1139         //  TODO:  Get more accurate position of the error from UnicodeSet's return info.
1140         //         UnicodeSet appears to not be reporting correctly at this time.
1141         #ifdef RBBI_DEBUG
1142             RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex());
1143         #endif
1144         error(localStatus);
1145         delete uset;
1146         return;
1147     }
1148 
1149     // Verify that the set contains at least one code point.
1150     //
1151     if (uset->isEmpty()) {
1152         // This set is empty.
1153         //  Make it an error, because it almost certainly is not what the user wanted.
1154         //  Also, avoids having to think about corner cases in the tree manipulation code
1155         //   that occurs later on.
1156         error(U_BRK_RULE_EMPTY_SET);
1157         delete uset;
1158         return;
1159     }
1160 
1161 
1162     // Advance the RBBI parse postion over the UnicodeSet pattern.
1163     //   Don't just set fScanIndex because the line/char positions maintained
1164     //   for error reporting would be thrown off.
1165     i = pos.getIndex();
1166     for (;;) {
1167         if (fNextIndex >= i) {
1168             break;
1169         }
1170         nextCharLL();
1171     }
1172 
1173     if (U_SUCCESS(*fRB->fStatus)) {
1174         RBBINode         *n;
1175 
1176         n = pushNewNode(RBBINode::setRef);
1177         n->fFirstPos = startPos;
1178         n->fLastPos  = fNextIndex;
1179         fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
1180         //  findSetFor() serves several purposes here:
1181         //     - Adopts storage for the UnicodeSet, will be responsible for deleting.
1182         //     - Mantains collection of all sets in use, needed later for establishing
1183         //          character categories for run time engine.
1184         //     - Eliminates mulitiple instances of the same set.
1185         //     - Creates a new uset node if necessary (if this isn't a duplicate.)
1186         findSetFor(n->fText, n, uset);
1187     }
1188 
1189 }
1190 
1191 U_NAMESPACE_END
1192 
1193 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */
1194