• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -----------------------------------------------------------------------
2    ffi.c - Copyright (c) 1998, 2008  Red Hat, Inc.
3 
4    ARM Foreign Function Interface
5 
6    Permission is hereby granted, free of charge, to any person obtaining
7    a copy of this software and associated documentation files (the
8    ``Software''), to deal in the Software without restriction, including
9    without limitation the rights to use, copy, modify, merge, publish,
10    distribute, sublicense, and/or sell copies of the Software, and to
11    permit persons to whom the Software is furnished to do so, subject to
12    the following conditions:
13 
14    The above copyright notice and this permission notice shall be included
15    in all copies or substantial portions of the Software.
16 
17    THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
18    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
20    NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
21    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
22    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24    DEALINGS IN THE SOFTWARE.
25    ----------------------------------------------------------------------- */
26 
27 #include <ffi.h>
28 #include <ffi_common.h>
29 
30 #include <stdlib.h>
31 
32 /* ffi_prep_args is called by the assembly routine once stack space
33    has been allocated for the function's arguments */
34 
ffi_prep_args(char * stack,extended_cif * ecif)35 void ffi_prep_args(char *stack, extended_cif *ecif)
36 {
37   register unsigned int i;
38   register void **p_argv;
39   register char *argp;
40   register ffi_type **p_arg;
41 
42   argp = stack;
43 
44   if ( ecif->cif->flags == FFI_TYPE_STRUCT ) {
45     *(void **) argp = ecif->rvalue;
46     argp += 4;
47   }
48 
49   p_argv = ecif->avalue;
50 
51   for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
52        (i != 0);
53        i--, p_arg++)
54     {
55       size_t z;
56 
57       /* Align if necessary */
58       if (((*p_arg)->alignment - 1) & (unsigned) argp) {
59 	argp = (char *) ALIGN(argp, (*p_arg)->alignment);
60       }
61 
62       if ((*p_arg)->type == FFI_TYPE_STRUCT)
63 	argp = (char *) ALIGN(argp, 4);
64 
65 	  z = (*p_arg)->size;
66 	  if (z < sizeof(int))
67 	    {
68 	      z = sizeof(int);
69 	      switch ((*p_arg)->type)
70 		{
71 		case FFI_TYPE_SINT8:
72 		  *(signed int *) argp = (signed int)*(SINT8 *)(* p_argv);
73 		  break;
74 
75 		case FFI_TYPE_UINT8:
76 		  *(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv);
77 		  break;
78 
79 		case FFI_TYPE_SINT16:
80 		  *(signed int *) argp = (signed int)*(SINT16 *)(* p_argv);
81 		  break;
82 
83 		case FFI_TYPE_UINT16:
84 		  *(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv);
85 		  break;
86 
87 		case FFI_TYPE_STRUCT:
88 		  memcpy(argp, *p_argv, (*p_arg)->size);
89 		  break;
90 
91 		default:
92 		  FFI_ASSERT(0);
93 		}
94 	    }
95 	  else if (z == sizeof(int))
96 	    {
97 	      *(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv);
98 	    }
99 	  else
100 	    {
101 	      memcpy(argp, *p_argv, z);
102 	    }
103 	  p_argv++;
104 	  argp += z;
105     }
106 
107   return;
108 }
109 
110 /* Perform machine dependent cif processing */
ffi_prep_cif_machdep(ffi_cif * cif)111 ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
112 {
113   /* Round the stack up to a multiple of 8 bytes.  This isn't needed
114      everywhere, but it is on some platforms, and it doesn't harm anything
115      when it isn't needed.  */
116   cif->bytes = (cif->bytes + 7) & ~7;
117 
118   /* Set the return type flag */
119   switch (cif->rtype->type)
120     {
121     case FFI_TYPE_VOID:
122     case FFI_TYPE_FLOAT:
123     case FFI_TYPE_DOUBLE:
124       cif->flags = (unsigned) cif->rtype->type;
125       break;
126 
127     case FFI_TYPE_SINT64:
128     case FFI_TYPE_UINT64:
129       cif->flags = (unsigned) FFI_TYPE_SINT64;
130       break;
131 
132     case FFI_TYPE_STRUCT:
133       if (cif->rtype->size <= 4)
134 	/* A Composite Type not larger than 4 bytes is returned in r0.  */
135 	cif->flags = (unsigned)FFI_TYPE_INT;
136       else
137 	/* A Composite Type larger than 4 bytes, or whose size cannot
138 	   be determined statically ... is stored in memory at an
139 	   address passed [in r0].  */
140 	cif->flags = (unsigned)FFI_TYPE_STRUCT;
141       break;
142 
143     default:
144       cif->flags = FFI_TYPE_INT;
145       break;
146     }
147 
148   return FFI_OK;
149 }
150 
151 extern void ffi_call_SYSV(void (*)(char *, extended_cif *), extended_cif *,
152 			  unsigned, unsigned, unsigned *, void (*fn)(void));
153 
ffi_call(ffi_cif * cif,void (* fn)(void),void * rvalue,void ** avalue)154 void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
155 {
156   extended_cif ecif;
157 
158   int small_struct = (cif->flags == FFI_TYPE_INT
159 		      && cif->rtype->type == FFI_TYPE_STRUCT);
160 
161   ecif.cif = cif;
162   ecif.avalue = avalue;
163 
164   unsigned int temp;
165 
166   /* If the return value is a struct and we don't have a return	*/
167   /* value address then we need to make one		        */
168 
169   if ((rvalue == NULL) &&
170       (cif->flags == FFI_TYPE_STRUCT))
171     {
172       ecif.rvalue = alloca(cif->rtype->size);
173     }
174   else if (small_struct)
175     ecif.rvalue = &temp;
176   else
177     ecif.rvalue = rvalue;
178 
179   switch (cif->abi)
180     {
181     case FFI_SYSV:
182       ffi_call_SYSV(ffi_prep_args, &ecif, cif->bytes, cif->flags, ecif.rvalue,
183 		    fn);
184 
185       break;
186     default:
187       FFI_ASSERT(0);
188       break;
189     }
190   if (small_struct)
191     memcpy (rvalue, &temp, cif->rtype->size);
192 }
193 
194 /** private members **/
195 
196 static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
197 					 void** args, ffi_cif* cif);
198 
199 void ffi_closure_SYSV (ffi_closure *);
200 
201 /* This function is jumped to by the trampoline */
202 
203 unsigned int
ffi_closure_SYSV_inner(closure,respp,args)204 ffi_closure_SYSV_inner (closure, respp, args)
205      ffi_closure *closure;
206      void **respp;
207      void *args;
208 {
209   // our various things...
210   ffi_cif       *cif;
211   void         **arg_area;
212 
213   cif         = closure->cif;
214   arg_area    = (void**) alloca (cif->nargs * sizeof (void*));
215 
216   /* this call will initialize ARG_AREA, such that each
217    * element in that array points to the corresponding
218    * value on the stack; and if the function returns
219    * a structure, it will re-set RESP to point to the
220    * structure return address.  */
221 
222   ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif);
223 
224   (closure->fun) (cif, *respp, arg_area, closure->user_data);
225 
226   return cif->flags;
227 }
228 
229 /*@-exportheader@*/
230 static void
ffi_prep_incoming_args_SYSV(char * stack,void ** rvalue,void ** avalue,ffi_cif * cif)231 ffi_prep_incoming_args_SYSV(char *stack, void **rvalue,
232 			    void **avalue, ffi_cif *cif)
233 /*@=exportheader@*/
234 {
235   register unsigned int i;
236   register void **p_argv;
237   register char *argp;
238   register ffi_type **p_arg;
239 
240   argp = stack;
241 
242   if ( cif->flags == FFI_TYPE_STRUCT ) {
243     *rvalue = *(void **) argp;
244     argp += 4;
245   }
246 
247   p_argv = avalue;
248 
249   for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
250     {
251       size_t z;
252 
253       size_t alignment = (*p_arg)->alignment;
254       if (alignment < 4)
255 	alignment = 4;
256       /* Align if necessary */
257       if ((alignment - 1) & (unsigned) argp) {
258 	argp = (char *) ALIGN(argp, alignment);
259       }
260 
261       z = (*p_arg)->size;
262 
263       /* because we're little endian, this is what it turns into.   */
264 
265       *p_argv = (void*) argp;
266 
267       p_argv++;
268       argp += z;
269     }
270 
271   return;
272 }
273 
274 /* How to make a trampoline.  */
275 
276 #define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX)				\
277 ({ unsigned char *__tramp = (unsigned char*)(TRAMP);			\
278    unsigned int  __fun = (unsigned int)(FUN);				\
279    unsigned int  __ctx = (unsigned int)(CTX);				\
280    *(unsigned int*) &__tramp[0] = 0xe92d000f; /* stmfd sp!, {r0-r3} */	\
281    *(unsigned int*) &__tramp[4] = 0xe59f0000; /* ldr r0, [pc] */	\
282    *(unsigned int*) &__tramp[8] = 0xe59ff000; /* ldr pc, [pc] */	\
283    *(unsigned int*) &__tramp[12] = __ctx;				\
284    *(unsigned int*) &__tramp[16] = __fun;				\
285    __clear_cache((&__tramp[0]), (&__tramp[19]));			\
286  })
287 
288 
289 /* the cif must already be prep'ed */
290 
291 ffi_status
ffi_prep_closure_loc(ffi_closure * closure,ffi_cif * cif,void (* fun)(ffi_cif *,void *,void **,void *),void * user_data,void * codeloc)292 ffi_prep_closure_loc (ffi_closure* closure,
293 		      ffi_cif* cif,
294 		      void (*fun)(ffi_cif*,void*,void**,void*),
295 		      void *user_data,
296 		      void *codeloc)
297 {
298   FFI_ASSERT (cif->abi == FFI_SYSV);
299 
300   FFI_INIT_TRAMPOLINE (&closure->tramp[0], \
301 		       &ffi_closure_SYSV,  \
302 		       codeloc);
303 
304   closure->cif  = cif;
305   closure->user_data = user_data;
306   closure->fun  = fun;
307 
308   return FFI_OK;
309 }
310