• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -----------------------------------------------------------------------
2    ffi.c - Copyright (c) 1998 Geoffrey Keating
3    Copyright (C) 2007 Free Software Foundation, Inc
4    Copyright (C) 2008 Red Hat, Inc
5 
6    PowerPC Foreign Function Interface
7 
8    Permission is hereby granted, free of charge, to any person obtaining
9    a copy of this software and associated documentation files (the
10    ``Software''), to deal in the Software without restriction, including
11    without limitation the rights to use, copy, modify, merge, publish,
12    distribute, sublicense, and/or sell copies of the Software, and to
13    permit persons to whom the Software is furnished to do so, subject to
14    the following conditions:
15 
16    The above copyright notice and this permission notice shall be included
17    in all copies or substantial portions of the Software.
18 
19    THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
20    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22    IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR
23    OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
24    ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
25    OTHER DEALINGS IN THE SOFTWARE.
26    ----------------------------------------------------------------------- */
27 
28 #include <ffi.h>
29 #include <ffi_common.h>
30 
31 #include <stdlib.h>
32 #include <stdio.h>
33 
34 
35 extern void ffi_closure_SYSV (void);
36 extern void FFI_HIDDEN ffi_closure_LINUX64 (void);
37 
38 enum {
39   /* The assembly depends on these exact flags.  */
40   FLAG_RETURNS_SMST	= 1 << (31-31), /* Used for FFI_SYSV small structs.  */
41   FLAG_RETURNS_NOTHING  = 1 << (31-30), /* These go in cr7 */
42   FLAG_RETURNS_FP       = 1 << (31-29),
43   FLAG_RETURNS_64BITS   = 1 << (31-28),
44 
45   FLAG_RETURNS_128BITS  = 1 << (31-27), /* cr6  */
46 
47   FLAG_ARG_NEEDS_COPY   = 1 << (31- 7),
48   FLAG_FP_ARGUMENTS     = 1 << (31- 6), /* cr1.eq; specified by ABI */
49   FLAG_4_GPR_ARGUMENTS  = 1 << (31- 5),
50   FLAG_RETVAL_REFERENCE = 1 << (31- 4)
51 };
52 
53 /* About the SYSV ABI.  */
54 unsigned int NUM_GPR_ARG_REGISTERS = 8;
55 #ifndef __NO_FPRS__
56 unsigned int NUM_FPR_ARG_REGISTERS = 8;
57 #else
58 unsigned int NUM_FPR_ARG_REGISTERS = 0;
59 #endif
60 
61 enum { ASM_NEEDS_REGISTERS = 4 };
62 
63 /* ffi_prep_args_SYSV is called by the assembly routine once stack space
64    has been allocated for the function's arguments.
65 
66    The stack layout we want looks like this:
67 
68    |   Return address from ffi_call_SYSV 4bytes	|	higher addresses
69    |--------------------------------------------|
70    |   Previous backchain pointer	4	|       stack pointer here
71    |--------------------------------------------|<+ <<<	on entry to
72    |   Saved r28-r31			4*4	| |	ffi_call_SYSV
73    |--------------------------------------------| |
74    |   GPR registers r3-r10		8*4	| |	ffi_call_SYSV
75    |--------------------------------------------| |
76    |   FPR registers f1-f8 (optional)	8*8	| |
77    |--------------------------------------------| |	stack	|
78    |   Space for copied structures		| |	grows	|
79    |--------------------------------------------| |	down    V
80    |   Parameters that didn't fit in registers  | |
81    |--------------------------------------------| |	lower addresses
82    |   Space for callee's LR		4	| |
83    |--------------------------------------------| |	stack pointer here
84    |   Current backchain pointer	4	|-/	during
85    |--------------------------------------------|   <<<	ffi_call_SYSV
86 
87 */
88 
89 void
ffi_prep_args_SYSV(extended_cif * ecif,unsigned * const stack)90 ffi_prep_args_SYSV (extended_cif *ecif, unsigned *const stack)
91 {
92   const unsigned bytes = ecif->cif->bytes;
93   const unsigned flags = ecif->cif->flags;
94 
95   typedef union {
96     char *c;
97     unsigned *u;
98     long long *ll;
99     float *f;
100     double *d;
101   } valp;
102 
103   /* 'stacktop' points at the previous backchain pointer.  */
104   valp stacktop;
105 
106   /* 'gpr_base' points at the space for gpr3, and grows upwards as
107      we use GPR registers.  */
108   valp gpr_base;
109   int intarg_count;
110 
111   /* 'fpr_base' points at the space for fpr1, and grows upwards as
112      we use FPR registers.  */
113   valp fpr_base;
114   int fparg_count;
115 
116   /* 'copy_space' grows down as we put structures in it.  It should
117      stay 16-byte aligned.  */
118   valp copy_space;
119 
120   /* 'next_arg' grows up as we put parameters in it.  */
121   valp next_arg;
122 
123   int i, ii MAYBE_UNUSED;
124   ffi_type **ptr;
125   double double_tmp;
126   union {
127     void **v;
128     char **c;
129     signed char **sc;
130     unsigned char **uc;
131     signed short **ss;
132     unsigned short **us;
133     unsigned int **ui;
134     long long **ll;
135     float **f;
136     double **d;
137   } p_argv;
138   size_t struct_copy_size;
139   unsigned gprvalue;
140 
141   if (ecif->cif->abi == FFI_LINUX_SOFT_FLOAT)
142     NUM_FPR_ARG_REGISTERS = 0;
143 
144   stacktop.c = (char *) stack + bytes;
145   gpr_base.u = stacktop.u - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS;
146   intarg_count = 0;
147   fpr_base.d = gpr_base.d - NUM_FPR_ARG_REGISTERS;
148   fparg_count = 0;
149   copy_space.c = ((flags & FLAG_FP_ARGUMENTS) ? fpr_base.c : gpr_base.c);
150   next_arg.u = stack + 2;
151 
152   /* Check that everything starts aligned properly.  */
153   FFI_ASSERT (((unsigned) (char *) stack & 0xF) == 0);
154   FFI_ASSERT (((unsigned) copy_space.c & 0xF) == 0);
155   FFI_ASSERT (((unsigned) stacktop.c & 0xF) == 0);
156   FFI_ASSERT ((bytes & 0xF) == 0);
157   FFI_ASSERT (copy_space.c >= next_arg.c);
158 
159   /* Deal with return values that are actually pass-by-reference.  */
160   if (flags & FLAG_RETVAL_REFERENCE)
161     {
162       *gpr_base.u++ = (unsigned long) (char *) ecif->rvalue;
163       intarg_count++;
164     }
165 
166   /* Now for the arguments.  */
167   p_argv.v = ecif->avalue;
168   for (ptr = ecif->cif->arg_types, i = ecif->cif->nargs;
169        i > 0;
170        i--, ptr++, p_argv.v++)
171     {
172       switch ((*ptr)->type)
173 	{
174 	case FFI_TYPE_FLOAT:
175 	  /* With FFI_LINUX_SOFT_FLOAT floats are handled like UINT32.  */
176 	  if (ecif->cif->abi == FFI_LINUX_SOFT_FLOAT)
177 	    goto soft_float_prep;
178 	  double_tmp = **p_argv.f;
179 	  if (fparg_count >= NUM_FPR_ARG_REGISTERS)
180 	    {
181 	      *next_arg.f = (float) double_tmp;
182 	      next_arg.u += 1;
183 	    }
184 	  else
185 	    *fpr_base.d++ = double_tmp;
186 	  fparg_count++;
187 	  FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
188 	  break;
189 
190 	case FFI_TYPE_DOUBLE:
191 	  /* With FFI_LINUX_SOFT_FLOAT doubles are handled like UINT64.  */
192 	  if (ecif->cif->abi == FFI_LINUX_SOFT_FLOAT)
193 	    goto soft_double_prep;
194 	  double_tmp = **p_argv.d;
195 
196 	  if (fparg_count >= NUM_FPR_ARG_REGISTERS)
197 	    {
198 	      if (intarg_count >= NUM_GPR_ARG_REGISTERS
199 		  && intarg_count % 2 != 0)
200 		{
201 		  intarg_count++;
202 		  next_arg.u++;
203 		}
204 	      *next_arg.d = double_tmp;
205 	      next_arg.u += 2;
206 	    }
207 	  else
208 	    *fpr_base.d++ = double_tmp;
209 	  fparg_count++;
210 	  FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
211 	  break;
212 
213 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
214 	case FFI_TYPE_LONGDOUBLE:
215 	  if ((ecif->cif->abi != FFI_LINUX)
216 		&& (ecif->cif->abi != FFI_LINUX_SOFT_FLOAT))
217 	    goto do_struct;
218 	  /* The soft float ABI for long doubles works like this,
219 	     a long double is passed in four consecutive gprs if available.
220 	     A maximum of 2 long doubles can be passed in gprs.
221 	     If we do not have 4 gprs left, the long double is passed on the
222 	     stack, 4-byte aligned.  */
223 	  if (ecif->cif->abi == FFI_LINUX_SOFT_FLOAT)
224 	    {
225 	      unsigned int int_tmp = (*p_argv.ui)[0];
226 	      if (intarg_count >= NUM_GPR_ARG_REGISTERS - 3)
227 		{
228 		  if (intarg_count < NUM_GPR_ARG_REGISTERS)
229 		    intarg_count += NUM_GPR_ARG_REGISTERS - intarg_count;
230 		  *next_arg.u = int_tmp;
231 		  next_arg.u++;
232 		  for (ii = 1; ii < 4; ii++)
233 		    {
234 		      int_tmp = (*p_argv.ui)[ii];
235 		      *next_arg.u = int_tmp;
236 		      next_arg.u++;
237 		    }
238 		}
239 	      else
240 		{
241 		  *gpr_base.u++ = int_tmp;
242 		  for (ii = 1; ii < 4; ii++)
243 		    {
244 		      int_tmp = (*p_argv.ui)[ii];
245 		      *gpr_base.u++ = int_tmp;
246 		    }
247 		}
248 	      intarg_count +=4;
249 	    }
250 	  else
251 	    {
252 	      double_tmp = (*p_argv.d)[0];
253 
254 	      if (fparg_count >= NUM_FPR_ARG_REGISTERS - 1)
255 		{
256 		  if (intarg_count >= NUM_GPR_ARG_REGISTERS
257 		      && intarg_count % 2 != 0)
258 		    {
259 		      intarg_count++;
260 		      next_arg.u++;
261 		    }
262 		  *next_arg.d = double_tmp;
263 		  next_arg.u += 2;
264 		  double_tmp = (*p_argv.d)[1];
265 		  *next_arg.d = double_tmp;
266 		  next_arg.u += 2;
267 		}
268 	      else
269 		{
270 		  *fpr_base.d++ = double_tmp;
271 		  double_tmp = (*p_argv.d)[1];
272 		  *fpr_base.d++ = double_tmp;
273 		}
274 
275 	      fparg_count += 2;
276 	      FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
277 	    }
278 	  break;
279 #endif
280 
281 	case FFI_TYPE_UINT64:
282 	case FFI_TYPE_SINT64:
283 	soft_double_prep:
284 	  if (intarg_count == NUM_GPR_ARG_REGISTERS-1)
285 	    intarg_count++;
286 	  if (intarg_count >= NUM_GPR_ARG_REGISTERS)
287 	    {
288 	      if (intarg_count % 2 != 0)
289 		{
290 		  intarg_count++;
291 		  next_arg.u++;
292 		}
293 	      *next_arg.ll = **p_argv.ll;
294 	      next_arg.u += 2;
295 	    }
296 	  else
297 	    {
298 	      /* whoops: abi states only certain register pairs
299 	       * can be used for passing long long int
300 	       * specifically (r3,r4), (r5,r6), (r7,r8),
301 	       * (r9,r10) and if next arg is long long but
302 	       * not correct starting register of pair then skip
303 	       * until the proper starting register
304 	       */
305 	      if (intarg_count % 2 != 0)
306 		{
307 		  intarg_count ++;
308 		  gpr_base.u++;
309 		}
310 	      *gpr_base.ll++ = **p_argv.ll;
311 	    }
312 	  intarg_count += 2;
313 	  break;
314 
315 	case FFI_TYPE_STRUCT:
316 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
317 	do_struct:
318 #endif
319 	  struct_copy_size = ((*ptr)->size + 15) & ~0xF;
320 	  copy_space.c -= struct_copy_size;
321 	  memcpy (copy_space.c, *p_argv.c, (*ptr)->size);
322 
323 	  gprvalue = (unsigned long) copy_space.c;
324 
325 	  FFI_ASSERT (copy_space.c > next_arg.c);
326 	  FFI_ASSERT (flags & FLAG_ARG_NEEDS_COPY);
327 	  goto putgpr;
328 
329 	case FFI_TYPE_UINT8:
330 	  gprvalue = **p_argv.uc;
331 	  goto putgpr;
332 	case FFI_TYPE_SINT8:
333 	  gprvalue = **p_argv.sc;
334 	  goto putgpr;
335 	case FFI_TYPE_UINT16:
336 	  gprvalue = **p_argv.us;
337 	  goto putgpr;
338 	case FFI_TYPE_SINT16:
339 	  gprvalue = **p_argv.ss;
340 	  goto putgpr;
341 
342 	case FFI_TYPE_INT:
343 	case FFI_TYPE_UINT32:
344 	case FFI_TYPE_SINT32:
345 	case FFI_TYPE_POINTER:
346 	soft_float_prep:
347 
348 	  gprvalue = **p_argv.ui;
349 
350 	putgpr:
351 	  if (intarg_count >= NUM_GPR_ARG_REGISTERS)
352 	    *next_arg.u++ = gprvalue;
353 	  else
354 	    *gpr_base.u++ = gprvalue;
355 	  intarg_count++;
356 	  break;
357 	}
358     }
359 
360   /* Check that we didn't overrun the stack...  */
361   FFI_ASSERT (copy_space.c >= next_arg.c);
362   FFI_ASSERT (gpr_base.u <= stacktop.u - ASM_NEEDS_REGISTERS);
363   FFI_ASSERT (fpr_base.u
364 	      <= stacktop.u - ASM_NEEDS_REGISTERS - NUM_GPR_ARG_REGISTERS);
365   FFI_ASSERT (flags & FLAG_4_GPR_ARGUMENTS || intarg_count <= 4);
366 }
367 
368 /* About the LINUX64 ABI.  */
369 enum {
370   NUM_GPR_ARG_REGISTERS64 = 8,
371   NUM_FPR_ARG_REGISTERS64 = 13
372 };
373 enum { ASM_NEEDS_REGISTERS64 = 4 };
374 
375 /* ffi_prep_args64 is called by the assembly routine once stack space
376    has been allocated for the function's arguments.
377 
378    The stack layout we want looks like this:
379 
380    |   Ret addr from ffi_call_LINUX64	8bytes	|	higher addresses
381    |--------------------------------------------|
382    |   CR save area			8bytes	|
383    |--------------------------------------------|
384    |   Previous backchain pointer	8	|	stack pointer here
385    |--------------------------------------------|<+ <<<	on entry to
386    |   Saved r28-r31			4*8	| |	ffi_call_LINUX64
387    |--------------------------------------------| |
388    |   GPR registers r3-r10		8*8	| |
389    |--------------------------------------------| |
390    |   FPR registers f1-f13 (optional)	13*8	| |
391    |--------------------------------------------| |
392    |   Parameter save area		        | |
393    |--------------------------------------------| |
394    |   TOC save area			8	| |
395    |--------------------------------------------| |	stack	|
396    |   Linker doubleword		8	| |	grows	|
397    |--------------------------------------------| |	down	V
398    |   Compiler doubleword		8	| |
399    |--------------------------------------------| |	lower addresses
400    |   Space for callee's LR		8	| |
401    |--------------------------------------------| |
402    |   CR save area			8	| |
403    |--------------------------------------------| |	stack pointer here
404    |   Current backchain pointer	8	|-/	during
405    |--------------------------------------------|   <<<	ffi_call_LINUX64
406 
407 */
408 
409 void FFI_HIDDEN
ffi_prep_args64(extended_cif * ecif,unsigned long * const stack)410 ffi_prep_args64 (extended_cif *ecif, unsigned long *const stack)
411 {
412   const unsigned long bytes = ecif->cif->bytes;
413   const unsigned long flags = ecif->cif->flags;
414 
415   typedef union {
416     char *c;
417     unsigned long *ul;
418     float *f;
419     double *d;
420   } valp;
421 
422   /* 'stacktop' points at the previous backchain pointer.  */
423   valp stacktop;
424 
425   /* 'next_arg' points at the space for gpr3, and grows upwards as
426      we use GPR registers, then continues at rest.  */
427   valp gpr_base;
428   valp gpr_end;
429   valp rest;
430   valp next_arg;
431 
432   /* 'fpr_base' points at the space for fpr3, and grows upwards as
433      we use FPR registers.  */
434   valp fpr_base;
435   int fparg_count;
436 
437   int i, words;
438   ffi_type **ptr;
439   double double_tmp;
440   union {
441     void **v;
442     char **c;
443     signed char **sc;
444     unsigned char **uc;
445     signed short **ss;
446     unsigned short **us;
447     signed int **si;
448     unsigned int **ui;
449     unsigned long **ul;
450     float **f;
451     double **d;
452   } p_argv;
453   unsigned long gprvalue;
454 
455   stacktop.c = (char *) stack + bytes;
456   gpr_base.ul = stacktop.ul - ASM_NEEDS_REGISTERS64 - NUM_GPR_ARG_REGISTERS64;
457   gpr_end.ul = gpr_base.ul + NUM_GPR_ARG_REGISTERS64;
458   rest.ul = stack + 6 + NUM_GPR_ARG_REGISTERS64;
459   fpr_base.d = gpr_base.d - NUM_FPR_ARG_REGISTERS64;
460   fparg_count = 0;
461   next_arg.ul = gpr_base.ul;
462 
463   /* Check that everything starts aligned properly.  */
464   FFI_ASSERT (((unsigned long) (char *) stack & 0xF) == 0);
465   FFI_ASSERT (((unsigned long) stacktop.c & 0xF) == 0);
466   FFI_ASSERT ((bytes & 0xF) == 0);
467 
468   /* Deal with return values that are actually pass-by-reference.  */
469   if (flags & FLAG_RETVAL_REFERENCE)
470     *next_arg.ul++ = (unsigned long) (char *) ecif->rvalue;
471 
472   /* Now for the arguments.  */
473   p_argv.v = ecif->avalue;
474   for (ptr = ecif->cif->arg_types, i = ecif->cif->nargs;
475        i > 0;
476        i--, ptr++, p_argv.v++)
477     {
478       switch ((*ptr)->type)
479 	{
480 	case FFI_TYPE_FLOAT:
481 	  double_tmp = **p_argv.f;
482 	  *next_arg.f = (float) double_tmp;
483 	  if (++next_arg.ul == gpr_end.ul)
484 	    next_arg.ul = rest.ul;
485 	  if (fparg_count < NUM_FPR_ARG_REGISTERS64)
486 	    *fpr_base.d++ = double_tmp;
487 	  fparg_count++;
488 	  FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
489 	  break;
490 
491 	case FFI_TYPE_DOUBLE:
492 	  double_tmp = **p_argv.d;
493 	  *next_arg.d = double_tmp;
494 	  if (++next_arg.ul == gpr_end.ul)
495 	    next_arg.ul = rest.ul;
496 	  if (fparg_count < NUM_FPR_ARG_REGISTERS64)
497 	    *fpr_base.d++ = double_tmp;
498 	  fparg_count++;
499 	  FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
500 	  break;
501 
502 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
503 	case FFI_TYPE_LONGDOUBLE:
504 	  double_tmp = (*p_argv.d)[0];
505 	  *next_arg.d = double_tmp;
506 	  if (++next_arg.ul == gpr_end.ul)
507 	    next_arg.ul = rest.ul;
508 	  if (fparg_count < NUM_FPR_ARG_REGISTERS64)
509 	    *fpr_base.d++ = double_tmp;
510 	  fparg_count++;
511 	  double_tmp = (*p_argv.d)[1];
512 	  *next_arg.d = double_tmp;
513 	  if (++next_arg.ul == gpr_end.ul)
514 	    next_arg.ul = rest.ul;
515 	  if (fparg_count < NUM_FPR_ARG_REGISTERS64)
516 	    *fpr_base.d++ = double_tmp;
517 	  fparg_count++;
518 	  FFI_ASSERT (__LDBL_MANT_DIG__ == 106);
519 	  FFI_ASSERT (flags & FLAG_FP_ARGUMENTS);
520 	  break;
521 #endif
522 
523 	case FFI_TYPE_STRUCT:
524 	  words = ((*ptr)->size + 7) / 8;
525 	  if (next_arg.ul >= gpr_base.ul && next_arg.ul + words > gpr_end.ul)
526 	    {
527 	      size_t first = gpr_end.c - next_arg.c;
528 	      memcpy (next_arg.c, *p_argv.c, first);
529 	      memcpy (rest.c, *p_argv.c + first, (*ptr)->size - first);
530 	      next_arg.c = rest.c + words * 8 - first;
531 	    }
532 	  else
533 	    {
534 	      char *where = next_arg.c;
535 
536 	      /* Structures with size less than eight bytes are passed
537 		 left-padded.  */
538 	      if ((*ptr)->size < 8)
539 		where += 8 - (*ptr)->size;
540 
541 	      memcpy (where, *p_argv.c, (*ptr)->size);
542 	      next_arg.ul += words;
543 	      if (next_arg.ul == gpr_end.ul)
544 		next_arg.ul = rest.ul;
545 	    }
546 	  break;
547 
548 	case FFI_TYPE_UINT8:
549 	  gprvalue = **p_argv.uc;
550 	  goto putgpr;
551 	case FFI_TYPE_SINT8:
552 	  gprvalue = **p_argv.sc;
553 	  goto putgpr;
554 	case FFI_TYPE_UINT16:
555 	  gprvalue = **p_argv.us;
556 	  goto putgpr;
557 	case FFI_TYPE_SINT16:
558 	  gprvalue = **p_argv.ss;
559 	  goto putgpr;
560 	case FFI_TYPE_UINT32:
561 	  gprvalue = **p_argv.ui;
562 	  goto putgpr;
563 	case FFI_TYPE_INT:
564 	case FFI_TYPE_SINT32:
565 	  gprvalue = **p_argv.si;
566 	  goto putgpr;
567 
568 	case FFI_TYPE_UINT64:
569 	case FFI_TYPE_SINT64:
570 	case FFI_TYPE_POINTER:
571 	  gprvalue = **p_argv.ul;
572 	putgpr:
573 	  *next_arg.ul++ = gprvalue;
574 	  if (next_arg.ul == gpr_end.ul)
575 	    next_arg.ul = rest.ul;
576 	  break;
577 	}
578     }
579 
580   FFI_ASSERT (flags & FLAG_4_GPR_ARGUMENTS
581 	      || (next_arg.ul >= gpr_base.ul
582 		  && next_arg.ul <= gpr_base.ul + 4));
583 }
584 
585 
586 
587 /* Perform machine dependent cif processing */
588 ffi_status
ffi_prep_cif_machdep(ffi_cif * cif)589 ffi_prep_cif_machdep (ffi_cif *cif)
590 {
591   /* All this is for the SYSV and LINUX64 ABI.  */
592   int i;
593   ffi_type **ptr;
594   unsigned bytes;
595   int fparg_count = 0, intarg_count = 0;
596   unsigned flags = 0;
597   unsigned struct_copy_size = 0;
598   unsigned type = cif->rtype->type;
599   unsigned size = cif->rtype->size;
600 
601   if (cif->abi == FFI_LINUX_SOFT_FLOAT)
602     NUM_FPR_ARG_REGISTERS = 0;
603 
604   if (cif->abi != FFI_LINUX64)
605     {
606       /* All the machine-independent calculation of cif->bytes will be wrong.
607 	 Redo the calculation for SYSV.  */
608 
609       /* Space for the frame pointer, callee's LR, and the asm's temp regs.  */
610       bytes = (2 + ASM_NEEDS_REGISTERS) * sizeof (int);
611 
612       /* Space for the GPR registers.  */
613       bytes += NUM_GPR_ARG_REGISTERS * sizeof (int);
614     }
615   else
616     {
617       /* 64-bit ABI.  */
618 
619       /* Space for backchain, CR, LR, cc/ld doubleword, TOC and the asm's temp
620 	 regs.  */
621       bytes = (6 + ASM_NEEDS_REGISTERS64) * sizeof (long);
622 
623       /* Space for the mandatory parm save area and general registers.  */
624       bytes += 2 * NUM_GPR_ARG_REGISTERS64 * sizeof (long);
625     }
626 
627   /* Return value handling.  The rules for SYSV are as follows:
628      - 32-bit (or less) integer values are returned in gpr3;
629      - Structures of size <= 4 bytes also returned in gpr3;
630      - 64-bit integer values and structures between 5 and 8 bytes are returned
631      in gpr3 and gpr4;
632      - Single/double FP values are returned in fpr1;
633      - Larger structures are allocated space and a pointer is passed as
634      the first argument.
635      - long doubles (if not equivalent to double) are returned in
636      fpr1,fpr2 for Linux and as for large structs for SysV.
637      For LINUX64:
638      - integer values in gpr3;
639      - Structures/Unions by reference;
640      - Single/double FP values in fpr1, long double in fpr1,fpr2.
641      - soft-float float/doubles are treated as UINT32/UINT64 respectivley.
642      - soft-float long doubles are returned in gpr3-gpr6.  */
643   switch (type)
644     {
645 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
646     case FFI_TYPE_LONGDOUBLE:
647       if (cif->abi != FFI_LINUX && cif->abi != FFI_LINUX64
648 	&& cif->abi != FFI_LINUX_SOFT_FLOAT)
649 	goto byref;
650       flags |= FLAG_RETURNS_128BITS;
651       /* Fall through.  */
652 #endif
653     case FFI_TYPE_DOUBLE:
654       flags |= FLAG_RETURNS_64BITS;
655       /* Fall through.  */
656     case FFI_TYPE_FLOAT:
657       /* With FFI_LINUX_SOFT_FLOAT no fp registers are used.  */
658       if (cif->abi != FFI_LINUX_SOFT_FLOAT)
659 	flags |= FLAG_RETURNS_FP;
660       break;
661 
662     case FFI_TYPE_UINT64:
663     case FFI_TYPE_SINT64:
664       flags |= FLAG_RETURNS_64BITS;
665       break;
666 
667     case FFI_TYPE_STRUCT:
668       if (cif->abi == FFI_SYSV)
669 	{
670 	  /* The final SYSV ABI says that structures smaller or equal 8 bytes
671 	     are returned in r3/r4. The FFI_GCC_SYSV ABI instead returns them
672 	     in memory.  */
673 
674 	  /* Treat structs with size <= 8 bytes.  */
675 	  if (size <= 8)
676 	    {
677 	      flags |= FLAG_RETURNS_SMST;
678 	      /* These structs are returned in r3. We pack the type and the
679 		 precalculated shift value (needed in the sysv.S) into flags.
680 		 The same applies for the structs returned in r3/r4.  */
681 	      if (size <= 4)
682 		{
683 		  flags |= 1 << (31 - FFI_SYSV_TYPE_SMALL_STRUCT - 1);
684 		  flags |= 8 * (4 - size) << 4;
685 		  break;
686 		}
687 	      /* These structs are returned in r3 and r4. See above.   */
688 	      if  (size <= 8)
689 		{
690 		  flags |= 1 << (31 - FFI_SYSV_TYPE_SMALL_STRUCT - 2);
691 		  flags |= 8 * (8 - size) << 4;
692 		  break;
693 		}
694 	    }
695 	}
696 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
697     byref:
698 #endif
699       intarg_count++;
700       flags |= FLAG_RETVAL_REFERENCE;
701       /* Fall through.  */
702     case FFI_TYPE_VOID:
703       flags |= FLAG_RETURNS_NOTHING;
704       break;
705 
706     default:
707       /* Returns 32-bit integer, or similar.  Nothing to do here.  */
708       break;
709     }
710 
711   if (cif->abi != FFI_LINUX64)
712     /* The first NUM_GPR_ARG_REGISTERS words of integer arguments, and the
713        first NUM_FPR_ARG_REGISTERS fp arguments, go in registers; the rest
714        goes on the stack.  Structures and long doubles (if not equivalent
715        to double) are passed as a pointer to a copy of the structure.
716        Stuff on the stack needs to keep proper alignment.  */
717     for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
718       {
719 	switch ((*ptr)->type)
720 	  {
721 	  case FFI_TYPE_FLOAT:
722 	    /* With FFI_LINUX_SOFT_FLOAT floats are handled like UINT32.  */
723 	    if (cif->abi == FFI_LINUX_SOFT_FLOAT)
724 	      goto soft_float_cif;
725 	    fparg_count++;
726 	    /* floating singles are not 8-aligned on stack */
727 	    break;
728 
729 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
730 	  case FFI_TYPE_LONGDOUBLE:
731 	    if (cif->abi != FFI_LINUX && cif->abi != FFI_LINUX_SOFT_FLOAT)
732 	      goto do_struct;
733 	    if (cif->abi == FFI_LINUX_SOFT_FLOAT)
734 	      {
735 		if (intarg_count >= NUM_GPR_ARG_REGISTERS - 3
736 		  || intarg_count < NUM_GPR_ARG_REGISTERS)
737 		  /* A long double in FFI_LINUX_SOFT_FLOAT can use only
738 		     a set of four consecutive gprs. If we have not enough,
739 		     we have to adjust the intarg_count value.  */
740 		  intarg_count += NUM_GPR_ARG_REGISTERS - intarg_count;
741 		intarg_count += 4;
742 		break;
743 	      }
744 	    else
745 	      fparg_count++;
746 	    /* Fall thru */
747 #endif
748 	  case FFI_TYPE_DOUBLE:
749 	    /* With FFI_LINUX_SOFT_FLOAT doubles are handled like UINT64.  */
750 	    if (cif->abi == FFI_LINUX_SOFT_FLOAT)
751 	      goto soft_double_cif;
752 	    fparg_count++;
753 	    /* If this FP arg is going on the stack, it must be
754 	       8-byte-aligned.  */
755 	    if (fparg_count > NUM_FPR_ARG_REGISTERS
756 		&& intarg_count >= NUM_GPR_ARG_REGISTERS
757 		&& intarg_count % 2 != 0)
758 	      intarg_count++;
759 	    break;
760 
761 	  case FFI_TYPE_UINT64:
762 	  case FFI_TYPE_SINT64:
763 	  soft_double_cif:
764 	    /* 'long long' arguments are passed as two words, but
765 	       either both words must fit in registers or both go
766 	       on the stack.  If they go on the stack, they must
767 	       be 8-byte-aligned.
768 
769 	       Also, only certain register pairs can be used for
770 	       passing long long int -- specifically (r3,r4), (r5,r6),
771 	       (r7,r8), (r9,r10).
772 	    */
773 	    if (intarg_count == NUM_GPR_ARG_REGISTERS-1
774 		|| intarg_count % 2 != 0)
775 	      intarg_count++;
776 	    intarg_count += 2;
777 	    break;
778 
779 	  case FFI_TYPE_STRUCT:
780 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
781 	  do_struct:
782 #endif
783 	    /* We must allocate space for a copy of these to enforce
784 	       pass-by-value.  Pad the space up to a multiple of 16
785 	       bytes (the maximum alignment required for anything under
786 	       the SYSV ABI).  */
787 	    struct_copy_size += ((*ptr)->size + 15) & ~0xF;
788 	    /* Fall through (allocate space for the pointer).  */
789 
790 	  default:
791 	  soft_float_cif:
792 	    /* Everything else is passed as a 4-byte word in a GPR, either
793 	       the object itself or a pointer to it.  */
794 	    intarg_count++;
795 	    break;
796 	  }
797       }
798   else
799     for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
800       {
801 	switch ((*ptr)->type)
802 	  {
803 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
804 	  case FFI_TYPE_LONGDOUBLE:
805 	    if (cif->abi == FFI_LINUX_SOFT_FLOAT)
806 	      intarg_count += 4;
807 	    else
808 	      {
809 		fparg_count += 2;
810 		intarg_count += 2;
811 	      }
812 	    break;
813 #endif
814 	  case FFI_TYPE_FLOAT:
815 	  case FFI_TYPE_DOUBLE:
816 	    fparg_count++;
817 	    intarg_count++;
818 	    break;
819 
820 	  case FFI_TYPE_STRUCT:
821 	    intarg_count += ((*ptr)->size + 7) / 8;
822 	    break;
823 
824 	  default:
825 	    /* Everything else is passed as a 8-byte word in a GPR, either
826 	       the object itself or a pointer to it.  */
827 	    intarg_count++;
828 	    break;
829 	  }
830       }
831 
832   if (fparg_count != 0)
833     flags |= FLAG_FP_ARGUMENTS;
834   if (intarg_count > 4)
835     flags |= FLAG_4_GPR_ARGUMENTS;
836   if (struct_copy_size != 0)
837     flags |= FLAG_ARG_NEEDS_COPY;
838 
839   if (cif->abi != FFI_LINUX64)
840     {
841       /* Space for the FPR registers, if needed.  */
842       if (fparg_count != 0)
843 	bytes += NUM_FPR_ARG_REGISTERS * sizeof (double);
844 
845       /* Stack space.  */
846       if (intarg_count > NUM_GPR_ARG_REGISTERS)
847 	bytes += (intarg_count - NUM_GPR_ARG_REGISTERS) * sizeof (int);
848       if (fparg_count > NUM_FPR_ARG_REGISTERS)
849 	bytes += (fparg_count - NUM_FPR_ARG_REGISTERS) * sizeof (double);
850     }
851   else
852     {
853       /* Space for the FPR registers, if needed.  */
854       if (fparg_count != 0)
855 	bytes += NUM_FPR_ARG_REGISTERS64 * sizeof (double);
856 
857       /* Stack space.  */
858       if (intarg_count > NUM_GPR_ARG_REGISTERS64)
859 	bytes += (intarg_count - NUM_GPR_ARG_REGISTERS64) * sizeof (long);
860     }
861 
862   /* The stack space allocated needs to be a multiple of 16 bytes.  */
863   bytes = (bytes + 15) & ~0xF;
864 
865   /* Add in the space for the copied structures.  */
866   bytes += struct_copy_size;
867 
868   cif->flags = flags;
869   cif->bytes = bytes;
870 
871   return FFI_OK;
872 }
873 
874 extern void ffi_call_SYSV(extended_cif *, unsigned, unsigned, unsigned *,
875 			  void (*fn)(void));
876 extern void FFI_HIDDEN ffi_call_LINUX64(extended_cif *, unsigned long,
877 					unsigned long, unsigned long *,
878 					void (*fn)(void));
879 
880 void
ffi_call(ffi_cif * cif,void (* fn)(void),void * rvalue,void ** avalue)881 ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
882 {
883   extended_cif ecif;
884 
885   ecif.cif = cif;
886   ecif.avalue = avalue;
887 
888   /* If the return value is a struct and we don't have a return	*/
889   /* value address then we need to make one		        */
890 
891   if ((rvalue == NULL) && (cif->rtype->type == FFI_TYPE_STRUCT))
892     {
893       ecif.rvalue = alloca(cif->rtype->size);
894     }
895   else
896     ecif.rvalue = rvalue;
897 
898 
899   switch (cif->abi)
900     {
901 #ifndef POWERPC64
902     case FFI_SYSV:
903     case FFI_GCC_SYSV:
904     case FFI_LINUX:
905     case FFI_LINUX_SOFT_FLOAT:
906       ffi_call_SYSV (&ecif, -cif->bytes, cif->flags, ecif.rvalue, fn);
907       break;
908 #else
909     case FFI_LINUX64:
910       ffi_call_LINUX64 (&ecif, -(long) cif->bytes, cif->flags, ecif.rvalue, fn);
911       break;
912 #endif
913     default:
914       FFI_ASSERT (0);
915       break;
916     }
917 }
918 
919 
920 #ifndef POWERPC64
921 #define MIN_CACHE_LINE_SIZE 8
922 
923 static void
flush_icache(char * wraddr,char * xaddr,int size)924 flush_icache (char *wraddr, char *xaddr, int size)
925 {
926   int i;
927   for (i = 0; i < size; i += MIN_CACHE_LINE_SIZE)
928     __asm__ volatile ("icbi 0,%0;" "dcbf 0,%1;"
929 		      : : "r" (xaddr + i), "r" (wraddr + i) : "memory");
930   __asm__ volatile ("icbi 0,%0;" "dcbf 0,%1;" "sync;" "isync;"
931 		    : : "r"(xaddr + size - 1), "r"(wraddr + size - 1)
932 		    : "memory");
933 }
934 #endif
935 
936 ffi_status
ffi_prep_closure_loc(ffi_closure * closure,ffi_cif * cif,void (* fun)(ffi_cif *,void *,void **,void *),void * user_data,void * codeloc)937 ffi_prep_closure_loc (ffi_closure *closure,
938 		      ffi_cif *cif,
939 		      void (*fun) (ffi_cif *, void *, void **, void *),
940 		      void *user_data,
941 		      void *codeloc)
942 {
943 #ifdef POWERPC64
944   void **tramp = (void **) &closure->tramp[0];
945 
946   FFI_ASSERT (cif->abi == FFI_LINUX64);
947   /* Copy function address and TOC from ffi_closure_LINUX64.  */
948   memcpy (tramp, (char *) ffi_closure_LINUX64, 16);
949   tramp[2] = codeloc;
950 #else
951   unsigned int *tramp;
952 
953   FFI_ASSERT (cif->abi == FFI_GCC_SYSV || cif->abi == FFI_SYSV);
954 
955   tramp = (unsigned int *) &closure->tramp[0];
956   tramp[0] = 0x7c0802a6;  /*   mflr    r0 */
957   tramp[1] = 0x4800000d;  /*   bl      10 <trampoline_initial+0x10> */
958   tramp[4] = 0x7d6802a6;  /*   mflr    r11 */
959   tramp[5] = 0x7c0803a6;  /*   mtlr    r0 */
960   tramp[6] = 0x800b0000;  /*   lwz     r0,0(r11) */
961   tramp[7] = 0x816b0004;  /*   lwz     r11,4(r11) */
962   tramp[8] = 0x7c0903a6;  /*   mtctr   r0 */
963   tramp[9] = 0x4e800420;  /*   bctr */
964   *(void **) &tramp[2] = (void *) ffi_closure_SYSV; /* function */
965   *(void **) &tramp[3] = codeloc;                   /* context */
966 
967   /* Flush the icache.  */
968   flush_icache ((char *)tramp, (char *)codeloc, FFI_TRAMPOLINE_SIZE);
969 #endif
970 
971   closure->cif = cif;
972   closure->fun = fun;
973   closure->user_data = user_data;
974 
975   return FFI_OK;
976 }
977 
978 typedef union
979 {
980   float f;
981   double d;
982 } ffi_dblfl;
983 
984 int ffi_closure_helper_SYSV (ffi_closure *, void *, unsigned long *,
985 			     ffi_dblfl *, unsigned long *);
986 
987 /* Basically the trampoline invokes ffi_closure_SYSV, and on
988  * entry, r11 holds the address of the closure.
989  * After storing the registers that could possibly contain
990  * parameters to be passed into the stack frame and setting
991  * up space for a return value, ffi_closure_SYSV invokes the
992  * following helper function to do most of the work
993  */
994 
995 int
ffi_closure_helper_SYSV(ffi_closure * closure,void * rvalue,unsigned long * pgr,ffi_dblfl * pfr,unsigned long * pst)996 ffi_closure_helper_SYSV (ffi_closure *closure, void *rvalue,
997 			 unsigned long *pgr, ffi_dblfl *pfr,
998 			 unsigned long *pst)
999 {
1000   /* rvalue is the pointer to space for return value in closure assembly */
1001   /* pgr is the pointer to where r3-r10 are stored in ffi_closure_SYSV */
1002   /* pfr is the pointer to where f1-f8 are stored in ffi_closure_SYSV  */
1003   /* pst is the pointer to outgoing parameter stack in original caller */
1004 
1005   void **          avalue;
1006   ffi_type **      arg_types;
1007   long             i, avn;
1008   long             nf;   /* number of floating registers already used */
1009   long             ng;   /* number of general registers already used */
1010   ffi_cif *        cif;
1011   double           temp;
1012   unsigned         size;
1013 
1014   cif = closure->cif;
1015   avalue = alloca (cif->nargs * sizeof (void *));
1016   size = cif->rtype->size;
1017 
1018   nf = 0;
1019   ng = 0;
1020 
1021   /* Copy the caller's structure return value address so that the closure
1022      returns the data directly to the caller.
1023      For FFI_SYSV the result is passed in r3/r4 if the struct size is less
1024      or equal 8 bytes.  */
1025 
1026   if ((cif->rtype->type == FFI_TYPE_STRUCT
1027        && !((cif->abi == FFI_SYSV) && (size <= 8)))
1028 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
1029       || (cif->rtype->type == FFI_TYPE_LONGDOUBLE
1030 	  && cif->abi != FFI_LINUX && cif->abi != FFI_LINUX_SOFT_FLOAT)
1031 #endif
1032       )
1033     {
1034       rvalue = (void *) *pgr;
1035       ng++;
1036       pgr++;
1037     }
1038 
1039   i = 0;
1040   avn = cif->nargs;
1041   arg_types = cif->arg_types;
1042 
1043   /* Grab the addresses of the arguments from the stack frame.  */
1044   while (i < avn)
1045     {
1046       switch (arg_types[i]->type)
1047 	{
1048 	case FFI_TYPE_SINT8:
1049 	case FFI_TYPE_UINT8:
1050 	  /* there are 8 gpr registers used to pass values */
1051 	  if (ng < 8)
1052 	    {
1053 	      avalue[i] = (char *) pgr + 3;
1054 	      ng++;
1055 	      pgr++;
1056 	    }
1057 	  else
1058 	    {
1059 	      avalue[i] = (char *) pst + 3;
1060 	      pst++;
1061 	    }
1062 	  break;
1063 
1064 	case FFI_TYPE_SINT16:
1065 	case FFI_TYPE_UINT16:
1066 	  /* there are 8 gpr registers used to pass values */
1067 	  if (ng < 8)
1068 	    {
1069 	      avalue[i] = (char *) pgr + 2;
1070 	      ng++;
1071 	      pgr++;
1072 	    }
1073 	  else
1074 	    {
1075 	      avalue[i] = (char *) pst + 2;
1076 	      pst++;
1077 	    }
1078 	  break;
1079 
1080 	case FFI_TYPE_SINT32:
1081 	case FFI_TYPE_UINT32:
1082 	case FFI_TYPE_POINTER:
1083 	soft_float_closure:
1084 	  /* there are 8 gpr registers used to pass values */
1085 	  if (ng < 8)
1086 	    {
1087 	      avalue[i] = pgr;
1088 	      ng++;
1089 	      pgr++;
1090 	    }
1091 	  else
1092 	    {
1093 	      avalue[i] = pst;
1094 	      pst++;
1095 	    }
1096 	  break;
1097 
1098 	case FFI_TYPE_STRUCT:
1099 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
1100 	do_struct:
1101 #endif
1102 	  /* Structs are passed by reference. The address will appear in a
1103 	     gpr if it is one of the first 8 arguments.  */
1104 	  if (ng < 8)
1105 	    {
1106 	      avalue[i] = (void *) *pgr;
1107 	      ng++;
1108 	      pgr++;
1109 	    }
1110 	  else
1111 	    {
1112 	      avalue[i] = (void *) *pst;
1113 	      pst++;
1114 	    }
1115 	  break;
1116 
1117 	case FFI_TYPE_SINT64:
1118 	case FFI_TYPE_UINT64:
1119 	soft_double_closure:
1120 	  /* passing long long ints are complex, they must
1121 	   * be passed in suitable register pairs such as
1122 	   * (r3,r4) or (r5,r6) or (r6,r7), or (r7,r8) or (r9,r10)
1123 	   * and if the entire pair aren't available then the outgoing
1124 	   * parameter stack is used for both but an alignment of 8
1125 	   * must will be kept.  So we must either look in pgr
1126 	   * or pst to find the correct address for this type
1127 	   * of parameter.
1128 	   */
1129 	  if (ng < 7)
1130 	    {
1131 	      if (ng & 0x01)
1132 		{
1133 		  /* skip r4, r6, r8 as starting points */
1134 		  ng++;
1135 		  pgr++;
1136 		}
1137 	      avalue[i] = pgr;
1138 	      ng += 2;
1139 	      pgr += 2;
1140 	    }
1141 	  else
1142 	    {
1143 	      if (((long) pst) & 4)
1144 		pst++;
1145 	      avalue[i] = pst;
1146 	      pst += 2;
1147 	    }
1148 	  break;
1149 
1150 	case FFI_TYPE_FLOAT:
1151 	  /* With FFI_LINUX_SOFT_FLOAT floats are handled like UINT32.  */
1152 	  if (cif->abi == FFI_LINUX_SOFT_FLOAT)
1153 	    goto soft_float_closure;
1154 	  /* unfortunately float values are stored as doubles
1155 	   * in the ffi_closure_SYSV code (since we don't check
1156 	   * the type in that routine).
1157 	   */
1158 
1159 	  /* there are 8 64bit floating point registers */
1160 
1161 	  if (nf < 8)
1162 	    {
1163 	      temp = pfr->d;
1164 	      pfr->f = (float) temp;
1165 	      avalue[i] = pfr;
1166 	      nf++;
1167 	      pfr++;
1168 	    }
1169 	  else
1170 	    {
1171 	      /* FIXME? here we are really changing the values
1172 	       * stored in the original calling routines outgoing
1173 	       * parameter stack.  This is probably a really
1174 	       * naughty thing to do but...
1175 	       */
1176 	      avalue[i] = pst;
1177 	      pst += 1;
1178 	    }
1179 	  break;
1180 
1181 	case FFI_TYPE_DOUBLE:
1182 	  /* With FFI_LINUX_SOFT_FLOAT doubles are handled like UINT64.  */
1183 	  if (cif->abi == FFI_LINUX_SOFT_FLOAT)
1184 	    goto soft_double_closure;
1185 	  /* On the outgoing stack all values are aligned to 8 */
1186 	  /* there are 8 64bit floating point registers */
1187 
1188 	  if (nf < 8)
1189 	    {
1190 	      avalue[i] = pfr;
1191 	      nf++;
1192 	      pfr++;
1193 	    }
1194 	  else
1195 	    {
1196 	      if (((long) pst) & 4)
1197 		pst++;
1198 	      avalue[i] = pst;
1199 	      pst += 2;
1200 	    }
1201 	  break;
1202 
1203 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
1204 	case FFI_TYPE_LONGDOUBLE:
1205 	  if (cif->abi != FFI_LINUX && cif->abi != FFI_LINUX_SOFT_FLOAT)
1206 	    goto do_struct;
1207 	  if (cif->abi == FFI_LINUX_SOFT_FLOAT)
1208 	    { /* Test if for the whole long double, 4 gprs are available.
1209 		 otherwise the stuff ends up on the stack.  */
1210 	      if (ng < 5)
1211 		{
1212 		  avalue[i] = pgr;
1213 		  pgr += 4;
1214 		  ng += 4;
1215 		}
1216 	      else
1217 		{
1218 		  avalue[i] = pst;
1219 		  pst += 4;
1220 		}
1221 	      break;
1222 	    }
1223 	  if (nf < 7)
1224 	    {
1225 	      avalue[i] = pfr;
1226 	      pfr += 2;
1227 	      nf += 2;
1228 	    }
1229 	  else
1230 	    {
1231 	      if (((long) pst) & 4)
1232 		pst++;
1233 	      avalue[i] = pst;
1234 	      pst += 4;
1235 	      nf = 8;
1236 	    }
1237 	  break;
1238 #endif
1239 
1240 	default:
1241 	  FFI_ASSERT (0);
1242 	}
1243 
1244       i++;
1245     }
1246 
1247 
1248   (closure->fun) (cif, rvalue, avalue, closure->user_data);
1249 
1250   /* Tell ffi_closure_SYSV how to perform return type promotions.
1251      Because the FFI_SYSV ABI returns the structures <= 8 bytes in r3/r4
1252      we have to tell ffi_closure_SYSV how to treat them.  */
1253   if (cif->abi == FFI_SYSV && cif->rtype->type == FFI_TYPE_STRUCT
1254       && size <= 8)
1255     return FFI_SYSV_TYPE_SMALL_STRUCT + size;
1256 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
1257   else if (cif->rtype->type == FFI_TYPE_LONGDOUBLE
1258 	   && cif->abi != FFI_LINUX && cif->abi != FFI_LINUX_SOFT_FLOAT)
1259     return FFI_TYPE_STRUCT;
1260 #endif
1261   /* With FFI_LINUX_SOFT_FLOAT floats and doubles are handled like UINT32
1262      respectivley UINT64.  */
1263   if (cif->abi == FFI_LINUX_SOFT_FLOAT)
1264     {
1265       switch (cif->rtype->type)
1266 	{
1267 	case FFI_TYPE_FLOAT:
1268 	  return FFI_TYPE_UINT32;
1269 	  break;
1270 	case FFI_TYPE_DOUBLE:
1271 	  return FFI_TYPE_UINT64;
1272 	  break;
1273 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
1274 	case FFI_TYPE_LONGDOUBLE:
1275 	  return FFI_TYPE_UINT128;
1276 	  break;
1277 #endif
1278 	default:
1279 	  return cif->rtype->type;
1280 	}
1281     }
1282   else
1283     {
1284       return cif->rtype->type;
1285     }
1286 }
1287 
1288 int FFI_HIDDEN ffi_closure_helper_LINUX64 (ffi_closure *, void *,
1289 					   unsigned long *, ffi_dblfl *);
1290 
1291 int FFI_HIDDEN
ffi_closure_helper_LINUX64(ffi_closure * closure,void * rvalue,unsigned long * pst,ffi_dblfl * pfr)1292 ffi_closure_helper_LINUX64 (ffi_closure *closure, void *rvalue,
1293 			    unsigned long *pst, ffi_dblfl *pfr)
1294 {
1295   /* rvalue is the pointer to space for return value in closure assembly */
1296   /* pst is the pointer to parameter save area
1297      (r3-r10 are stored into its first 8 slots by ffi_closure_LINUX64) */
1298   /* pfr is the pointer to where f1-f13 are stored in ffi_closure_LINUX64 */
1299 
1300   void **avalue;
1301   ffi_type **arg_types;
1302   long i, avn;
1303   ffi_cif *cif;
1304   ffi_dblfl *end_pfr = pfr + NUM_FPR_ARG_REGISTERS64;
1305 
1306   cif = closure->cif;
1307   avalue = alloca (cif->nargs * sizeof (void *));
1308 
1309   /* Copy the caller's structure return value address so that the closure
1310      returns the data directly to the caller.  */
1311   if (cif->rtype->type == FFI_TYPE_STRUCT)
1312     {
1313       rvalue = (void *) *pst;
1314       pst++;
1315     }
1316 
1317   i = 0;
1318   avn = cif->nargs;
1319   arg_types = cif->arg_types;
1320 
1321   /* Grab the addresses of the arguments from the stack frame.  */
1322   while (i < avn)
1323     {
1324       switch (arg_types[i]->type)
1325 	{
1326 	case FFI_TYPE_SINT8:
1327 	case FFI_TYPE_UINT8:
1328 	  avalue[i] = (char *) pst + 7;
1329 	  pst++;
1330 	  break;
1331 
1332 	case FFI_TYPE_SINT16:
1333 	case FFI_TYPE_UINT16:
1334 	  avalue[i] = (char *) pst + 6;
1335 	  pst++;
1336 	  break;
1337 
1338 	case FFI_TYPE_SINT32:
1339 	case FFI_TYPE_UINT32:
1340 	  avalue[i] = (char *) pst + 4;
1341 	  pst++;
1342 	  break;
1343 
1344 	case FFI_TYPE_SINT64:
1345 	case FFI_TYPE_UINT64:
1346 	case FFI_TYPE_POINTER:
1347 	  avalue[i] = pst;
1348 	  pst++;
1349 	  break;
1350 
1351 	case FFI_TYPE_STRUCT:
1352 	  /* Structures with size less than eight bytes are passed
1353 	     left-padded.  */
1354 	  if (arg_types[i]->size < 8)
1355 	    avalue[i] = (char *) pst + 8 - arg_types[i]->size;
1356 	  else
1357 	    avalue[i] = pst;
1358 	  pst += (arg_types[i]->size + 7) / 8;
1359 	  break;
1360 
1361 	case FFI_TYPE_FLOAT:
1362 	  /* unfortunately float values are stored as doubles
1363 	   * in the ffi_closure_LINUX64 code (since we don't check
1364 	   * the type in that routine).
1365 	   */
1366 
1367 	  /* there are 13 64bit floating point registers */
1368 
1369 	  if (pfr < end_pfr)
1370 	    {
1371 	      double temp = pfr->d;
1372 	      pfr->f = (float) temp;
1373 	      avalue[i] = pfr;
1374 	      pfr++;
1375 	    }
1376 	  else
1377 	    avalue[i] = pst;
1378 	  pst++;
1379 	  break;
1380 
1381 	case FFI_TYPE_DOUBLE:
1382 	  /* On the outgoing stack all values are aligned to 8 */
1383 	  /* there are 13 64bit floating point registers */
1384 
1385 	  if (pfr < end_pfr)
1386 	    {
1387 	      avalue[i] = pfr;
1388 	      pfr++;
1389 	    }
1390 	  else
1391 	    avalue[i] = pst;
1392 	  pst++;
1393 	  break;
1394 
1395 #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
1396 	case FFI_TYPE_LONGDOUBLE:
1397 	  if (pfr + 1 < end_pfr)
1398 	    {
1399 	      avalue[i] = pfr;
1400 	      pfr += 2;
1401 	    }
1402 	  else
1403 	    {
1404 	      if (pfr < end_pfr)
1405 		{
1406 		  /* Passed partly in f13 and partly on the stack.
1407 		     Move it all to the stack.  */
1408 		  *pst = *(unsigned long *) pfr;
1409 		  pfr++;
1410 		}
1411 	      avalue[i] = pst;
1412 	    }
1413 	  pst += 2;
1414 	  break;
1415 #endif
1416 
1417 	default:
1418 	  FFI_ASSERT (0);
1419 	}
1420 
1421       i++;
1422     }
1423 
1424 
1425   (closure->fun) (cif, rvalue, avalue, closure->user_data);
1426 
1427   /* Tell ffi_closure_LINUX64 how to perform return type promotions.  */
1428   return cif->rtype->type;
1429 }
1430