1 // Copyright 2009 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_X64_ASSEMBLER_X64_INL_H_
29 #define V8_X64_ASSEMBLER_X64_INL_H_
30
31 #include "cpu.h"
32 #include "memory.h"
33
34 namespace v8 {
35 namespace internal {
36
NegateCondition(Condition cc)37 Condition NegateCondition(Condition cc) {
38 return static_cast<Condition>(cc ^ 1);
39 }
40
41 // -----------------------------------------------------------------------------
42
Immediate(Smi * value)43 Immediate::Immediate(Smi* value) {
44 value_ = static_cast<int32_t>(reinterpret_cast<intptr_t>(value));
45 }
46
47 // -----------------------------------------------------------------------------
48 // Implementation of Assembler
49
50
51
emitl(uint32_t x)52 void Assembler::emitl(uint32_t x) {
53 Memory::uint32_at(pc_) = x;
54 pc_ += sizeof(uint32_t);
55 }
56
57
emitq(uint64_t x,RelocInfo::Mode rmode)58 void Assembler::emitq(uint64_t x, RelocInfo::Mode rmode) {
59 Memory::uint64_at(pc_) = x;
60 if (rmode != RelocInfo::NONE) {
61 RecordRelocInfo(rmode, x);
62 }
63 pc_ += sizeof(uint64_t);
64 }
65
66
emitw(uint16_t x)67 void Assembler::emitw(uint16_t x) {
68 Memory::uint16_at(pc_) = x;
69 pc_ += sizeof(uint16_t);
70 }
71
72
emit_rex_64(Register reg,Register rm_reg)73 void Assembler::emit_rex_64(Register reg, Register rm_reg) {
74 emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
75 }
76
77
emit_rex_64(XMMRegister reg,Register rm_reg)78 void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
79 emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
80 }
81
82
emit_rex_64(Register reg,const Operand & op)83 void Assembler::emit_rex_64(Register reg, const Operand& op) {
84 emit(0x48 | reg.high_bit() << 2 | op.rex_);
85 }
86
87
emit_rex_64(XMMRegister reg,const Operand & op)88 void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
89 emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
90 }
91
92
emit_rex_64(Register rm_reg)93 void Assembler::emit_rex_64(Register rm_reg) {
94 ASSERT_EQ(rm_reg.code() & 0xf, rm_reg.code());
95 emit(0x48 | rm_reg.high_bit());
96 }
97
98
emit_rex_64(const Operand & op)99 void Assembler::emit_rex_64(const Operand& op) {
100 emit(0x48 | op.rex_);
101 }
102
103
emit_rex_32(Register reg,Register rm_reg)104 void Assembler::emit_rex_32(Register reg, Register rm_reg) {
105 emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
106 }
107
108
emit_rex_32(Register reg,const Operand & op)109 void Assembler::emit_rex_32(Register reg, const Operand& op) {
110 emit(0x40 | reg.high_bit() << 2 | op.rex_);
111 }
112
113
emit_rex_32(Register rm_reg)114 void Assembler::emit_rex_32(Register rm_reg) {
115 emit(0x40 | rm_reg.high_bit());
116 }
117
118
emit_rex_32(const Operand & op)119 void Assembler::emit_rex_32(const Operand& op) {
120 emit(0x40 | op.rex_);
121 }
122
123
emit_optional_rex_32(Register reg,Register rm_reg)124 void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
125 byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
126 if (rex_bits != 0) emit(0x40 | rex_bits);
127 }
128
129
emit_optional_rex_32(Register reg,const Operand & op)130 void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
131 byte rex_bits = reg.high_bit() << 2 | op.rex_;
132 if (rex_bits != 0) emit(0x40 | rex_bits);
133 }
134
135
emit_optional_rex_32(XMMRegister reg,const Operand & op)136 void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
137 byte rex_bits = (reg.code() & 0x8) >> 1 | op.rex_;
138 if (rex_bits != 0) emit(0x40 | rex_bits);
139 }
140
141
emit_optional_rex_32(XMMRegister reg,XMMRegister base)142 void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
143 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
144 if (rex_bits != 0) emit(0x40 | rex_bits);
145 }
146
147
emit_optional_rex_32(XMMRegister reg,Register base)148 void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
149 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
150 if (rex_bits != 0) emit(0x40 | rex_bits);
151 }
152
153
emit_optional_rex_32(Register rm_reg)154 void Assembler::emit_optional_rex_32(Register rm_reg) {
155 if (rm_reg.high_bit()) emit(0x41);
156 }
157
158
emit_optional_rex_32(const Operand & op)159 void Assembler::emit_optional_rex_32(const Operand& op) {
160 if (op.rex_ != 0) emit(0x40 | op.rex_);
161 }
162
163
target_address_at(Address pc)164 Address Assembler::target_address_at(Address pc) {
165 return Memory::Address_at(pc);
166 }
167
168
set_target_address_at(Address pc,Address target)169 void Assembler::set_target_address_at(Address pc, Address target) {
170 Memory::Address_at(pc) = target;
171 CPU::FlushICache(pc, sizeof(intptr_t));
172 }
173
174
175 // -----------------------------------------------------------------------------
176 // Implementation of RelocInfo
177
178 // The modes possibly affected by apply must be in kApplyMask.
apply(intptr_t delta)179 void RelocInfo::apply(intptr_t delta) {
180 if (IsInternalReference(rmode_)) {
181 // absolute code pointer inside code object moves with the code object.
182 intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
183 *p += delta; // relocate entry
184 }
185 }
186
187
target_address()188 Address RelocInfo::target_address() {
189 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
190 return Assembler::target_address_at(pc_);
191 }
192
193
target_address_address()194 Address RelocInfo::target_address_address() {
195 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
196 return reinterpret_cast<Address>(pc_);
197 }
198
199
set_target_address(Address target)200 void RelocInfo::set_target_address(Address target) {
201 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
202 Assembler::set_target_address_at(pc_, target);
203 }
204
205
target_object()206 Object* RelocInfo::target_object() {
207 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
208 return *reinterpret_cast<Object**>(pc_);
209 }
210
211
target_object_address()212 Object** RelocInfo::target_object_address() {
213 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
214 return reinterpret_cast<Object**>(pc_);
215 }
216
217
target_reference_address()218 Address* RelocInfo::target_reference_address() {
219 ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
220 return reinterpret_cast<Address*>(pc_);
221 }
222
223
set_target_object(Object * target)224 void RelocInfo::set_target_object(Object* target) {
225 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
226 *reinterpret_cast<Object**>(pc_) = target;
227 }
228
229
IsCallInstruction()230 bool RelocInfo::IsCallInstruction() {
231 // The recognized call sequence is:
232 // movq(kScratchRegister, immediate64); call(kScratchRegister);
233 // It only needs to be distinguished from a return sequence
234 // movq(rsp, rbp); pop(rbp); ret(n); int3 *6
235 // The 11th byte is int3 (0xCC) in the return sequence and
236 // REX.WB (0x48+register bit) for the call sequence.
237 return pc_[10] != 0xCC;
238 }
239
240
call_address()241 Address RelocInfo::call_address() {
242 ASSERT(IsCallInstruction());
243 return Assembler::target_address_at(
244 pc_ + Assembler::kPatchReturnSequenceAddressOffset);
245 }
246
247
set_call_address(Address target)248 void RelocInfo::set_call_address(Address target) {
249 ASSERT(IsCallInstruction());
250 Assembler::set_target_address_at(
251 pc_ + Assembler::kPatchReturnSequenceAddressOffset,
252 target);
253 }
254
255
call_object()256 Object* RelocInfo::call_object() {
257 ASSERT(IsCallInstruction());
258 return *call_object_address();
259 }
260
261
set_call_object(Object * target)262 void RelocInfo::set_call_object(Object* target) {
263 ASSERT(IsCallInstruction());
264 *call_object_address() = target;
265 }
266
267
call_object_address()268 Object** RelocInfo::call_object_address() {
269 ASSERT(IsCallInstruction());
270 return reinterpret_cast<Object**>(
271 pc_ + Assembler::kPatchReturnSequenceAddressOffset);
272 }
273
274 // -----------------------------------------------------------------------------
275 // Implementation of Operand
276
set_modrm(int mod,Register rm_reg)277 void Operand::set_modrm(int mod, Register rm_reg) {
278 ASSERT(is_uint2(mod));
279 buf_[0] = mod << 6 | rm_reg.low_bits();
280 // Set REX.B to the high bit of rm.code().
281 rex_ |= rm_reg.high_bit();
282 }
283
284
set_sib(ScaleFactor scale,Register index,Register base)285 void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
286 ASSERT(len_ == 1);
287 ASSERT(is_uint2(scale));
288 // Use SIB with no index register only for base rsp or r12. Otherwise we
289 // would skip the SIB byte entirely.
290 ASSERT(!index.is(rsp) || base.is(rsp) || base.is(r12));
291 buf_[1] = scale << 6 | index.low_bits() << 3 | base.low_bits();
292 rex_ |= index.high_bit() << 1 | base.high_bit();
293 len_ = 2;
294 }
295
set_disp8(int disp)296 void Operand::set_disp8(int disp) {
297 ASSERT(is_int8(disp));
298 ASSERT(len_ == 1 || len_ == 2);
299 int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
300 *p = disp;
301 len_ += sizeof(int8_t);
302 }
303
set_disp32(int disp)304 void Operand::set_disp32(int disp) {
305 ASSERT(len_ == 1 || len_ == 2);
306 int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
307 *p = disp;
308 len_ += sizeof(int32_t);
309 }
310
311
312 } } // namespace v8::internal
313
314 #endif // V8_X64_ASSEMBLER_X64_INL_H_
315