1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /*
18 * Declaration of the fundamental Object type and refinements thereof, plus
19 * some functions for manipulating them.
20 */
21 #ifndef _DALVIK_OO_OBJECT
22 #define _DALVIK_OO_OBJECT
23
24 #include <stddef.h>
25
26 /* fwd decl */
27 struct DataObject;
28 struct InitiatingLoaderList;
29 struct ClassObject;
30 struct StringObject;
31 struct ArrayObject;
32 struct Method;
33 struct ExceptionEntry;
34 struct LineNumEntry;
35 struct StaticField;
36 struct InstField;
37 struct Field;
38 struct RegisterMap;
39 typedef struct DataObject DataObject;
40 typedef struct InitiatingLoaderList InitiatingLoaderList;
41 typedef struct ClassObject ClassObject;
42 typedef struct StringObject StringObject;
43 typedef struct ArrayObject ArrayObject;
44 typedef struct Method Method;
45 typedef struct ExceptionEntry ExceptionEntry;
46 typedef struct LineNumEntry LineNumEntry;
47 typedef struct StaticField StaticField;
48 typedef struct InstField InstField;
49 typedef struct Field Field;
50 typedef struct RegisterMap RegisterMap;
51
52 /*
53 * Native function pointer type.
54 *
55 * "args[0]" holds the "this" pointer for virtual methods.
56 *
57 * The "Bridge" form is a super-set of the "Native" form; in many places
58 * they are used interchangeably. Currently, all functions have all
59 * arguments passed in, but some functions only care about the first two.
60 * Passing extra arguments to a C function is (mostly) harmless.
61 */
62 typedef void (*DalvikBridgeFunc)(const u4* args, JValue* pResult,
63 const Method* method, struct Thread* self);
64 typedef void (*DalvikNativeFunc)(const u4* args, JValue* pResult);
65
66
67 /* vm-internal access flags and related definitions */
68 typedef enum AccessFlags {
69 ACC_MIRANDA = 0x8000, // method (internal to VM)
70 JAVA_FLAGS_MASK = 0xffff, // bits set from Java sources (low 16)
71 } AccessFlags;
72
73 /* Use the top 16 bits of the access flags field for
74 * other class flags. Code should use the *CLASS_FLAG*()
75 * macros to set/get these flags.
76 */
77 typedef enum ClassFlags {
78 CLASS_ISFINALIZABLE = (1<<31), // class/ancestor overrides finalize()
79 CLASS_ISARRAY = (1<<30), // class is a "[*"
80 CLASS_ISOBJECTARRAY = (1<<29), // class is a "[L*" or "[[*"
81 CLASS_ISREFERENCE = (1<<28), // class is a soft/weak/phantom ref
82 // only ISREFERENCE is set --> soft
83 CLASS_ISWEAKREFERENCE = (1<<27), // class is a weak reference
84 CLASS_ISPHANTOMREFERENCE = (1<<26), // class is a phantom reference
85
86 CLASS_MULTIPLE_DEFS = (1<<25), // DEX verifier: defs in multiple DEXs
87
88 /* unlike the others, these can be present in the optimized DEX file */
89 CLASS_ISOPTIMIZED = (1<<17), // class may contain opt instrs
90 CLASS_ISPREVERIFIED = (1<<16), // class has been pre-verified
91 } ClassFlags;
92
93 /* bits we can reasonably expect to see set in a DEX access flags field */
94 #define EXPECTED_FILE_FLAGS \
95 (ACC_CLASS_MASK | CLASS_ISPREVERIFIED | CLASS_ISOPTIMIZED)
96
97 /*
98 * Get/set class flags.
99 */
100 #define SET_CLASS_FLAG(clazz, flag) \
101 do { (clazz)->accessFlags |= (flag); } while (0)
102
103 #define CLEAR_CLASS_FLAG(clazz, flag) \
104 do { (clazz)->accessFlags &= ~(flag); } while (0)
105
106 #define IS_CLASS_FLAG_SET(clazz, flag) \
107 (((clazz)->accessFlags & (flag)) != 0)
108
109 #define GET_CLASS_FLAG_GROUP(clazz, flags) \
110 ((u4)((clazz)->accessFlags & (flags)))
111
112 /*
113 * Use the top 16 bits of the access flags field for other method flags.
114 * Code should use the *METHOD_FLAG*() macros to set/get these flags.
115 */
116 typedef enum MethodFlags {
117 METHOD_ISWRITABLE = (1<<31), // the method's code is writable
118 } MethodFlags;
119
120 /*
121 * Get/set method flags.
122 */
123 #define SET_METHOD_FLAG(method, flag) \
124 do { (method)->accessFlags |= (flag); } while (0)
125
126 #define CLEAR_METHOD_FLAG(method, flag) \
127 do { (method)->accessFlags &= ~(flag); } while (0)
128
129 #define IS_METHOD_FLAG_SET(method, flag) \
130 (((method)->accessFlags & (flag)) != 0)
131
132 #define GET_METHOD_FLAG_GROUP(method, flags) \
133 ((u4)((method)->accessFlags & (flags)))
134
135 /* current state of the class, increasing as we progress */
136 typedef enum ClassStatus {
137 CLASS_ERROR = -1,
138
139 CLASS_NOTREADY = 0,
140 CLASS_LOADED = 1,
141 CLASS_PREPARED = 2, /* part of linking */
142 CLASS_RESOLVED = 3, /* part of linking */
143 CLASS_VERIFYING = 4, /* in the process of being verified */
144 CLASS_VERIFIED = 5, /* logically part of linking; done pre-init */
145 CLASS_INITIALIZING = 6, /* class init in progress */
146 CLASS_INITIALIZED = 7, /* ready to go */
147 } ClassStatus;
148
149
150 /*
151 * Primitive type identifiers. We use these values as indexes into an
152 * array of synthesized classes, so these start at zero and count up.
153 * The order is arbitrary (mimics table in doc for newarray opcode),
154 * but can't be changed without shuffling some reflection tables.
155 *
156 * PRIM_VOID can't be used as an array type, but we include it here for
157 * other uses (e.g. Void.TYPE).
158 */
159 typedef enum PrimitiveType {
160 PRIM_NOT = -1, /* value is not a primitive type */
161 PRIM_BOOLEAN = 0,
162 PRIM_CHAR = 1,
163 PRIM_FLOAT = 2,
164 PRIM_DOUBLE = 3,
165 PRIM_BYTE = 4,
166 PRIM_SHORT = 5,
167 PRIM_INT = 6,
168 PRIM_LONG = 7,
169 PRIM_VOID = 8,
170
171 PRIM_MAX
172 } PrimitiveType;
173 #define PRIM_TYPE_TO_LETTER "ZCFDBSIJV" /* must match order in enum */
174
175 /*
176 * Definitions for packing refOffsets in ClassObject.
177 */
178 /*
179 * A magic value for refOffsets. Ignore the bits and walk the super
180 * chain when this is the value.
181 * [This is an unlikely "natural" value, since it would be 30 non-ref instance
182 * fields followed by 2 ref instance fields.]
183 */
184 #define CLASS_WALK_SUPER ((unsigned int)(3))
185 #define CLASS_SMALLEST_OFFSET (sizeof(struct Object))
186 #define CLASS_BITS_PER_WORD (sizeof(unsigned long int) * 8)
187 #define CLASS_OFFSET_ALIGNMENT 4
188 #define CLASS_HIGH_BIT ((unsigned int)1 << (CLASS_BITS_PER_WORD - 1))
189 /*
190 * Return a single bit, or zero if the encoding can't encode the offset.
191 */
192 #define CLASS_BIT_FROM_OFFSET(byteOffset) \
193 (CLASS_HIGH_BIT >> \
194 (((unsigned int)(byteOffset) - CLASS_SMALLEST_OFFSET) / \
195 CLASS_OFFSET_ALIGNMENT))
196 /*
197 * Return an offset, given a bit number as returned from CLZ.
198 */
199 #define CLASS_OFFSET_FROM_CLZ(rshift) \
200 (((int)(rshift) * CLASS_OFFSET_ALIGNMENT) + CLASS_SMALLEST_OFFSET)
201
202
203 /*
204 * Used for iftable in ClassObject.
205 */
206 typedef struct InterfaceEntry {
207 /* pointer to interface class */
208 ClassObject* clazz;
209
210 /*
211 * Index into array of vtable offsets. This points into the ifviPool,
212 * which holds the vtables for all interfaces declared by this class.
213 */
214 int* methodIndexArray;
215 } InterfaceEntry;
216
217
218
219 /*
220 * There are three types of objects:
221 * Class objects - an instance of java.lang.Class
222 * Array objects - an object created with a "new array" instruction
223 * Data objects - an object that is neither of the above
224 *
225 * We also define String objects. At present they're equivalent to
226 * DataObject, but that may change. (Either way, they make some of the
227 * code more obvious.)
228 *
229 * All objects have an Object header followed by type-specific data.
230 */
231 typedef struct Object {
232 /* ptr to class object */
233 ClassObject* clazz;
234
235 /* thin lock or "fat" monitor */
236 Lock lock;
237 } Object;
238
239 /*
240 * Properly initialize an Object.
241 * void DVM_OBJECT_INIT(Object *obj, ClassObject *clazz_)
242 */
243 #define DVM_OBJECT_INIT(obj, clazz_) \
244 do { (obj)->clazz = (clazz_); DVM_LOCK_INIT(&(obj)->lock); } while (0)
245
246 /*
247 * Data objects have an Object header followed by their instance data.
248 */
249 struct DataObject {
250 Object obj; /* MUST be first item */
251
252 /* variable #of u4 slots; u8 uses 2 slots */
253 u4 instanceData[1];
254 };
255
256 /*
257 * Strings are used frequently enough that we may want to give them their
258 * own unique type.
259 *
260 * Using a dedicated type object to access the instance data provides a
261 * performance advantage but makes the java/lang/String.java implementation
262 * fragile.
263 *
264 * Currently this is just equal to DataObject, and we pull the fields out
265 * like we do for any other object.
266 */
267 struct StringObject {
268 Object obj; /* MUST be first item */
269
270 /* variable #of u4 slots; u8 uses 2 slots */
271 u4 instanceData[1];
272 };
273
274
275 /*
276 * Array objects have these additional fields.
277 *
278 * We don't currently store the size of each element. Usually it's implied
279 * by the instruction. If necessary, the width can be derived from
280 * the first char of obj->clazz->name.
281 */
282 struct ArrayObject {
283 Object obj; /* MUST be first item */
284
285 /* number of elements; immutable after init */
286 u4 length;
287
288 /*
289 * Array contents; actual size is (length * sizeof(type)). This is
290 * declared as u8 so that the compiler inserts any necessary padding
291 * (e.g. for EABI); the actual allocation may be smaller than 8 bytes.
292 */
293 u8 contents[1];
294 };
295
296 /*
297 * For classes created early and thus probably in the zygote, the
298 * InitiatingLoaderList is kept in gDvm. Later classes use the structure in
299 * Object Class. This helps keep zygote pages shared.
300 */
301 struct InitiatingLoaderList {
302 /* a list of initiating loader Objects; grown and initialized on demand */
303 Object** initiatingLoaders;
304 /* count of loaders in the above list */
305 int initiatingLoaderCount;
306 };
307
308 /*
309 * This defines the amount of space we leave for field slots in the
310 * java.lang.Class definition. If we alter the class to have more than
311 * this many fields, the VM will abort at startup.
312 */
313 #define CLASS_FIELD_SLOTS 4
314
315 /*
316 * Class objects have many additional fields. This is used for both
317 * classes and interfaces, including synthesized classes (arrays and
318 * primitive types).
319 *
320 * Class objects are unusual in that they have some fields allocated with
321 * the system malloc (or LinearAlloc), rather than on the GC heap. This is
322 * handy during initialization, but does require special handling when
323 * discarding java.lang.Class objects.
324 *
325 * The separation of methods (direct vs. virtual) and fields (class vs.
326 * instance) used in Dalvik works out pretty well. The only time it's
327 * annoying is when enumerating or searching for things with reflection.
328 */
329 struct ClassObject {
330 Object obj; /* MUST be first item */
331
332 /* leave space for instance data; we could access fields directly if we
333 freeze the definition of java/lang/Class */
334 u4 instanceData[CLASS_FIELD_SLOTS];
335
336 /* UTF-8 descriptor for the class; from constant pool, or on heap
337 if generated ("[C") */
338 const char* descriptor;
339 char* descriptorAlloc;
340
341 /* access flags; low 16 bits are defined by VM spec */
342 u4 accessFlags;
343
344 /* VM-unique class serial number, nonzero, set very early */
345 u4 serialNumber;
346
347 /* DexFile from which we came; needed to resolve constant pool entries */
348 /* (will be NULL for VM-generated, e.g. arrays and primitive classes) */
349 DvmDex* pDvmDex;
350
351 /* state of class initialization */
352 ClassStatus status;
353
354 /* if class verify fails, we must return same error on subsequent tries */
355 ClassObject* verifyErrorClass;
356
357 /* threadId, used to check for recursive <clinit> invocation */
358 u4 initThreadId;
359
360 /*
361 * Total object size; used when allocating storage on gc heap. (For
362 * interfaces and abstract classes this will be zero.)
363 */
364 size_t objectSize;
365
366 /* arrays only: class object for base element, for instanceof/checkcast
367 (for String[][][], this will be String) */
368 ClassObject* elementClass;
369
370 /* class object representing an array of this class; set on first use */
371 ClassObject* arrayClass;
372
373 /* arrays only: number of dimensions, e.g. int[][] is 2 */
374 int arrayDim;
375
376 /* primitive type index, or PRIM_NOT (-1); set for generated prim classes */
377 PrimitiveType primitiveType;
378
379 /* superclass, or NULL if this is java.lang.Object */
380 ClassObject* super;
381
382 /* defining class loader, or NULL for the "bootstrap" system loader */
383 Object* classLoader;
384
385 /* initiating class loader list */
386 /* NOTE: for classes with low serialNumber, these are unused, and the
387 values are kept in a table in gDvm. */
388 InitiatingLoaderList initiatingLoaderList;
389
390 /* array of interfaces this class implements directly */
391 int interfaceCount;
392 ClassObject** interfaces;
393
394 /* static, private, and <init> methods */
395 int directMethodCount;
396 Method* directMethods;
397
398 /* virtual methods defined in this class; invoked through vtable */
399 int virtualMethodCount;
400 Method* virtualMethods;
401
402 /*
403 * Virtual method table (vtable), for use by "invoke-virtual". The
404 * vtable from the superclass is copied in, and virtual methods from
405 * our class either replace those from the super or are appended.
406 */
407 int vtableCount;
408 Method** vtable;
409
410 /*
411 * Interface table (iftable), one entry per interface supported by
412 * this class. That means one entry for each interface we support
413 * directly, indirectly via superclass, or indirectly via
414 * superinterface. This will be null if neither we nor our superclass
415 * implement any interfaces.
416 *
417 * Why we need this: given "class Foo implements Face", declare
418 * "Face faceObj = new Foo()". Invoke faceObj.blah(), where "blah" is
419 * part of the Face interface. We can't easily use a single vtable.
420 *
421 * For every interface a concrete class implements, we create a list of
422 * virtualMethod indices for the methods in the interface.
423 */
424 int iftableCount;
425 InterfaceEntry* iftable;
426
427 /*
428 * The interface vtable indices for iftable get stored here. By placing
429 * them all in a single pool for each class that implements interfaces,
430 * we decrease the number of allocations.
431 */
432 int ifviPoolCount;
433 int* ifviPool;
434
435 /* static fields */
436 int sfieldCount;
437 StaticField* sfields;
438
439 /* instance fields
440 *
441 * These describe the layout of the contents of a DataObject-compatible
442 * Object. Note that only the fields directly defined by this class
443 * are listed in ifields; fields defined by a superclass are listed
444 * in the superclass's ClassObject.ifields.
445 *
446 * All instance fields that refer to objects are guaranteed to be
447 * at the beginning of the field list. ifieldRefCount specifies
448 * the number of reference fields.
449 */
450 int ifieldCount;
451 int ifieldRefCount; // number of fields that are object refs
452 InstField* ifields;
453
454 /* bitmap of offsets of ifields */
455 u4 refOffsets;
456
457 /* source file name, if known */
458 const char* sourceFile;
459 };
460
461 /*
462 * A method. We create one of these for every method in every class
463 * we load, so try to keep the size to a minimum.
464 *
465 * Much of this comes from and could be accessed in the data held in shared
466 * memory. We hold it all together here for speed. Everything but the
467 * pointers could be held in a shared table generated by the optimizer;
468 * if we're willing to convert them to offsets and take the performance
469 * hit (e.g. "meth->insns" becomes "baseAddr + meth->insnsOffset") we
470 * could move everything but "nativeFunc".
471 */
472 struct Method {
473 /* the class we are a part of */
474 ClassObject* clazz;
475
476 /* access flags; low 16 bits are defined by spec (could be u2?) */
477 u4 accessFlags;
478
479 /*
480 * For concrete virtual methods, this is the offset of the method
481 * in "vtable".
482 *
483 * For abstract methods in an interface class, this is the offset
484 * of the method in "iftable[n]->methodIndexArray".
485 */
486 u2 methodIndex;
487
488 /*
489 * Method bounds; not needed for an abstract method.
490 *
491 * For a native method, we compute the size of the argument list, and
492 * set "insSize" and "registerSize" equal to it.
493 */
494 u2 registersSize; /* ins + locals */
495 u2 outsSize;
496 u2 insSize;
497
498 /* method name, e.g. "<init>" or "eatLunch" */
499 const char* name;
500
501 /*
502 * Method prototype descriptor string (return and argument types).
503 *
504 * TODO: This currently must specify the DexFile as well as the proto_ids
505 * index, because generated Proxy classes don't have a DexFile. We can
506 * remove the DexFile* and reduce the size of this struct if we generate
507 * a DEX for proxies.
508 */
509 DexProto prototype;
510
511 /* short-form method descriptor string */
512 const char* shorty;
513
514 /*
515 * The remaining items are not used for abstract or native methods.
516 * (JNI is currently hijacking "insns" as a function pointer, set
517 * after the first call. For internal-native this stays null.)
518 */
519
520 /* the actual code */
521 const u2* insns; /* instructions, in memory-mapped .dex */
522
523 /* cached JNI argument and return-type hints */
524 int jniArgInfo;
525
526 /*
527 * Native method ptr; could be actual function or a JNI bridge. We
528 * don't currently discriminate between DalvikBridgeFunc and
529 * DalvikNativeFunc; the former takes an argument superset (i.e. two
530 * extra args) which will be ignored. If necessary we can use
531 * insns==NULL to detect JNI bridge vs. internal native.
532 */
533 DalvikBridgeFunc nativeFunc;
534
535 /*
536 * Register map data, if available. This will point into the DEX file
537 * if the data was computed during pre-verification, or into the
538 * linear alloc area if not.
539 */
540 const RegisterMap* registerMap;
541
542 #ifdef WITH_PROFILER
543 bool inProfile;
544 #endif
545 #ifdef WITH_DEBUGGER
546 short debugBreakpointCount;
547 #endif
548 };
549
550 /*
551 * Generic field header. We pass this around when we want a generic Field
552 * pointer (e.g. for reflection stuff). Testing the accessFlags for
553 * ACC_STATIC allows a proper up-cast.
554 */
555 struct Field {
556 ClassObject* clazz; /* class in which the field is declared */
557 const char* name;
558 const char* signature; /* e.g. "I", "[C", "Landroid/os/Debug;" */
559 u4 accessFlags;
560 #ifdef PROFILE_FIELD_ACCESS
561 u4 gets;
562 u4 puts;
563 #endif
564 };
565
566 /*
567 * Static field.
568 */
569 struct StaticField {
570 Field field; /* MUST be first item */
571 JValue value; /* initially set from DEX for primitives */
572 };
573
574 /*
575 * Instance field.
576 */
577 struct InstField {
578 Field field; /* MUST be first item */
579
580 /*
581 * This field indicates the byte offset from the beginning of the
582 * (Object *) to the actual instance data; e.g., byteOffset==0 is
583 * the same as the object pointer (bug!), and byteOffset==4 is 4
584 * bytes farther.
585 */
586 int byteOffset;
587 };
588
589
590 /*
591 * Find a method within a class. The superclass is not searched.
592 */
593 Method* dvmFindDirectMethodByDescriptor(const ClassObject* clazz,
594 const char* methodName, const char* signature);
595 Method* dvmFindVirtualMethodByDescriptor(const ClassObject* clazz,
596 const char* methodName, const char* signature);
597 Method* dvmFindVirtualMethodByName(const ClassObject* clazz,
598 const char* methodName);
599 Method* dvmFindDirectMethod(const ClassObject* clazz, const char* methodName,
600 const DexProto* proto);
601 Method* dvmFindVirtualMethod(const ClassObject* clazz, const char* methodName,
602 const DexProto* proto);
603
604
605 /*
606 * Find a method within a class hierarchy.
607 */
608 Method* dvmFindDirectMethodHierByDescriptor(const ClassObject* clazz,
609 const char* methodName, const char* descriptor);
610 Method* dvmFindVirtualMethodHierByDescriptor(const ClassObject* clazz,
611 const char* methodName, const char* signature);
612 Method* dvmFindDirectMethodHier(const ClassObject* clazz,
613 const char* methodName, const DexProto* proto);
614 Method* dvmFindVirtualMethodHier(const ClassObject* clazz,
615 const char* methodName, const DexProto* proto);
616 Method* dvmFindMethodHier(const ClassObject* clazz, const char* methodName,
617 const DexProto* proto);
618
619 /*
620 * Find the implementation of "meth" in "clazz".
621 *
622 * Returns NULL and throws an exception if not found.
623 */
624 const Method* dvmGetVirtualizedMethod(const ClassObject* clazz,
625 const Method* meth);
626
627 /*
628 * Get the source file associated with a method.
629 */
630 const char* dvmGetMethodSourceFile(const Method* meth);
631
632 /*
633 * Find a field within a class. The superclass is not searched.
634 */
635 InstField* dvmFindInstanceField(const ClassObject* clazz,
636 const char* fieldName, const char* signature);
637 StaticField* dvmFindStaticField(const ClassObject* clazz,
638 const char* fieldName, const char* signature);
639
640 /*
641 * Find a field in a class/interface hierarchy.
642 */
643 InstField* dvmFindInstanceFieldHier(const ClassObject* clazz,
644 const char* fieldName, const char* signature);
645 StaticField* dvmFindStaticFieldHier(const ClassObject* clazz,
646 const char* fieldName, const char* signature);
647 Field* dvmFindFieldHier(const ClassObject* clazz, const char* fieldName,
648 const char* signature);
649
650 /*
651 * Find a field and return the byte offset from the object pointer. Only
652 * searches the specified class, not the superclass.
653 *
654 * Returns -1 on failure.
655 */
dvmFindFieldOffset(const ClassObject * clazz,const char * fieldName,const char * signature)656 INLINE int dvmFindFieldOffset(const ClassObject* clazz,
657 const char* fieldName, const char* signature)
658 {
659 InstField* pField = dvmFindInstanceField(clazz, fieldName, signature);
660 if (pField == NULL)
661 return -1;
662 else
663 return pField->byteOffset;
664 }
665
666 /*
667 * Field access functions. Pass in the word offset from Field->byteOffset.
668 *
669 * We guarantee that long/double field data is 64-bit aligned, so it's safe
670 * to access them with ldrd/strd on ARM.
671 *
672 * The VM treats all fields as 32 or 64 bits, so the field set functions
673 * write 32 bits even if the underlying type is smaller.
674 */
675 #define BYTE_OFFSET(_ptr, _offset) ((void*) (((u1*)(_ptr)) + (_offset)))
676
dvmFieldPtr(const Object * obj,int offset)677 INLINE JValue* dvmFieldPtr(const Object* obj, int offset) {
678 return ((JValue*)BYTE_OFFSET(obj, offset));
679 }
680
dvmGetFieldBoolean(const Object * obj,int offset)681 INLINE bool dvmGetFieldBoolean(const Object* obj, int offset) {
682 return ((JValue*)BYTE_OFFSET(obj, offset))->z;
683 }
dvmGetFieldByte(const Object * obj,int offset)684 INLINE s1 dvmGetFieldByte(const Object* obj, int offset) {
685 return ((JValue*)BYTE_OFFSET(obj, offset))->b;
686 }
dvmGetFieldShort(const Object * obj,int offset)687 INLINE s2 dvmGetFieldShort(const Object* obj, int offset) {
688 return ((JValue*)BYTE_OFFSET(obj, offset))->s;
689 }
dvmGetFieldChar(const Object * obj,int offset)690 INLINE u2 dvmGetFieldChar(const Object* obj, int offset) {
691 return ((JValue*)BYTE_OFFSET(obj, offset))->c;
692 }
dvmGetFieldInt(const Object * obj,int offset)693 INLINE s4 dvmGetFieldInt(const Object* obj, int offset) {
694 return ((JValue*)BYTE_OFFSET(obj, offset))->i;
695 }
dvmGetFieldLong(const Object * obj,int offset)696 INLINE s8 dvmGetFieldLong(const Object* obj, int offset) {
697 return ((JValue*)BYTE_OFFSET(obj, offset))->j;
698 }
dvmGetFieldFloat(const Object * obj,int offset)699 INLINE float dvmGetFieldFloat(const Object* obj, int offset) {
700 return ((JValue*)BYTE_OFFSET(obj, offset))->f;
701 }
dvmGetFieldDouble(const Object * obj,int offset)702 INLINE double dvmGetFieldDouble(const Object* obj, int offset) {
703 return ((JValue*)BYTE_OFFSET(obj, offset))->d;
704 }
dvmGetFieldObject(const Object * obj,int offset)705 INLINE Object* dvmGetFieldObject(const Object* obj, int offset) {
706 return ((JValue*)BYTE_OFFSET(obj, offset))->l;
707 }
708
dvmSetFieldBoolean(Object * obj,int offset,bool val)709 INLINE void dvmSetFieldBoolean(Object* obj, int offset, bool val) {
710 ((JValue*)BYTE_OFFSET(obj, offset))->i = val;
711 }
dvmSetFieldByte(Object * obj,int offset,s1 val)712 INLINE void dvmSetFieldByte(Object* obj, int offset, s1 val) {
713 ((JValue*)BYTE_OFFSET(obj, offset))->i = val;
714 }
dvmSetFieldShort(Object * obj,int offset,s2 val)715 INLINE void dvmSetFieldShort(Object* obj, int offset, s2 val) {
716 ((JValue*)BYTE_OFFSET(obj, offset))->i = val;
717 }
dvmSetFieldChar(Object * obj,int offset,u2 val)718 INLINE void dvmSetFieldChar(Object* obj, int offset, u2 val) {
719 ((JValue*)BYTE_OFFSET(obj, offset))->i = val;
720 }
dvmSetFieldInt(Object * obj,int offset,s4 val)721 INLINE void dvmSetFieldInt(Object* obj, int offset, s4 val) {
722 ((JValue*)BYTE_OFFSET(obj, offset))->i = val;
723 }
dvmSetFieldLong(Object * obj,int offset,s8 val)724 INLINE void dvmSetFieldLong(Object* obj, int offset, s8 val) {
725 ((JValue*)BYTE_OFFSET(obj, offset))->j = val;
726 }
dvmSetFieldFloat(Object * obj,int offset,float val)727 INLINE void dvmSetFieldFloat(Object* obj, int offset, float val) {
728 ((JValue*)BYTE_OFFSET(obj, offset))->f = val;
729 }
dvmSetFieldDouble(Object * obj,int offset,double val)730 INLINE void dvmSetFieldDouble(Object* obj, int offset, double val) {
731 ((JValue*)BYTE_OFFSET(obj, offset))->d = val;
732 }
dvmSetFieldObject(Object * obj,int offset,Object * val)733 INLINE void dvmSetFieldObject(Object* obj, int offset, Object* val) {
734 ((JValue*)BYTE_OFFSET(obj, offset))->l = val;
735 }
736
737 /*
738 * Static field access functions.
739 */
dvmStaticFieldPtr(const StaticField * sfield)740 INLINE JValue* dvmStaticFieldPtr(const StaticField* sfield) {
741 return (JValue*)&sfield->value;
742 }
743
dvmGetStaticFieldBoolean(const StaticField * sfield)744 INLINE bool dvmGetStaticFieldBoolean(const StaticField* sfield) {
745 return sfield->value.z;
746 }
dvmGetStaticFieldByte(const StaticField * sfield)747 INLINE s1 dvmGetStaticFieldByte(const StaticField* sfield) {
748 return sfield->value.b;
749 }
dvmGetStaticFieldShort(const StaticField * sfield)750 INLINE s2 dvmGetStaticFieldShort(const StaticField* sfield) {
751 return sfield->value.s;
752 }
dvmGetStaticFieldChar(const StaticField * sfield)753 INLINE u2 dvmGetStaticFieldChar(const StaticField* sfield) {
754 return sfield->value.c;
755 }
dvmGetStaticFieldInt(const StaticField * sfield)756 INLINE s4 dvmGetStaticFieldInt(const StaticField* sfield) {
757 return sfield->value.i;
758 }
dvmGetStaticFieldLong(const StaticField * sfield)759 INLINE s8 dvmGetStaticFieldLong(const StaticField* sfield) {
760 return sfield->value.j;
761 }
dvmGetStaticFieldFloat(const StaticField * sfield)762 INLINE float dvmGetStaticFieldFloat(const StaticField* sfield) {
763 return sfield->value.f;
764 }
dvmGetStaticFieldDouble(const StaticField * sfield)765 INLINE double dvmGetStaticFieldDouble(const StaticField* sfield) {
766 return sfield->value.d;
767 }
dvmGetStaticFieldObject(const StaticField * sfield)768 INLINE Object* dvmGetStaticFieldObject(const StaticField* sfield) {
769 return sfield->value.l;
770 }
771
dvmSetStaticFieldBoolean(StaticField * sfield,bool val)772 INLINE void dvmSetStaticFieldBoolean(StaticField* sfield, bool val) {
773 sfield->value.i = val;
774 }
dvmSetStaticFieldByte(StaticField * sfield,s1 val)775 INLINE void dvmSetStaticFieldByte(StaticField* sfield, s1 val) {
776 sfield->value.i = val;
777 }
dvmSetStaticFieldShort(StaticField * sfield,s2 val)778 INLINE void dvmSetStaticFieldShort(StaticField* sfield, s2 val) {
779 sfield->value.i = val;
780 }
dvmSetStaticFieldChar(StaticField * sfield,u2 val)781 INLINE void dvmSetStaticFieldChar(StaticField* sfield, u2 val) {
782 sfield->value.i = val;
783 }
dvmSetStaticFieldInt(StaticField * sfield,s4 val)784 INLINE void dvmSetStaticFieldInt(StaticField* sfield, s4 val) {
785 sfield->value.i = val;
786 }
dvmSetStaticFieldLong(StaticField * sfield,s8 val)787 INLINE void dvmSetStaticFieldLong(StaticField* sfield, s8 val) {
788 sfield->value.j = val;
789 }
dvmSetStaticFieldFloat(StaticField * sfield,float val)790 INLINE void dvmSetStaticFieldFloat(StaticField* sfield, float val) {
791 sfield->value.f = val;
792 }
dvmSetStaticFieldDouble(StaticField * sfield,double val)793 INLINE void dvmSetStaticFieldDouble(StaticField* sfield, double val) {
794 sfield->value.d = val;
795 }
dvmSetStaticFieldObject(StaticField * sfield,Object * val)796 INLINE void dvmSetStaticFieldObject(StaticField* sfield, Object* val) {
797 sfield->value.l = val;
798 }
799
800 /*
801 * Helpers.
802 */
dvmIsPublicMethod(const Method * method)803 INLINE bool dvmIsPublicMethod(const Method* method) {
804 return (method->accessFlags & ACC_PUBLIC) != 0;
805 }
dvmIsPrivateMethod(const Method * method)806 INLINE bool dvmIsPrivateMethod(const Method* method) {
807 return (method->accessFlags & ACC_PRIVATE) != 0;
808 }
dvmIsStaticMethod(const Method * method)809 INLINE bool dvmIsStaticMethod(const Method* method) {
810 return (method->accessFlags & ACC_STATIC) != 0;
811 }
dvmIsSynchronizedMethod(const Method * method)812 INLINE bool dvmIsSynchronizedMethod(const Method* method) {
813 return (method->accessFlags & ACC_SYNCHRONIZED) != 0;
814 }
dvmIsDeclaredSynchronizedMethod(const Method * method)815 INLINE bool dvmIsDeclaredSynchronizedMethod(const Method* method) {
816 return (method->accessFlags & ACC_DECLARED_SYNCHRONIZED) != 0;
817 }
dvmIsFinalMethod(const Method * method)818 INLINE bool dvmIsFinalMethod(const Method* method) {
819 return (method->accessFlags & ACC_FINAL) != 0;
820 }
dvmIsNativeMethod(const Method * method)821 INLINE bool dvmIsNativeMethod(const Method* method) {
822 return (method->accessFlags & ACC_NATIVE) != 0;
823 }
dvmIsAbstractMethod(const Method * method)824 INLINE bool dvmIsAbstractMethod(const Method* method) {
825 return (method->accessFlags & ACC_ABSTRACT) != 0;
826 }
dvmIsMirandaMethod(const Method * method)827 INLINE bool dvmIsMirandaMethod(const Method* method) {
828 return (method->accessFlags & ACC_MIRANDA) != 0;
829 }
dvmIsConstructorMethod(const Method * method)830 INLINE bool dvmIsConstructorMethod(const Method* method) {
831 return *method->name == '<';
832 }
833 /* Dalvik puts private, static, and constructors into non-virtual table */
dvmIsDirectMethod(const Method * method)834 INLINE bool dvmIsDirectMethod(const Method* method) {
835 return dvmIsPrivateMethod(method) ||
836 dvmIsStaticMethod(method) ||
837 dvmIsConstructorMethod(method);
838 }
839 /* Get whether the given method has associated bytecode. This is the
840 * case for methods which are neither native nor abstract. */
dvmIsBytecodeMethod(const Method * method)841 INLINE bool dvmIsBytecodeMethod(const Method* method) {
842 return (method->accessFlags & (ACC_NATIVE | ACC_ABSTRACT)) == 0;
843 }
844
dvmIsProtectedField(const Field * field)845 INLINE bool dvmIsProtectedField(const Field* field) {
846 return (field->accessFlags & ACC_PROTECTED) != 0;
847 }
dvmIsStaticField(const Field * field)848 INLINE bool dvmIsStaticField(const Field* field) {
849 return (field->accessFlags & ACC_STATIC) != 0;
850 }
dvmIsFinalField(const Field * field)851 INLINE bool dvmIsFinalField(const Field* field) {
852 return (field->accessFlags & ACC_FINAL) != 0;
853 }
854
dvmIsInterfaceClass(const ClassObject * clazz)855 INLINE bool dvmIsInterfaceClass(const ClassObject* clazz) {
856 return (clazz->accessFlags & ACC_INTERFACE) != 0;
857 }
dvmIsPublicClass(const ClassObject * clazz)858 INLINE bool dvmIsPublicClass(const ClassObject* clazz) {
859 return (clazz->accessFlags & ACC_PUBLIC) != 0;
860 }
dvmIsFinalClass(const ClassObject * clazz)861 INLINE bool dvmIsFinalClass(const ClassObject* clazz) {
862 return (clazz->accessFlags & ACC_FINAL) != 0;
863 }
dvmIsAbstractClass(const ClassObject * clazz)864 INLINE bool dvmIsAbstractClass(const ClassObject* clazz) {
865 return (clazz->accessFlags & ACC_ABSTRACT) != 0;
866 }
dvmIsAnnotationClass(const ClassObject * clazz)867 INLINE bool dvmIsAnnotationClass(const ClassObject* clazz) {
868 return (clazz->accessFlags & ACC_ANNOTATION) != 0;
869 }
dvmIsPrimitiveClass(const ClassObject * clazz)870 INLINE bool dvmIsPrimitiveClass(const ClassObject* clazz) {
871 return clazz->primitiveType != PRIM_NOT;
872 }
873
874 /* linked, here meaning prepared and resolved */
dvmIsClassLinked(const ClassObject * clazz)875 INLINE bool dvmIsClassLinked(const ClassObject* clazz) {
876 return clazz->status >= CLASS_RESOLVED;
877 }
878 /* has class been verified? */
dvmIsClassVerified(const ClassObject * clazz)879 INLINE bool dvmIsClassVerified(const ClassObject* clazz) {
880 return clazz->status >= CLASS_VERIFIED;
881 }
882
883 /*
884 * Get the associated code struct for a method. This returns NULL
885 * for non-bytecode methods.
886 */
dvmGetMethodCode(const Method * meth)887 INLINE const DexCode* dvmGetMethodCode(const Method* meth) {
888 if (dvmIsBytecodeMethod(meth)) {
889 /*
890 * The insns field for a bytecode method actually points at
891 * &(DexCode.insns), so we can subtract back to get at the
892 * DexCode in front.
893 */
894 return (const DexCode*)
895 (((const u1*) meth->insns) - offsetof(DexCode, insns));
896 } else {
897 return NULL;
898 }
899 }
900
901 /*
902 * Get the size of the insns associated with a method. This returns 0
903 * for non-bytecode methods.
904 */
dvmGetMethodInsnsSize(const Method * meth)905 INLINE u4 dvmGetMethodInsnsSize(const Method* meth) {
906 const DexCode* pCode = dvmGetMethodCode(meth);
907 return (pCode == NULL) ? 0 : pCode->insnsSize;
908 }
909
910 /* debugging */
911 void dvmDumpObject(const Object* obj);
912
913 #endif /*_DALVIK_OO_OBJECT*/
914