/external/dropbear/libtomcrypt/src/headers/ |
D | tomcrypt_math.h | 254 int (*gcd)(void *a, void *b, void *c); member 481 #define mp_gcd(a, b, c) ltc_mp.gcd(a, b, c)
|
/external/dropbear/libtomcrypt/src/math/ |
D | gmp_desc.c | 289 static int gcd(void *a, void *b, void *c) in gcd() function 427 &gcd,
|
D | ltm_desc.c | 294 static int gcd(void *a, void *b, void *c) in gcd() function 433 &gcd,
|
D | tfm_desc.c | 303 static int gcd(void *a, void *b, void *c) in gcd() function 721 &gcd,
|
/external/zlib/examples/ |
D | gzappend.c | 100 local unsigned gcd(unsigned a, unsigned b) in gcd() function 152 cycles = gcd(len, rot); /* number of cycles */ in rotate()
|
/external/dropbear/libtommath/ |
D | poster.tex | 29 $b = \sqrt{a}$ & {\tt mp\_sqrt(\&a, \&b)} & $c = \mbox{gcd}(a, b)$ & {\tt mp\_gcd(\&a, \&b, \&c)} …
|
D | changes.txt | 175 -- Fixed mp_gcd() so the gcd of 0,0 is 0. Allows the gcd operation to be chained
|
D | bn.tex | 19 \def\gcd{{\rm gcd}} 1564 $gcd(G, P) = 1$.
|
/external/icu4c/i18n/ |
D | nfrs.cpp | 96 int64_t gcd = x1 << p2; in util_lcm() local 99 return x / gcd * y; in util_lcm()
|
/external/dropbear/libtommath/mtest/ |
D | mpi.c | 2023 mp_int gcd, prod; in mp_lcm() local 2029 if((res = mp_init(&gcd)) != MP_OKAY) in mp_lcm() 2036 if((res = mp_gcd(a, b, &gcd)) != MP_OKAY) in mp_lcm() 2039 res = mp_div(&prod, &gcd, c, NULL); in mp_lcm() 2044 mp_clear(&gcd); in mp_lcm()
|
/external/webkit/V8Binding/v8/benchmarks/ |
D | crypto.js | 1332 BigInteger.prototype.gcd = bnGCD; method in BigInteger 1602 …if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrim… 1606 …if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrim… 1616 if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
|
D | earley-boyer.js | 410 var gcd = 0; 412 gcd = sc_euclid_gcd(gcd, arguments[i]); 413 return gcd;
|
/external/webkit/SunSpider/tests/ |
D | v8-crypto.js | 1324 BigInteger.prototype.gcd = bnGCD; method in BigInteger 1594 …if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrim… 1598 …if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrim… 1608 if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
|
D | v8-earley-boyer.js | 404 var gcd = 0; 406 gcd = sc_euclid_gcd(gcd, arguments[i]); 407 return gcd;
|
/external/dropbear/libtomcrypt/ |
D | crypt.tex | 21 \def\gcd{{\rm gcd}} 3232 $\mbox{gcd}(e, \phi(N)) = 1$. The private key consists of the composite $N$ and the inverse of $e$… 6199 /** gcd 6205 int (*gcd)(void *a, void *b, void *c);
|