• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* alloca.c -- allocate automatically reclaimed memory
2    (Mostly) portable public-domain implementation -- D A Gwyn
3 
4    This implementation of the PWB library alloca function,
5    which is used to allocate space off the run-time stack so
6    that it is automatically reclaimed upon procedure exit,
7    was inspired by discussions with J. Q. Johnson of Cornell.
8    J.Otto Tennant <jot@cray.com> contributed the Cray support.
9 
10    There are some preprocessor constants that can
11    be defined when compiling for your specific system, for
12    improved efficiency; however, the defaults should be okay.
13 
14    The general concept of this implementation is to keep
15    track of all alloca-allocated blocks, and reclaim any
16    that are found to be deeper in the stack than the current
17    invocation.  This heuristic does not reclaim storage as
18    soon as it becomes invalid, but it will do so eventually.
19 
20    As a special case, alloca(0) reclaims storage without
21    allocating any.  It is a good idea to use alloca(0) in
22    your main control loop, etc. to force garbage collection.  */
23 
24 #ifdef HAVE_CONFIG_H
25 #if defined (emacs) || defined (CONFIG_BROKETS)
26 #include <config.h>
27 #else
28 #include "config.h"
29 #endif
30 #endif
31 
32 /* If compiling with GCC 2, this file's not needed.  */
33 #if !defined (__GNUC__) || __GNUC__ < 2
34 
35 /* If someone has defined alloca as a macro,
36    there must be some other way alloca is supposed to work.  */
37 #ifndef alloca
38 
39 #ifdef emacs
40 #ifdef static
41 /* actually, only want this if static is defined as ""
42    -- this is for usg, in which emacs must undefine static
43    in order to make unexec workable
44    */
45 #ifndef STACK_DIRECTION
46 you
47 lose
48 -- must know STACK_DIRECTION at compile-time
49 #endif /* STACK_DIRECTION undefined */
50 #endif /* static */
51 #endif /* emacs */
52 
53 /* If your stack is a linked list of frames, you have to
54    provide an "address metric" ADDRESS_FUNCTION macro.  */
55 
56 #if defined (CRAY) && defined (CRAY_STACKSEG_END)
57 long i00afunc ();
58 #define ADDRESS_FUNCTION(arg) (char *) i00afunc (&(arg))
59 #else
60 #define ADDRESS_FUNCTION(arg) &(arg)
61 #endif
62 
63 #if __STDC__
64 typedef void *pointer;
65 #else
66 typedef char *pointer;
67 #endif
68 
69 #define	NULL	0
70 
71 /* Different portions of Emacs need to call different versions of
72    malloc.  The Emacs executable needs alloca to call xmalloc, because
73    ordinary malloc isn't protected from input signals.  On the other
74    hand, the utilities in lib-src need alloca to call malloc; some of
75    them are very simple, and don't have an xmalloc routine.
76 
77    Non-Emacs programs expect this to call use xmalloc.
78 
79    Callers below should use malloc.  */
80 
81 #ifndef emacs
82 #define malloc xmalloc
83 #endif
84 extern pointer malloc ();
85 
86 /* Define STACK_DIRECTION if you know the direction of stack
87    growth for your system; otherwise it will be automatically
88    deduced at run-time.
89 
90    STACK_DIRECTION > 0 => grows toward higher addresses
91    STACK_DIRECTION < 0 => grows toward lower addresses
92    STACK_DIRECTION = 0 => direction of growth unknown  */
93 
94 #ifndef STACK_DIRECTION
95 #define	STACK_DIRECTION	0	/* Direction unknown.  */
96 #endif
97 
98 #if STACK_DIRECTION != 0
99 
100 #define	STACK_DIR	STACK_DIRECTION	/* Known at compile-time.  */
101 
102 #else /* STACK_DIRECTION == 0; need run-time code.  */
103 
104 static int stack_dir;		/* 1 or -1 once known.  */
105 #define	STACK_DIR	stack_dir
106 
107 static void
find_stack_direction()108 find_stack_direction ()
109 {
110   static char *addr = NULL;	/* Address of first `dummy', once known.  */
111   auto char dummy;		/* To get stack address.  */
112 
113   if (addr == NULL)
114     {				/* Initial entry.  */
115       addr = ADDRESS_FUNCTION (dummy);
116 
117       find_stack_direction ();	/* Recurse once.  */
118     }
119   else
120     {
121       /* Second entry.  */
122       if (ADDRESS_FUNCTION (dummy) > addr)
123 	stack_dir = 1;		/* Stack grew upward.  */
124       else
125 	stack_dir = -1;		/* Stack grew downward.  */
126     }
127 }
128 
129 #endif /* STACK_DIRECTION == 0 */
130 
131 /* An "alloca header" is used to:
132    (a) chain together all alloca'ed blocks;
133    (b) keep track of stack depth.
134 
135    It is very important that sizeof(header) agree with malloc
136    alignment chunk size.  The following default should work okay.  */
137 
138 #ifndef	ALIGN_SIZE
139 #define	ALIGN_SIZE	sizeof(double)
140 #endif
141 
142 typedef union hdr
143 {
144   char align[ALIGN_SIZE];	/* To force sizeof(header).  */
145   struct
146     {
147       union hdr *next;		/* For chaining headers.  */
148       char *deep;		/* For stack depth measure.  */
149     } h;
150 } header;
151 
152 static header *last_alloca_header = NULL;	/* -> last alloca header.  */
153 
154 /* Return a pointer to at least SIZE bytes of storage,
155    which will be automatically reclaimed upon exit from
156    the procedure that called alloca.  Originally, this space
157    was supposed to be taken from the current stack frame of the
158    caller, but that method cannot be made to work for some
159    implementations of C, for example under Gould's UTX/32.  */
160 
161 pointer
alloca(size)162 alloca (size)
163      unsigned size;
164 {
165   auto char probe;		/* Probes stack depth: */
166   register char *depth = ADDRESS_FUNCTION (probe);
167 
168 #if STACK_DIRECTION == 0
169   if (STACK_DIR == 0)		/* Unknown growth direction.  */
170     find_stack_direction ();
171 #endif
172 
173   /* Reclaim garbage, defined as all alloca'd storage that
174      was allocated from deeper in the stack than currently. */
175 
176   {
177     register header *hp;	/* Traverses linked list.  */
178 
179     for (hp = last_alloca_header; hp != NULL;)
180       if ((STACK_DIR > 0 && hp->h.deep > depth)
181 	  || (STACK_DIR < 0 && hp->h.deep < depth))
182 	{
183 	  register header *np = hp->h.next;
184 
185 	  free ((pointer) hp);	/* Collect garbage.  */
186 
187 	  hp = np;		/* -> next header.  */
188 	}
189       else
190 	break;			/* Rest are not deeper.  */
191 
192     last_alloca_header = hp;	/* -> last valid storage.  */
193   }
194 
195   if (size == 0)
196     return NULL;		/* No allocation required.  */
197 
198   /* Allocate combined header + user data storage.  */
199 
200   {
201     register pointer new = malloc (sizeof (header) + size);
202     /* Address of header.  */
203 
204     ((header *) new)->h.next = last_alloca_header;
205     ((header *) new)->h.deep = depth;
206 
207     last_alloca_header = (header *) new;
208 
209     /* User storage begins just after header.  */
210 
211     return (pointer) ((char *) new + sizeof (header));
212   }
213 }
214 
215 #if defined (CRAY) && defined (CRAY_STACKSEG_END)
216 
217 #ifdef DEBUG_I00AFUNC
218 #include <stdio.h>
219 #endif
220 
221 #ifndef CRAY_STACK
222 #define CRAY_STACK
223 #ifndef CRAY2
224 /* Stack structures for CRAY-1, CRAY X-MP, and CRAY Y-MP */
225 struct stack_control_header
226   {
227     long shgrow:32;		/* Number of times stack has grown.  */
228     long shaseg:32;		/* Size of increments to stack.  */
229     long shhwm:32;		/* High water mark of stack.  */
230     long shsize:32;		/* Current size of stack (all segments).  */
231   };
232 
233 /* The stack segment linkage control information occurs at
234    the high-address end of a stack segment.  (The stack
235    grows from low addresses to high addresses.)  The initial
236    part of the stack segment linkage control information is
237    0200 (octal) words.  This provides for register storage
238    for the routine which overflows the stack.  */
239 
240 struct stack_segment_linkage
241   {
242     long ss[0200];		/* 0200 overflow words.  */
243     long sssize:32;		/* Number of words in this segment.  */
244     long ssbase:32;		/* Offset to stack base.  */
245     long:32;
246     long sspseg:32;		/* Offset to linkage control of previous
247 				   segment of stack.  */
248     long:32;
249     long sstcpt:32;		/* Pointer to task common address block.  */
250     long sscsnm;		/* Private control structure number for
251 				   microtasking.  */
252     long ssusr1;		/* Reserved for user.  */
253     long ssusr2;		/* Reserved for user.  */
254     long sstpid;		/* Process ID for pid based multi-tasking.  */
255     long ssgvup;		/* Pointer to multitasking thread giveup.  */
256     long sscray[7];		/* Reserved for Cray Research.  */
257     long ssa0;
258     long ssa1;
259     long ssa2;
260     long ssa3;
261     long ssa4;
262     long ssa5;
263     long ssa6;
264     long ssa7;
265     long sss0;
266     long sss1;
267     long sss2;
268     long sss3;
269     long sss4;
270     long sss5;
271     long sss6;
272     long sss7;
273   };
274 
275 #else /* CRAY2 */
276 /* The following structure defines the vector of words
277    returned by the STKSTAT library routine.  */
278 struct stk_stat
279   {
280     long now;			/* Current total stack size.  */
281     long maxc;			/* Amount of contiguous space which would
282 				   be required to satisfy the maximum
283 				   stack demand to date.  */
284     long high_water;		/* Stack high-water mark.  */
285     long overflows;		/* Number of stack overflow ($STKOFEN) calls.  */
286     long hits;			/* Number of internal buffer hits.  */
287     long extends;		/* Number of block extensions.  */
288     long stko_mallocs;		/* Block allocations by $STKOFEN.  */
289     long underflows;		/* Number of stack underflow calls ($STKRETN).  */
290     long stko_free;		/* Number of deallocations by $STKRETN.  */
291     long stkm_free;		/* Number of deallocations by $STKMRET.  */
292     long segments;		/* Current number of stack segments.  */
293     long maxs;			/* Maximum number of stack segments so far.  */
294     long pad_size;		/* Stack pad size.  */
295     long current_address;	/* Current stack segment address.  */
296     long current_size;		/* Current stack segment size.  This
297 				   number is actually corrupted by STKSTAT to
298 				   include the fifteen word trailer area.  */
299     long initial_address;	/* Address of initial segment.  */
300     long initial_size;		/* Size of initial segment.  */
301   };
302 
303 /* The following structure describes the data structure which trails
304    any stack segment.  I think that the description in 'asdef' is
305    out of date.  I only describe the parts that I am sure about.  */
306 
307 struct stk_trailer
308   {
309     long this_address;		/* Address of this block.  */
310     long this_size;		/* Size of this block (does not include
311 				   this trailer).  */
312     long unknown2;
313     long unknown3;
314     long link;			/* Address of trailer block of previous
315 				   segment.  */
316     long unknown5;
317     long unknown6;
318     long unknown7;
319     long unknown8;
320     long unknown9;
321     long unknown10;
322     long unknown11;
323     long unknown12;
324     long unknown13;
325     long unknown14;
326   };
327 
328 #endif /* CRAY2 */
329 #endif /* not CRAY_STACK */
330 
331 #ifdef CRAY2
332 /* Determine a "stack measure" for an arbitrary ADDRESS.
333    I doubt that "lint" will like this much. */
334 
335 static long
i00afunc(long * address)336 i00afunc (long *address)
337 {
338   struct stk_stat status;
339   struct stk_trailer *trailer;
340   long *block, size;
341   long result = 0;
342 
343   /* We want to iterate through all of the segments.  The first
344      step is to get the stack status structure.  We could do this
345      more quickly and more directly, perhaps, by referencing the
346      $LM00 common block, but I know that this works.  */
347 
348   STKSTAT (&status);
349 
350   /* Set up the iteration.  */
351 
352   trailer = (struct stk_trailer *) (status.current_address
353 				    + status.current_size
354 				    - 15);
355 
356   /* There must be at least one stack segment.  Therefore it is
357      a fatal error if "trailer" is null.  */
358 
359   if (trailer == 0)
360     abort ();
361 
362   /* Discard segments that do not contain our argument address.  */
363 
364   while (trailer != 0)
365     {
366       block = (long *) trailer->this_address;
367       size = trailer->this_size;
368       if (block == 0 || size == 0)
369 	abort ();
370       trailer = (struct stk_trailer *) trailer->link;
371       if ((block <= address) && (address < (block + size)))
372 	break;
373     }
374 
375   /* Set the result to the offset in this segment and add the sizes
376      of all predecessor segments.  */
377 
378   result = address - block;
379 
380   if (trailer == 0)
381     {
382       return result;
383     }
384 
385   do
386     {
387       if (trailer->this_size <= 0)
388 	abort ();
389       result += trailer->this_size;
390       trailer = (struct stk_trailer *) trailer->link;
391     }
392   while (trailer != 0);
393 
394   /* We are done.  Note that if you present a bogus address (one
395      not in any segment), you will get a different number back, formed
396      from subtracting the address of the first block.  This is probably
397      not what you want.  */
398 
399   return (result);
400 }
401 
402 #else /* not CRAY2 */
403 /* Stack address function for a CRAY-1, CRAY X-MP, or CRAY Y-MP.
404    Determine the number of the cell within the stack,
405    given the address of the cell.  The purpose of this
406    routine is to linearize, in some sense, stack addresses
407    for alloca.  */
408 
409 static long
i00afunc(long address)410 i00afunc (long address)
411 {
412   long stkl = 0;
413 
414   long size, pseg, this_segment, stack;
415   long result = 0;
416 
417   struct stack_segment_linkage *ssptr;
418 
419   /* Register B67 contains the address of the end of the
420      current stack segment.  If you (as a subprogram) store
421      your registers on the stack and find that you are past
422      the contents of B67, you have overflowed the segment.
423 
424      B67 also points to the stack segment linkage control
425      area, which is what we are really interested in.  */
426 
427   stkl = CRAY_STACKSEG_END ();
428   ssptr = (struct stack_segment_linkage *) stkl;
429 
430   /* If one subtracts 'size' from the end of the segment,
431      one has the address of the first word of the segment.
432 
433      If this is not the first segment, 'pseg' will be
434      nonzero.  */
435 
436   pseg = ssptr->sspseg;
437   size = ssptr->sssize;
438 
439   this_segment = stkl - size;
440 
441   /* It is possible that calling this routine itself caused
442      a stack overflow.  Discard stack segments which do not
443      contain the target address.  */
444 
445   while (!(this_segment <= address && address <= stkl))
446     {
447 #ifdef DEBUG_I00AFUNC
448       fprintf (stderr, "%011o %011o %011o\n", this_segment, address, stkl);
449 #endif
450       if (pseg == 0)
451 	break;
452       stkl = stkl - pseg;
453       ssptr = (struct stack_segment_linkage *) stkl;
454       size = ssptr->sssize;
455       pseg = ssptr->sspseg;
456       this_segment = stkl - size;
457     }
458 
459   result = address - this_segment;
460 
461   /* If you subtract pseg from the current end of the stack,
462      you get the address of the previous stack segment's end.
463      This seems a little convoluted to me, but I'll bet you save
464      a cycle somewhere.  */
465 
466   while (pseg != 0)
467     {
468 #ifdef DEBUG_I00AFUNC
469       fprintf (stderr, "%011o %011o\n", pseg, size);
470 #endif
471       stkl = stkl - pseg;
472       ssptr = (struct stack_segment_linkage *) stkl;
473       size = ssptr->sssize;
474       pseg = ssptr->sspseg;
475       result += size;
476     }
477   return (result);
478 }
479 
480 #endif /* not CRAY2 */
481 #endif /* CRAY */
482 
483 #endif /* no alloca */
484 #endif /* not GCC version 2 */
485