• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /********************************************************************
2  * COPYRIGHT:
3  * Copyright (c) 2005-2007, International Business Machines Corporation and
4  * others. All Rights Reserved.
5  ********************************************************************/
6 /************************************************************************
7 *   Tests for the UText and UTextIterator text abstraction classses
8 *
9 ************************************************************************/
10 
11 #include "unicode/utypes.h"
12 
13 #include <string.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unicode/utext.h>
17 #include <unicode/utf8.h>
18 #include <unicode/ustring.h>
19 #include <unicode/uchriter.h>
20 #include "utxttest.h"
21 
22 static UBool  gFailed = FALSE;
23 static int    gTestNum = 0;
24 
25 // Forward decl
26 UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status);
27 
28 #define TEST_ASSERT(x) \
29 { if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\
30                      gFailed = TRUE;\
31    }}
32 
33 
34 #define TEST_SUCCESS(status) \
35 { if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \
36        gTestNum, __FILE__, __LINE__, u_errorName(status)); \
37        gFailed = TRUE;\
38    }}
39 
UTextTest()40 UTextTest::UTextTest() {
41 }
42 
~UTextTest()43 UTextTest::~UTextTest() {
44 }
45 
46 
47 void
runIndexedTest(int32_t index,UBool exec,const char * & name,char *)48 UTextTest::runIndexedTest(int32_t index, UBool exec,
49                           const char* &name, char* /*par*/) {
50     switch (index) {
51         case 0: name = "TextTest";
52             if (exec) TextTest();    break;
53         case 1: name = "ErrorTest";
54             if (exec) ErrorTest();   break;
55         case 2: name = "FreezeTest";
56             if (exec) FreezeTest();  break;
57 		case 3: name = "Ticket5560";
58 			if (exec) Ticket5560();  break;
59         default: name = "";          break;
60     }
61 }
62 
63 //
64 // Quick and dirty random number generator.
65 //   (don't use library so that results are portable.
66 static uint32_t m_seed = 1;
m_rand()67 static uint32_t m_rand()
68 {
69     m_seed = m_seed * 1103515245 + 12345;
70     return (uint32_t)(m_seed/65536) % 32768;
71 }
72 
73 
74 //
75 //   TextTest()
76 //
77 //       Top Level function for UText testing.
78 //       Specifies the strings to be tested, with the acutal testing itself
79 //       being carried out in another function, TestString().
80 //
TextTest()81 void  UTextTest::TextTest() {
82     int32_t i, j;
83 
84     TestString("abcd\\U00010001xyz");
85     TestString("");
86 
87     // Supplementary chars at start or end
88     TestString("\\U00010001");
89     TestString("abc\\U00010001");
90     TestString("\\U00010001abc");
91 
92     // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries
93     UnicodeString s;
94     for (i=1; i<60; i++) {
95         s.truncate(0);
96         for (j=0; j<i; j++) {
97             if (j+0x30 == 0x5c) {
98                 // backslash.  Needs to be escaped
99                 s.append((UChar)0x5c);
100             }
101             s.append(UChar(j+0x30));
102         }
103         TestString(s);
104     }
105 
106    // Test strings with odd-aligned supplementary chars,
107    //    looking for glitches at buffer boundaries
108     for (i=1; i<60; i++) {
109         s.truncate(0);
110         s.append((UChar)0x41);
111         for (j=0; j<i; j++) {
112             s.append(UChar32(j+0x11000));
113         }
114         TestString(s);
115     }
116 
117     // String of chars of randomly varying size in utf-8 representation.
118     //   Exercise the mapping, and the varying sized buffer.
119     //
120     s.truncate(0);
121     UChar32  c1 = 0;
122     UChar32  c2 = 0x100;
123     UChar32  c3 = 0xa000;
124     UChar32  c4 = 0x11000;
125     for (i=0; i<1000; i++) {
126         int len8 = m_rand()%4 + 1;
127         switch (len8) {
128             case 1:
129                 c1 = (c1+1)%0x80;
130                 // don't put 0 into string (0 terminated strings for some tests)
131                 // don't put '\', will cause unescape() to fail.
132                 if (c1==0x5c || c1==0) {
133                     c1++;
134                 }
135                 s.append(c1);
136                 break;
137             case 2:
138                 s.append(c2++);
139                 break;
140             case 3:
141                 s.append(c3++);
142                 break;
143             case 4:
144                 s.append(c4++);
145                 break;
146         }
147     }
148     TestString(s);
149 }
150 
151 
152 //
153 //  TestString()     Run a suite of UText tests on a string.
154 //                   The test string is unescaped before use.
155 //
TestString(const UnicodeString & s)156 void UTextTest::TestString(const UnicodeString &s) {
157     int32_t       i;
158     int32_t       j;
159     UChar32       c;
160     int32_t       cpCount = 0;
161     UErrorCode    status  = U_ZERO_ERROR;
162     UText        *ut      = NULL;
163     int32_t       saLen;
164 
165     UnicodeString sa = s.unescape();
166     saLen = sa.length();
167 
168     //
169     // Build up a mapping between code points and UTF-16 code unit indexes.
170     //
171     m *cpMap = new m[sa.length() + 1];
172     j = 0;
173     for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) {
174         c = sa.char32At(i);
175         cpMap[j].nativeIdx = i;
176         cpMap[j].cp = c;
177         j++;
178         cpCount++;
179     }
180     cpMap[j].nativeIdx = i;   // position following the last char in utf-16 string.
181 
182 
183     // UChar * test, null terminated
184     status = U_ZERO_ERROR;
185     UChar *buf = new UChar[saLen+1];
186     sa.extract(buf, saLen+1, status);
187     TEST_SUCCESS(status);
188     ut = utext_openUChars(NULL, buf, -1, &status);
189     TEST_SUCCESS(status);
190     TestAccess(sa, ut, cpCount, cpMap);
191     utext_close(ut);
192     delete [] buf;
193 
194     // UChar * test, with length
195     status = U_ZERO_ERROR;
196     buf = new UChar[saLen+1];
197     sa.extract(buf, saLen+1, status);
198     TEST_SUCCESS(status);
199     ut = utext_openUChars(NULL, buf, saLen, &status);
200     TEST_SUCCESS(status);
201     TestAccess(sa, ut, cpCount, cpMap);
202     utext_close(ut);
203     delete [] buf;
204 
205 
206     // UnicodeString test
207     status = U_ZERO_ERROR;
208     ut = utext_openUnicodeString(NULL, &sa, &status);
209     TEST_SUCCESS(status);
210     TestAccess(sa, ut, cpCount, cpMap);
211     TestCMR(sa, ut, cpCount, cpMap, cpMap);
212     utext_close(ut);
213 
214 
215     // Const UnicodeString test
216     status = U_ZERO_ERROR;
217     ut = utext_openConstUnicodeString(NULL, &sa, &status);
218     TEST_SUCCESS(status);
219     TestAccess(sa, ut, cpCount, cpMap);
220     utext_close(ut);
221 
222 
223     // Replaceable test.  (UnicodeString inherits Replaceable)
224     status = U_ZERO_ERROR;
225     ut = utext_openReplaceable(NULL, &sa, &status);
226     TEST_SUCCESS(status);
227     TestAccess(sa, ut, cpCount, cpMap);
228     TestCMR(sa, ut, cpCount, cpMap, cpMap);
229     utext_close(ut);
230 
231     // Character Iterator Tests
232     status = U_ZERO_ERROR;
233     const UChar *cbuf = sa.getBuffer();
234     CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status);
235     TEST_SUCCESS(status);
236     ut = utext_openCharacterIterator(NULL, ci, &status);
237     TEST_SUCCESS(status);
238     TestAccess(sa, ut, cpCount, cpMap);
239     utext_close(ut);
240     delete ci;
241 
242 
243     // Fragmented UnicodeString  (Chunk size of one)
244     //
245     status = U_ZERO_ERROR;
246     ut = openFragmentedUnicodeString(NULL, &sa, &status);
247     TEST_SUCCESS(status);
248     TestAccess(sa, ut, cpCount, cpMap);
249     utext_close(ut);
250 
251     //
252     // UTF-8 test
253     //
254 
255     // Convert the test string from UnicodeString to (char *) in utf-8 format
256     int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8");
257     char *u8String = new char[u8Len + 1];
258     sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8");
259 
260     // Build up the map of code point indices in the utf-8 string
261     m * u8Map = new m[sa.length() + 1];
262     i = 0;   // native utf-8 index
263     for (j=0; j<cpCount ; j++) {  // code point number
264         u8Map[j].nativeIdx = i;
265         U8_NEXT(u8String, i, u8Len, c)
266         u8Map[j].cp = c;
267     }
268     u8Map[cpCount].nativeIdx = u8Len;   // position following the last char in utf-8 string.
269 
270     // Do the test itself
271     status = U_ZERO_ERROR;
272     ut = utext_openUTF8(NULL, u8String, -1, &status);
273     TEST_SUCCESS(status);
274     TestAccess(sa, ut, cpCount, u8Map);
275     utext_close(ut);
276 
277 
278 
279 	delete []cpMap;
280 	delete []u8Map;
281 	delete []u8String;
282 }
283 
284 //  TestCMR   test Copy, Move and Replace operations.
285 //              us         UnicodeString containing the test text.
286 //              ut         UText containing the same test text.
287 //              cpCount    number of code points in the test text.
288 //              nativeMap  Mapping from code points to native indexes for the UText.
289 //              u16Map     Mapping from code points to UTF-16 indexes, for use with the UnicodeString.
290 //
291 //     This function runs a whole series of opertions on each incoming UText.
292 //     The UText is deep-cloned prior to each operation, so that the original UText remains unchanged.
293 //
TestCMR(const UnicodeString & us,UText * ut,int cpCount,m * nativeMap,m * u16Map)294 void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) {
295     TEST_ASSERT(utext_isWritable(ut) == TRUE);
296 
297     int  srcLengthType;       // Loop variables for selecting the postion and length
298     int  srcPosType;          //   of the block to operate on within the source text.
299     int  destPosType;
300 
301     int  srcIndex  = 0;       // Code Point indexes of the block to operate on for
302     int  srcLength = 0;       //   a specific test.
303 
304     int  destIndex = 0;       // Code point index of the destination for a copy/move test.
305 
306     int32_t  nativeStart = 0; // Native unit indexes for a test.
307     int32_t  nativeLimit = 0;
308     int32_t  nativeDest  = 0;
309 
310     int32_t  u16Start    = 0; // UTF-16 indexes for a test.
311     int32_t  u16Limit    = 0; //   used when performing the same operation in a Unicode String
312     int32_t  u16Dest     = 0;
313 
314     // Iterate over a whole series of source index, length and a target indexes.
315     // This is done with code point indexes; these will be later translated to native
316     //   indexes using the cpMap.
317     for (srcLengthType=1; srcLengthType<=3; srcLengthType++) {
318         switch (srcLengthType) {
319             case 1: srcLength = 1; break;
320             case 2: srcLength = 5; break;
321             case 3: srcLength = cpCount / 3;
322         }
323         for (srcPosType=1; srcPosType<=5; srcPosType++) {
324             switch (srcPosType) {
325                 case 1: srcIndex = 0; break;
326                 case 2: srcIndex = 1; break;
327                 case 3: srcIndex = cpCount - srcLength; break;
328                 case 4: srcIndex = cpCount - srcLength - 1; break;
329                 case 5: srcIndex = cpCount / 2; break;
330             }
331             if (srcIndex < 0 || srcIndex + srcLength > cpCount) {
332                 // filter out bogus test cases -
333                 //   those with a source range that falls of an edge of the string.
334                 continue;
335             }
336 
337             //
338             // Copy and move tests.
339             //   iterate over a variety of destination positions.
340             //
341             for (destPosType=1; destPosType<=4; destPosType++) {
342                 switch (destPosType) {
343                     case 1: destIndex = 0; break;
344                     case 2: destIndex = 1; break;
345                     case 3: destIndex = srcIndex - 1; break;
346                     case 4: destIndex = srcIndex + srcLength + 1; break;
347                     case 5: destIndex = cpCount-1; break;
348                     case 6: destIndex = cpCount; break;
349                 }
350                 if (destIndex<0 || destIndex>cpCount) {
351                     // filter out bogus test cases.
352                     continue;
353                 }
354 
355                 nativeStart = nativeMap[srcIndex].nativeIdx;
356                 nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx;
357                 nativeDest  = nativeMap[destIndex].nativeIdx;
358 
359                 u16Start    = u16Map[srcIndex].nativeIdx;
360                 u16Limit    = u16Map[srcIndex+srcLength].nativeIdx;
361                 u16Dest     = u16Map[destIndex].nativeIdx;
362 
363                 gFailed = FALSE;
364                 TestCopyMove(us, ut, FALSE,
365                     nativeStart, nativeLimit, nativeDest,
366                     u16Start, u16Limit, u16Dest);
367 
368                 TestCopyMove(us, ut, TRUE,
369                     nativeStart, nativeLimit, nativeDest,
370                     u16Start, u16Limit, u16Dest);
371 
372                 if (gFailed) {
373                     return;
374                 }
375             }
376 
377             //
378             //  Replace tests.
379             //
380             UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text");
381             for (int32_t replStrLen=0; replStrLen<20; replStrLen++) {
382                 UnicodeString repStr(fullRepString, 0, replStrLen);
383                 TestReplace(us, ut,
384                     nativeStart, nativeLimit,
385                     u16Start, u16Limit,
386                     repStr);
387                 if (gFailed) {
388                     return;
389                 }
390             }
391 
392         }
393     }
394 
395 }
396 
397 //
398 //   TestCopyMove    run a single test case for utext_copy.
399 //                   Test cases are created in TestCMR and dispatched here for execution.
400 //
TestCopyMove(const UnicodeString & us,UText * ut,UBool move,int32_t nativeStart,int32_t nativeLimit,int32_t nativeDest,int32_t u16Start,int32_t u16Limit,int32_t u16Dest)401 void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move,
402                     int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest,
403                     int32_t u16Start, int32_t u16Limit, int32_t u16Dest)
404 {
405     UErrorCode      status   = U_ZERO_ERROR;
406     UText          *targetUT = NULL;
407     gTestNum++;
408     gFailed = FALSE;
409 
410     //
411     //  clone the UText.  The test will be run in the cloned copy
412     //  so that we don't alter the original.
413     //
414     targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
415     TEST_SUCCESS(status);
416     UnicodeString targetUS(us);    // And copy the reference string.
417 
418     // do the test operation first in the reference
419     targetUS.copy(u16Start, u16Limit, u16Dest);
420     if (move) {
421         // delete out the source range.
422         if (u16Limit < u16Dest) {
423             targetUS.removeBetween(u16Start, u16Limit);
424         } else {
425             int32_t amtCopied = u16Limit - u16Start;
426             targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied);
427         }
428     }
429 
430     // Do the same operation in the UText under test
431     utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status);
432     if (nativeDest > nativeStart && nativeDest < nativeLimit) {
433         TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR);
434     } else {
435         TEST_SUCCESS(status);
436 
437         // Compare the results of the two parallel tests
438         int32_t  usi = 0;    // UnicodeString postion, utf-16 index.
439         int64_t  uti = 0;    // UText position, native index.
440         int32_t  cpi;        // char32 position (code point index)
441         UChar32  usc;        // code point from Unicode String
442         UChar32  utc;        // code point from UText
443         utext_setNativeIndex(targetUT, 0);
444         for (cpi=0; ; cpi++) {
445             usc = targetUS.char32At(usi);
446             utc = utext_next32(targetUT);
447             if (utc < 0) {
448                 break;
449             }
450             TEST_ASSERT(uti == usi);
451             TEST_ASSERT(utc == usc);
452             usi = targetUS.moveIndex32(usi, 1);
453             uti = utext_getNativeIndex(targetUT);
454             if (gFailed) {
455                 goto cleanupAndReturn;
456             }
457         }
458         int64_t expectedNativeLength = utext_nativeLength(ut);
459         if (move == FALSE) {
460             expectedNativeLength += nativeLimit - nativeStart;
461         }
462         uti = utext_getNativeIndex(targetUT);
463         TEST_ASSERT(uti == expectedNativeLength);
464     }
465 
466 cleanupAndReturn:
467     utext_close(targetUT);
468 }
469 
470 
471 //
472 //  TestReplace   Test a single Replace operation.
473 //
TestReplace(const UnicodeString & us,UText * ut,int32_t nativeStart,int32_t nativeLimit,int32_t u16Start,int32_t u16Limit,const UnicodeString & repStr)474 void UTextTest::TestReplace(
475             const UnicodeString &us,     // reference UnicodeString in which to do the replace
476             UText         *ut,                // UnicodeText object under test.
477             int32_t       nativeStart,        // Range to be replaced, in UText native units.
478             int32_t       nativeLimit,
479             int32_t       u16Start,           // Range to be replaced, in UTF-16 units
480             int32_t       u16Limit,           //    for use in the reference UnicodeString.
481             const UnicodeString &repStr)      // The replacement string
482 {
483     UErrorCode      status   = U_ZERO_ERROR;
484     UText          *targetUT = NULL;
485     gTestNum++;
486     gFailed = FALSE;
487 
488     //
489     //  clone the target UText.  The test will be run in the cloned copy
490     //  so that we don't alter the original.
491     //
492     targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
493     TEST_SUCCESS(status);
494     UnicodeString targetUS(us);    // And copy the reference string.
495 
496     //
497     // Do the replace operation in the Unicode String, to
498     //   produce a reference result.
499     //
500     targetUS.replace(u16Start, u16Limit-u16Start, repStr);
501 
502     //
503     // Do the replace on the UText under test
504     //
505     const UChar *rs = repStr.getBuffer();
506     int32_t  rsLen = repStr.length();
507     int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status);
508     int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart);
509     TEST_ASSERT(actualDelta == expectedDelta);
510 
511     //
512     // Compare the results
513     //
514     int32_t  usi = 0;    // UnicodeString postion, utf-16 index.
515     int64_t  uti = 0;    // UText position, native index.
516     int32_t  cpi;        // char32 position (code point index)
517     UChar32  usc;        // code point from Unicode String
518     UChar32  utc;        // code point from UText
519     int64_t  expectedNativeLength = 0;
520     utext_setNativeIndex(targetUT, 0);
521     for (cpi=0; ; cpi++) {
522         usc = targetUS.char32At(usi);
523         utc = utext_next32(targetUT);
524         if (utc < 0) {
525             break;
526         }
527         TEST_ASSERT(uti == usi);
528         TEST_ASSERT(utc == usc);
529         usi = targetUS.moveIndex32(usi, 1);
530         uti = utext_getNativeIndex(targetUT);
531         if (gFailed) {
532             goto cleanupAndReturn;
533         }
534     }
535     expectedNativeLength = utext_nativeLength(ut) + expectedDelta;
536     uti = utext_getNativeIndex(targetUT);
537     TEST_ASSERT(uti == expectedNativeLength);
538 
539 cleanupAndReturn:
540     utext_close(targetUT);
541 }
542 
543 //
544 //  TestAccess      Test the read only access functions on a UText, including cloning.
545 //                  The text is accessed in a variety of ways, and compared with
546 //                  the reference UnicodeString.
547 //
TestAccess(const UnicodeString & us,UText * ut,int cpCount,m * cpMap)548 void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
549     // Run the standard tests on the caller-supplied UText.
550     TestAccessNoClone(us, ut, cpCount, cpMap);
551 
552     // Re-run tests on a shallow clone.
553     utext_setNativeIndex(ut, 0);
554     UErrorCode status = U_ZERO_ERROR;
555     UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status);
556     TEST_SUCCESS(status);
557     TestAccessNoClone(us, shallowClone, cpCount, cpMap);
558 
559     //
560     // Rerun again on a deep clone.
561     // Note that text providers are not required to provide deep cloning,
562     //   so unsupported errors are ignored.
563     //
564     status = U_ZERO_ERROR;
565     utext_setNativeIndex(shallowClone, 0);
566     UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status);
567     utext_close(shallowClone);
568     if (status != U_UNSUPPORTED_ERROR) {
569         TEST_SUCCESS(status);
570         TestAccessNoClone(us, deepClone, cpCount, cpMap);
571     }
572     utext_close(deepClone);
573 }
574 
575 
576 //
577 //  TestAccessNoClone()    Test the read only access functions on a UText.
578 //                         The text is accessed in a variety of ways, and compared with
579 //                         the reference UnicodeString.
580 //
TestAccessNoClone(const UnicodeString & us,UText * ut,int cpCount,m * cpMap)581 void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
582     UErrorCode  status = U_ZERO_ERROR;
583     gTestNum++;
584 
585     //
586     //  Check the length from the UText
587     //
588     int64_t expectedLen = cpMap[cpCount].nativeIdx;
589     int64_t utlen = utext_nativeLength(ut);
590     TEST_ASSERT(expectedLen == utlen);
591 
592     //
593     //  Iterate forwards, verify that we get the correct code points
594     //   at the correct native offsets.
595     //
596     int         i = 0;
597     int64_t     index;
598     int64_t     expectedIndex = 0;
599     int64_t     foundIndex = 0;
600     UChar32     expectedC;
601     UChar32     foundC;
602     int64_t     len;
603 
604     for (i=0; i<cpCount; i++) {
605         expectedIndex = cpMap[i].nativeIdx;
606         foundIndex    = utext_getNativeIndex(ut);
607         TEST_ASSERT(expectedIndex == foundIndex);
608         expectedC     = cpMap[i].cp;
609         foundC        = utext_next32(ut);
610         TEST_ASSERT(expectedC == foundC);
611         foundIndex    = utext_getPreviousNativeIndex(ut);
612         TEST_ASSERT(expectedIndex == foundIndex);
613         if (gFailed) {
614             return;
615         }
616     }
617     foundC = utext_next32(ut);
618     TEST_ASSERT(foundC == U_SENTINEL);
619 
620     // Repeat above, using macros
621     utext_setNativeIndex(ut, 0);
622     for (i=0; i<cpCount; i++) {
623         expectedIndex = cpMap[i].nativeIdx;
624         foundIndex    = UTEXT_GETNATIVEINDEX(ut);
625         TEST_ASSERT(expectedIndex == foundIndex);
626         expectedC     = cpMap[i].cp;
627         foundC        = UTEXT_NEXT32(ut);
628         TEST_ASSERT(expectedC == foundC);
629         if (gFailed) {
630             return;
631         }
632     }
633     foundC = UTEXT_NEXT32(ut);
634     TEST_ASSERT(foundC == U_SENTINEL);
635 
636     //
637     //  Forward iteration (above) should have left index at the
638     //   end of the input, which should == length().
639     //
640     len = utext_nativeLength(ut);
641     foundIndex  = utext_getNativeIndex(ut);
642     TEST_ASSERT(len == foundIndex);
643 
644     //
645     // Iterate backwards over entire test string
646     //
647     len = utext_getNativeIndex(ut);
648     utext_setNativeIndex(ut, len);
649     for (i=cpCount-1; i>=0; i--) {
650         expectedC     = cpMap[i].cp;
651         expectedIndex = cpMap[i].nativeIdx;
652         int64_t prevIndex = utext_getPreviousNativeIndex(ut);
653         foundC        = utext_previous32(ut);
654         foundIndex    = utext_getNativeIndex(ut);
655         TEST_ASSERT(expectedIndex == foundIndex);
656         TEST_ASSERT(expectedC == foundC);
657         TEST_ASSERT(prevIndex == foundIndex);
658         if (gFailed) {
659             return;
660         }
661     }
662 
663     //
664     //  Backwards iteration, above, should have left our iterator
665     //   position at zero, and continued backwards iterationshould fail.
666     //
667     foundIndex = utext_getNativeIndex(ut);
668     TEST_ASSERT(foundIndex == 0);
669     foundIndex = utext_getPreviousNativeIndex(ut);
670     TEST_ASSERT(foundIndex == 0);
671 
672 
673     foundC = utext_previous32(ut);
674     TEST_ASSERT(foundC == U_SENTINEL);
675     foundIndex = utext_getNativeIndex(ut);
676     TEST_ASSERT(foundIndex == 0);
677     foundIndex = utext_getPreviousNativeIndex(ut);
678     TEST_ASSERT(foundIndex == 0);
679 
680 
681     // And again, with the macros
682     utext_setNativeIndex(ut, len);
683     for (i=cpCount-1; i>=0; i--) {
684         expectedC     = cpMap[i].cp;
685         expectedIndex = cpMap[i].nativeIdx;
686         foundC        = UTEXT_PREVIOUS32(ut);
687         foundIndex    = UTEXT_GETNATIVEINDEX(ut);
688         TEST_ASSERT(expectedIndex == foundIndex);
689         TEST_ASSERT(expectedC == foundC);
690         if (gFailed) {
691             return;
692         }
693     }
694 
695     //
696     //  Backwards iteration, above, should have left our iterator
697     //   position at zero, and continued backwards iterationshould fail.
698     //
699     foundIndex = UTEXT_GETNATIVEINDEX(ut);
700     TEST_ASSERT(foundIndex == 0);
701 
702     foundC = UTEXT_PREVIOUS32(ut);
703     TEST_ASSERT(foundC == U_SENTINEL);
704     foundIndex = UTEXT_GETNATIVEINDEX(ut);
705     TEST_ASSERT(foundIndex == 0);
706     if (gFailed) {
707         return;
708     }
709 
710     //
711     //  next32From(), prevous32From(), Iterate in a somewhat random order.
712     //
713     int  cpIndex = 0;
714     for (i=0; i<cpCount; i++) {
715         cpIndex = (cpIndex + 9973) % cpCount;
716         index         = cpMap[cpIndex].nativeIdx;
717         expectedC     = cpMap[cpIndex].cp;
718         foundC        = utext_next32From(ut, index);
719         TEST_ASSERT(expectedC == foundC);
720         if (gFailed) {
721             return;
722         }
723     }
724 
725     cpIndex = 0;
726     for (i=0; i<cpCount; i++) {
727         cpIndex = (cpIndex + 9973) % cpCount;
728         index         = cpMap[cpIndex+1].nativeIdx;
729         expectedC     = cpMap[cpIndex].cp;
730         foundC        = utext_previous32From(ut, index);
731         TEST_ASSERT(expectedC == foundC);
732         if (gFailed) {
733             return;
734         }
735     }
736 
737 
738     //
739     // moveIndex(int32_t delta);
740     //
741 
742     // Walk through frontwards, incrementing by one
743     utext_setNativeIndex(ut, 0);
744     for (i=1; i<=cpCount; i++) {
745         utext_moveIndex32(ut, 1);
746         index = utext_getNativeIndex(ut);
747         expectedIndex = cpMap[i].nativeIdx;
748         TEST_ASSERT(expectedIndex == index);
749         index = UTEXT_GETNATIVEINDEX(ut);
750         TEST_ASSERT(expectedIndex == index);
751     }
752 
753     // Walk through frontwards, incrementing by two
754     utext_setNativeIndex(ut, 0);
755     for (i=2; i<cpCount; i+=2) {
756         utext_moveIndex32(ut, 2);
757         index = utext_getNativeIndex(ut);
758         expectedIndex = cpMap[i].nativeIdx;
759         TEST_ASSERT(expectedIndex == index);
760         index = UTEXT_GETNATIVEINDEX(ut);
761         TEST_ASSERT(expectedIndex == index);
762     }
763 
764     // walk through the string backwards, decrementing by one.
765     i = cpMap[cpCount].nativeIdx;
766     utext_setNativeIndex(ut, i);
767     for (i=cpCount; i>=0; i--) {
768         expectedIndex = cpMap[i].nativeIdx;
769         index = utext_getNativeIndex(ut);
770         TEST_ASSERT(expectedIndex == index);
771         index = UTEXT_GETNATIVEINDEX(ut);
772         TEST_ASSERT(expectedIndex == index);
773         utext_moveIndex32(ut, -1);
774     }
775 
776 
777     // walk through backwards, decrementing by three
778     i = cpMap[cpCount].nativeIdx;
779     utext_setNativeIndex(ut, i);
780     for (i=cpCount; i>=0; i-=3) {
781         expectedIndex = cpMap[i].nativeIdx;
782         index = utext_getNativeIndex(ut);
783         TEST_ASSERT(expectedIndex == index);
784         index = UTEXT_GETNATIVEINDEX(ut);
785         TEST_ASSERT(expectedIndex == index);
786         utext_moveIndex32(ut, -3);
787     }
788 
789 
790     //
791     // Extract
792     //
793     int bufSize = us.length() + 10;
794     UChar *buf = new UChar[bufSize];
795     status = U_ZERO_ERROR;
796     expectedLen = us.length();
797     len = utext_extract(ut, 0, utlen, buf, bufSize, &status);
798     TEST_SUCCESS(status);
799     TEST_ASSERT(len == expectedLen);
800     int compareResult = us.compare(buf, -1);
801     TEST_ASSERT(compareResult == 0);
802 
803     status = U_ZERO_ERROR;
804     len = utext_extract(ut, 0, utlen, NULL, 0, &status);
805     if (utlen == 0) {
806         TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
807     } else {
808         TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
809     }
810     TEST_ASSERT(len == expectedLen);
811 
812     status = U_ZERO_ERROR;
813     u_memset(buf, 0x5555, bufSize);
814     len = utext_extract(ut, 0, utlen, buf, 1, &status);
815     if (us.length() == 0) {
816         TEST_SUCCESS(status);
817         TEST_ASSERT(buf[0] == 0);
818     } else {
819         // Buf len == 1, extracting a single 16 bit value.
820         // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged,
821         //   or whether the lead surrogate of the pair is extracted.
822         //   It's a buffer overflow error in either case.
823         TEST_ASSERT(buf[0] == us.charAt(0) ||
824                     buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0)));
825         TEST_ASSERT(buf[1] == 0x5555);
826         if (us.length() == 1) {
827             TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
828         } else {
829             TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
830         }
831     }
832 
833     delete []buf;
834 }
835 
836 
837 
838 //
839 //  ErrorTest()    Check various error and edge cases.
840 //
ErrorTest()841 void UTextTest::ErrorTest()
842 {
843     // Close of an unitialized UText.  Shouldn't blow up.
844     {
845         UText  ut;
846         memset(&ut, 0, sizeof(UText));
847         utext_close(&ut);
848         utext_close(NULL);
849     }
850 
851     // Double-close of a UText.  Shouldn't blow up.  UText should still be usable.
852     {
853         UErrorCode status = U_ZERO_ERROR;
854         UText ut = UTEXT_INITIALIZER;
855         UnicodeString s("Hello, World");
856         UText *ut2 = utext_openUnicodeString(&ut, &s, &status);
857         TEST_SUCCESS(status);
858         TEST_ASSERT(ut2 == &ut);
859 
860         UText *ut3 = utext_close(&ut);
861         TEST_ASSERT(ut3 == &ut);
862 
863         UText *ut4 = utext_close(&ut);
864         TEST_ASSERT(ut4 == &ut);
865 
866         utext_openUnicodeString(&ut, &s, &status);
867         TEST_SUCCESS(status);
868         utext_close(&ut);
869     }
870 
871     // Re-use of a UText, chaining through each of the types of UText
872     //   (If it doesn't blow up, and doesn't leak, it's probably working fine)
873     {
874         UErrorCode status = U_ZERO_ERROR;
875         UText ut = UTEXT_INITIALIZER;
876         UText  *utp;
877         UnicodeString s1("Hello, World");
878         UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0};
879         const char  *s3 = "\x66\x67\x68";
880 
881         utp = utext_openUnicodeString(&ut, &s1, &status);
882         TEST_SUCCESS(status);
883         TEST_ASSERT(utp == &ut);
884 
885         utp = utext_openConstUnicodeString(&ut, &s1, &status);
886         TEST_SUCCESS(status);
887         TEST_ASSERT(utp == &ut);
888 
889         utp = utext_openUTF8(&ut, s3, -1, &status);
890         TEST_SUCCESS(status);
891         TEST_ASSERT(utp == &ut);
892 
893         utp = utext_openUChars(&ut, s2, -1, &status);
894         TEST_SUCCESS(status);
895         TEST_ASSERT(utp == &ut);
896 
897         utp = utext_close(&ut);
898         TEST_ASSERT(utp == &ut);
899 
900         utp = utext_openUnicodeString(&ut, &s1, &status);
901         TEST_SUCCESS(status);
902         TEST_ASSERT(utp == &ut);
903     }
904 
905     //
906     //  UTF-8 with malformed sequences.
907     //    These should come through as the Unicode replacement char, \ufffd
908     //
909     {
910         UErrorCode status = U_ZERO_ERROR;
911         UText *ut = NULL;
912         const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43";
913         UChar32  c;
914 
915         ut = utext_openUTF8(NULL, badUTF8, -1, &status);
916         TEST_SUCCESS(status);
917         c = utext_char32At(ut, 1);
918         TEST_ASSERT(c == 0xfffd);
919         c = utext_char32At(ut, 3);
920         TEST_ASSERT(c == 0xfffd);
921         c = utext_char32At(ut, 5);
922         TEST_ASSERT(c == 0xfffd);
923         c = utext_char32At(ut, 6);
924         TEST_ASSERT(c == 0x43);
925 
926         UChar buf[10];
927         int n = utext_extract(ut, 0, 9, buf, 10, &status);
928         TEST_SUCCESS(status);
929         TEST_ASSERT(n==5);
930         TEST_ASSERT(buf[1] == 0xfffd);
931         TEST_ASSERT(buf[3] == 0xfffd);
932         TEST_ASSERT(buf[2] == 0x42);
933         utext_close(ut);
934     }
935 
936 
937     //
938     //  isLengthExpensive - does it make the exptected transitions after
939     //                      getting the length of a nul terminated string?
940     //
941     {
942         UErrorCode status = U_ZERO_ERROR;
943         UnicodeString sa("Hello, this is a string");
944         UBool  isExpensive;
945 
946         UChar sb[100];
947         memset(sb, 0x20, sizeof(sb));
948         sb[99] = 0;
949 
950         UText *uta = utext_openUnicodeString(NULL, &sa, &status);
951         TEST_SUCCESS(status);
952         isExpensive = utext_isLengthExpensive(uta);
953         TEST_ASSERT(isExpensive == FALSE);
954         utext_close(uta);
955 
956         UText *utb = utext_openUChars(NULL, sb, -1, &status);
957         TEST_SUCCESS(status);
958         isExpensive = utext_isLengthExpensive(utb);
959         TEST_ASSERT(isExpensive == TRUE);
960         int64_t  len = utext_nativeLength(utb);
961         TEST_ASSERT(len == 99);
962         isExpensive = utext_isLengthExpensive(utb);
963         TEST_ASSERT(isExpensive == FALSE);
964         utext_close(utb);
965     }
966 
967     //
968     // Index to positions not on code point boundaries.
969     //
970     {
971         const char *u8str =         "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86";
972         int32_t startMap[] =        {   0,  0,  2,  2,  2,  5,  5,  5,  5,  9,  9};
973         int32_t nextMap[]  =        {   2,  2,  5,  5,  5,  9,  9,  9,  9,  9,  9};
974         int32_t prevMap[]  =        {   0,  0,  0,  0,  0,  2,  2,  2,  2,  5,  5};
975         UChar32  c32Map[] =    {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1};
976         UChar32  pr32Map[] =   {    -1,   -1,  0x201,  0x201,  0x201,   0x1083,   0x1083,   0x1083,   0x1083, 0x044146, 0x044146};
977 
978         // extractLen is the size, in UChars, of what will be extracted between index and index+1.
979         //  is zero when both index positions lie within the same code point.
980         int32_t  exLen[] =          {   0,  1,   0,  0,  1,  0,  0,  0,  2,  0,  0};
981 
982 
983         UErrorCode status = U_ZERO_ERROR;
984         UText *ut = utext_openUTF8(NULL, u8str, -1, &status);
985         TEST_SUCCESS(status);
986 
987         // Check setIndex
988         int32_t i;
989         int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
990         for (i=0; i<startMapLimit; i++) {
991             utext_setNativeIndex(ut, i);
992             int64_t cpIndex = utext_getNativeIndex(ut);
993             TEST_ASSERT(cpIndex == startMap[i]);
994             cpIndex = UTEXT_GETNATIVEINDEX(ut);
995             TEST_ASSERT(cpIndex == startMap[i]);
996         }
997 
998         // Check char32At
999         for (i=0; i<startMapLimit; i++) {
1000             UChar32 c32 = utext_char32At(ut, i);
1001             TEST_ASSERT(c32 == c32Map[i]);
1002             int64_t cpIndex = utext_getNativeIndex(ut);
1003             TEST_ASSERT(cpIndex == startMap[i]);
1004         }
1005 
1006         // Check utext_next32From
1007         for (i=0; i<startMapLimit; i++) {
1008             UChar32 c32 = utext_next32From(ut, i);
1009             TEST_ASSERT(c32 == c32Map[i]);
1010             int64_t cpIndex = utext_getNativeIndex(ut);
1011             TEST_ASSERT(cpIndex == nextMap[i]);
1012         }
1013 
1014         // check utext_previous32From
1015         for (i=0; i<startMapLimit; i++) {
1016             gTestNum++;
1017             UChar32 c32 = utext_previous32From(ut, i);
1018             TEST_ASSERT(c32 == pr32Map[i]);
1019             int64_t cpIndex = utext_getNativeIndex(ut);
1020             TEST_ASSERT(cpIndex == prevMap[i]);
1021         }
1022 
1023         // check Extract
1024         //   Extract from i to i+1, which may be zero or one code points,
1025         //     depending on whether the indices straddle a cp boundary.
1026         for (i=0; i<startMapLimit; i++) {
1027             UChar buf[3];
1028             status = U_ZERO_ERROR;
1029             int32_t  extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1030             TEST_SUCCESS(status);
1031             TEST_ASSERT(extractedLen == exLen[i]);
1032             if (extractedLen > 0) {
1033                 UChar32  c32;
1034                 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1035                 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
1036                 TEST_ASSERT(c32 == c32Map[i]);
1037             }
1038         }
1039 
1040         utext_close(ut);
1041     }
1042 
1043 
1044     {    //  Similar test, with utf16 instead of utf8
1045          //  TODO:  merge the common parts of these tests.
1046 
1047         UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000");
1048         int32_t startMap[]  ={ 0,     1,   1,    3,     4,  4,     6,  6};
1049         int32_t nextMap[]  = { 1,     3,   3,    4,     6,  6,     6,  6};
1050         int32_t prevMap[]  = { 0,     0,   0,    1,     3,  3,     4,  4};
1051         UChar32  c32Map[] =  {0x1000, 0x11000, 0x11000, 0x2000,  0x22000, 0x22000, -1, -1};
1052         UChar32  pr32Map[] = {    -1, 0x1000,  0x1000,  0x11000, 0x2000,  0x2000,   0x22000,   0x22000};
1053         int32_t  exLen[] =   {   1,  0,   2,  1,  0,  2,  0,  0,};
1054 
1055         u16str = u16str.unescape();
1056         UErrorCode status = U_ZERO_ERROR;
1057         UText *ut = utext_openUnicodeString(NULL, &u16str, &status);
1058         TEST_SUCCESS(status);
1059 
1060         int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
1061         int i;
1062         for (i=0; i<startMapLimit; i++) {
1063             utext_setNativeIndex(ut, i);
1064             int64_t cpIndex = utext_getNativeIndex(ut);
1065             TEST_ASSERT(cpIndex == startMap[i]);
1066         }
1067 
1068         // Check char32At
1069         for (i=0; i<startMapLimit; i++) {
1070             UChar32 c32 = utext_char32At(ut, i);
1071             TEST_ASSERT(c32 == c32Map[i]);
1072             int64_t cpIndex = utext_getNativeIndex(ut);
1073             TEST_ASSERT(cpIndex == startMap[i]);
1074         }
1075 
1076         // Check utext_next32From
1077         for (i=0; i<startMapLimit; i++) {
1078             UChar32 c32 = utext_next32From(ut, i);
1079             TEST_ASSERT(c32 == c32Map[i]);
1080             int64_t cpIndex = utext_getNativeIndex(ut);
1081             TEST_ASSERT(cpIndex == nextMap[i]);
1082         }
1083 
1084         // check utext_previous32From
1085         for (i=0; i<startMapLimit; i++) {
1086             UChar32 c32 = utext_previous32From(ut, i);
1087             TEST_ASSERT(c32 == pr32Map[i]);
1088             int64_t cpIndex = utext_getNativeIndex(ut);
1089             TEST_ASSERT(cpIndex == prevMap[i]);
1090         }
1091 
1092         // check Extract
1093         //   Extract from i to i+1, which may be zero or one code points,
1094         //     depending on whether the indices straddle a cp boundary.
1095         for (i=0; i<startMapLimit; i++) {
1096             UChar buf[3];
1097             status = U_ZERO_ERROR;
1098             int32_t  extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1099             TEST_SUCCESS(status);
1100             TEST_ASSERT(extractedLen == exLen[i]);
1101             if (extractedLen > 0) {
1102                 UChar32  c32;
1103                 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1104                 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
1105                 TEST_ASSERT(c32 == c32Map[i]);
1106             }
1107         }
1108 
1109         utext_close(ut);
1110     }
1111 
1112     {    //  Similar test, with UText over Replaceable
1113          //  TODO:  merge the common parts of these tests.
1114 
1115         UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000");
1116         int32_t startMap[]  ={ 0,     1,   1,    3,     4,  4,     6,  6};
1117         int32_t nextMap[]  = { 1,     3,   3,    4,     6,  6,     6,  6};
1118         int32_t prevMap[]  = { 0,     0,   0,    1,     3,  3,     4,  4};
1119         UChar32  c32Map[] =  {0x1000, 0x11000, 0x11000, 0x2000,  0x22000, 0x22000, -1, -1};
1120         UChar32  pr32Map[] = {    -1, 0x1000,  0x1000,  0x11000, 0x2000,  0x2000,   0x22000,   0x22000};
1121         int32_t  exLen[] =   {   1,  0,   2,  1,  0,  2,  0,  0,};
1122 
1123         u16str = u16str.unescape();
1124         UErrorCode status = U_ZERO_ERROR;
1125         UText *ut = utext_openReplaceable(NULL, &u16str, &status);
1126         TEST_SUCCESS(status);
1127 
1128         int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
1129         int i;
1130         for (i=0; i<startMapLimit; i++) {
1131             utext_setNativeIndex(ut, i);
1132             int64_t cpIndex = utext_getNativeIndex(ut);
1133             TEST_ASSERT(cpIndex == startMap[i]);
1134         }
1135 
1136         // Check char32At
1137         for (i=0; i<startMapLimit; i++) {
1138             UChar32 c32 = utext_char32At(ut, i);
1139             TEST_ASSERT(c32 == c32Map[i]);
1140             int64_t cpIndex = utext_getNativeIndex(ut);
1141             TEST_ASSERT(cpIndex == startMap[i]);
1142         }
1143 
1144         // Check utext_next32From
1145         for (i=0; i<startMapLimit; i++) {
1146             UChar32 c32 = utext_next32From(ut, i);
1147             TEST_ASSERT(c32 == c32Map[i]);
1148             int64_t cpIndex = utext_getNativeIndex(ut);
1149             TEST_ASSERT(cpIndex == nextMap[i]);
1150         }
1151 
1152         // check utext_previous32From
1153         for (i=0; i<startMapLimit; i++) {
1154             UChar32 c32 = utext_previous32From(ut, i);
1155             TEST_ASSERT(c32 == pr32Map[i]);
1156             int64_t cpIndex = utext_getNativeIndex(ut);
1157             TEST_ASSERT(cpIndex == prevMap[i]);
1158         }
1159 
1160         // check Extract
1161         //   Extract from i to i+1, which may be zero or one code points,
1162         //     depending on whether the indices straddle a cp boundary.
1163         for (i=0; i<startMapLimit; i++) {
1164             UChar buf[3];
1165             status = U_ZERO_ERROR;
1166             int32_t  extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1167             TEST_SUCCESS(status);
1168             TEST_ASSERT(extractedLen == exLen[i]);
1169             if (extractedLen > 0) {
1170                 UChar32  c32;
1171                 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1172                 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
1173                 TEST_ASSERT(c32 == c32Map[i]);
1174             }
1175         }
1176 
1177         utext_close(ut);
1178     }
1179 }
1180 
1181 
FreezeTest()1182 void UTextTest::FreezeTest() {
1183     // Check isWritable() and freeze() behavior.
1184     //
1185 
1186     UnicodeString  ustr("Hello, World.");
1187     const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0};
1188     const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0};
1189 
1190     UErrorCode status = U_ZERO_ERROR;
1191     UText  *ut        = NULL;
1192     UText  *ut2       = NULL;
1193 
1194     ut = utext_openUTF8(ut, u8str, -1, &status);
1195     TEST_SUCCESS(status);
1196     UBool writable = utext_isWritable(ut);
1197     TEST_ASSERT(writable == FALSE);
1198     utext_copy(ut, 1, 2, 0, TRUE, &status);
1199     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1200 
1201     status = U_ZERO_ERROR;
1202     ut = utext_openUChars(ut, u16str, -1, &status);
1203     TEST_SUCCESS(status);
1204     writable = utext_isWritable(ut);
1205     TEST_ASSERT(writable == FALSE);
1206     utext_copy(ut, 1, 2, 0, TRUE, &status);
1207     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1208 
1209     status = U_ZERO_ERROR;
1210     ut = utext_openUnicodeString(ut, &ustr, &status);
1211     TEST_SUCCESS(status);
1212     writable = utext_isWritable(ut);
1213     TEST_ASSERT(writable == TRUE);
1214     utext_freeze(ut);
1215     writable = utext_isWritable(ut);
1216     TEST_ASSERT(writable == FALSE);
1217     utext_copy(ut, 1, 2, 0, TRUE, &status);
1218     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1219 
1220     status = U_ZERO_ERROR;
1221     ut = utext_openUnicodeString(ut, &ustr, &status);
1222     TEST_SUCCESS(status);
1223     ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status);  // clone with readonly = false
1224     TEST_SUCCESS(status);
1225     writable = utext_isWritable(ut2);
1226     TEST_ASSERT(writable == TRUE);
1227     ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status);  // clone with readonly = true
1228     TEST_SUCCESS(status);
1229     writable = utext_isWritable(ut2);
1230     TEST_ASSERT(writable == FALSE);
1231     utext_copy(ut2, 1, 2, 0, TRUE, &status);
1232     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1233 
1234     status = U_ZERO_ERROR;
1235     ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status);
1236     TEST_SUCCESS(status);
1237     writable = utext_isWritable(ut);
1238     TEST_ASSERT(writable == FALSE);
1239     utext_copy(ut, 1, 2, 0, TRUE, &status);
1240     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1241 
1242     // Deep Clone of a frozen UText should re-enable writing in the copy.
1243     status = U_ZERO_ERROR;
1244     ut = utext_openUnicodeString(ut, &ustr, &status);
1245     TEST_SUCCESS(status);
1246     utext_freeze(ut);
1247     ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status);   // deep clone
1248     TEST_SUCCESS(status);
1249     writable = utext_isWritable(ut2);
1250     TEST_ASSERT(writable == TRUE);
1251 
1252 
1253     // Deep clone of a frozen UText, where the base type is intrinsically non-writable,
1254     //  should NOT enable writing in the copy.
1255     status = U_ZERO_ERROR;
1256     ut = utext_openUChars(ut, u16str, -1, &status);
1257     TEST_SUCCESS(status);
1258     utext_freeze(ut);
1259     ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status);   // deep clone
1260     TEST_SUCCESS(status);
1261     writable = utext_isWritable(ut2);
1262     TEST_ASSERT(writable == FALSE);
1263 
1264     // cleanup
1265     utext_close(ut);
1266     utext_close(ut2);
1267 }
1268 
1269 
1270 //
1271 //  Fragmented UText
1272 //      A UText type that works with a chunk size of 1.
1273 //      Intended to test for edge cases.
1274 //      Input comes from a UnicodeString.
1275 //
1276 //       ut.b    the character.  Put into both halves.
1277 //
1278 
1279 U_CDECL_BEGIN
1280 static UBool U_CALLCONV
fragTextAccess(UText * ut,int64_t index,UBool forward)1281 fragTextAccess(UText *ut, int64_t index, UBool forward) {
1282     const UnicodeString *us = (const UnicodeString *)ut->context;
1283     UChar  c;
1284     int32_t length = us->length();
1285     if (forward && index>=0 && index<length) {
1286         c = us->charAt((int32_t)index);
1287         ut->b = c | c<<16;
1288         ut->chunkOffset = 0;
1289         ut->chunkLength = 1;
1290         ut->chunkNativeStart = index;
1291         ut->chunkNativeLimit = index+1;
1292         return true;
1293     }
1294     if (!forward && index>0 && index <=length) {
1295         c = us->charAt((int32_t)index-1);
1296         ut->b = c | c<<16;
1297         ut->chunkOffset = 1;
1298         ut->chunkLength = 1;
1299         ut->chunkNativeStart = index-1;
1300         ut->chunkNativeLimit = index;
1301         return true;
1302     }
1303     ut->b = 0;
1304     ut->chunkOffset = 0;
1305     ut->chunkLength = 0;
1306     if (index <= 0) {
1307         ut->chunkNativeStart = 0;
1308         ut->chunkNativeLimit = 0;
1309     } else {
1310         ut->chunkNativeStart = length;
1311         ut->chunkNativeLimit = length;
1312     }
1313     return false;
1314 }
1315 
1316 // Function table to be used with this fragmented text provider.
1317 //   Initialized in the open function.
1318 static UTextFuncs  fragmentFuncs;
1319 
1320 // Clone function for fragmented text provider.
1321 //   Didn't really want to provide this, but it's easier to provide it than to keep it
1322 //   out of the tests.
1323 //
1324 UText *
cloneFragmentedUnicodeString(UText * dest,const UText * src,UBool deep,UErrorCode * status)1325 cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1326     if (U_FAILURE(*status)) {
1327         return NULL;
1328     }
1329     if (deep) {
1330         *status = U_UNSUPPORTED_ERROR;
1331         return NULL;
1332     }
1333     dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status);
1334     utext_setNativeIndex(dest, utext_getNativeIndex(src));
1335     return dest;
1336 }
1337 
1338 U_CDECL_END
1339 
1340 // Open function for the fragmented text provider.
1341 UText *
openFragmentedUnicodeString(UText * ut,UnicodeString * s,UErrorCode * status)1342 openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
1343     ut = utext_openUnicodeString(ut, s, status);
1344     if (U_FAILURE(*status)) {
1345         return ut;
1346     }
1347 
1348     // Copy of the function table from the stock UnicodeString UText,
1349     //   and replace the entry for the access function.
1350     memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs));
1351     fragmentFuncs.access = fragTextAccess;
1352     fragmentFuncs.clone  = cloneFragmentedUnicodeString;
1353     ut->pFuncs = &fragmentFuncs;
1354 
1355     ut->chunkContents = (UChar *)&ut->b;
1356     ut->pFuncs->access(ut, 0, TRUE);
1357     return ut;
1358 }
1359 
1360 // Regression test for Ticket 5560
1361 //   Clone fails to update chunkContentPointer in the cloned copy.
1362 //   This is only an issue for UText types that work in a local buffer,
1363 //      (UTF-8 wrapper, for example)
1364 //
1365 //   The test:
1366 //     1.  Create an inital UText
1367 //     2.  Deep clone it.  Contents should match original.
1368 //     3.  Reset original to something different.
1369 //     4.  Check that clone contents did not change.
1370 //
Ticket5560()1371 void UTextTest::Ticket5560() {
1372     /* The following two strings are in UTF-8 even on EBCDIC platforms. */
1373     static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */
1374     static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */
1375 	UErrorCode status = U_ZERO_ERROR;
1376 
1377 	UText ut1 = UTEXT_INITIALIZER;
1378 	UText ut2 = UTEXT_INITIALIZER;
1379 
1380 	utext_openUTF8(&ut1, s1, -1, &status);
1381 	UChar c = utext_next32(&ut1);
1382 	TEST_ASSERT(c == 0x41);  // c == 'A'
1383 
1384 	utext_clone(&ut2, &ut1, TRUE, FALSE, &status);
1385 	TEST_SUCCESS(status);
1386     c = utext_next32(&ut2);
1387 	TEST_ASSERT(c == 0x42);  // c == 'B'
1388     c = utext_next32(&ut1);
1389 	TEST_ASSERT(c == 0x42);  // c == 'B'
1390 
1391 	utext_openUTF8(&ut1, s2, -1, &status);
1392 	c = utext_next32(&ut1);
1393 	TEST_ASSERT(c == 0x31);  // c == '1'
1394     c = utext_next32(&ut2);
1395 	TEST_ASSERT(c == 0x43);  // c == 'C'
1396 
1397     utext_close(&ut1);
1398     utext_close(&ut2);
1399 }
1400 
1401