1/* The contents of this file are subject to the Netscape Public 2 * License Version 1.1 (the "License"); you may not use this file 3 * except in compliance with the License. You may obtain a copy of 4 * the License at http://www.mozilla.org/NPL/ 5 * 6 * Software distributed under the License is distributed on an "AS 7 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or 8 * implied. See the License for the specific language governing 9 * rights and limitations under the License. 10 * 11 * The Original Code is Mozilla Communicator client code, released March 12 * 31, 1998. 13 * 14 * The Initial Developer of the Original Code is Netscape Communications 15 * Corporation. Portions created by Netscape are 16 * Copyright (C) 1998 Netscape Communications Corporation. All 17 * Rights Reserved. 18 * 19 * Contributor(s): 20 * 21 */ 22/** 23 File Name: 11.6.3.js 24 ECMA Section: 11.6.3 Applying the additive operators 25 (+, -) to numbers 26 Description: 27 The + operator performs addition when applied to two operands of numeric 28 type, producing the sum of the operands. The - operator performs 29 subtraction, producing the difference of two numeric operands. 30 31 Addition is a commutative operation, but not always associative. 32 33 The result of an addition is determined using the rules of IEEE 754 34 double-precision arithmetic: 35 36 If either operand is NaN, the result is NaN. 37 The sum of two infinities of opposite sign is NaN. 38 The sum of two infinities of the same sign is the infinity of that sign. 39 The sum of an infinity and a finite value is equal to the infinite operand. 40 The sum of two negative zeros is 0. The sum of two positive zeros, or of 41 two zeros of opposite sign, is +0. 42 The sum of a zero and a nonzero finite value is equal to the nonzero 43 operand. 44 The sum of two nonzero finite values of the same magnitude and opposite 45 sign is +0. 46 In the remaining cases, where neither an infinity, nor a zero, nor NaN is 47 involved, and the operands have the same sign or have different 48 magnitudes, the sum is computed and rounded to the nearest 49 representable value using IEEE 754 round-to-nearest mode. If the 50 magnitude is too large to represent, the operation overflows and 51 the result is then an infinity of appropriate sign. The ECMAScript 52 language requires support of gradual underflow as defined by IEEE 754. 53 54 Author: christine@netscape.com 55 Date: 12 november 1997 56*/ 57 var SECTION = "11.6.3"; 58 var VERSION = "ECMA_1"; 59 startTest(); 60 var testcases = getTestCases(); 61 62 writeHeaderToLog( SECTION + " Applying the additive operators (+,-) to numbers"); 63 test(); 64 65function test() { 66 for ( tc=0; tc < testcases.length; tc++ ) { 67 testcases[tc].passed = writeTestCaseResult( 68 testcases[tc].expect, 69 testcases[tc].actual, 70 testcases[tc].description +" = "+ 71 testcases[tc].actual ); 72 73 testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value "; 74 } 75 stopTest(); 76 return ( testcases ); 77} 78function getTestCases() { 79 var array = new Array(); 80 var item = 0; 81 82 array[item++] = new TestCase( SECTION, "Number.NaN + 1", Number.NaN, Number.NaN + 1 ); 83 array[item++] = new TestCase( SECTION, "1 + Number.NaN", Number.NaN, 1 + Number.NaN ); 84 85 array[item++] = new TestCase( SECTION, "Number.NaN - 1", Number.NaN, Number.NaN - 1 ); 86 array[item++] = new TestCase( SECTION, "1 - Number.NaN", Number.NaN, 1 - Number.NaN ); 87 88 array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY + Number.POSITIVE_INFINITY", Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY + Number.POSITIVE_INFINITY); 89 array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY + Number.NEGATIVE_INFINITY", Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY + Number.NEGATIVE_INFINITY); 90 91 array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY + Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY + Number.NEGATIVE_INFINITY); 92 array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY + Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY + Number.POSITIVE_INFINITY); 93 94 array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY - Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY - Number.POSITIVE_INFINITY); 95 array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY - Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY - Number.NEGATIVE_INFINITY); 96 97 array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY - Number.NEGATIVE_INFINITY", Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY - Number.NEGATIVE_INFINITY); 98 array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY - Number.POSITIVE_INFINITY", Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY - Number.POSITIVE_INFINITY); 99 100 array[item++] = new TestCase( SECTION, "-0 + -0", -0, -0 + -0 ); 101 array[item++] = new TestCase( SECTION, "-0 - 0", -0, -0 - 0 ); 102 103 array[item++] = new TestCase( SECTION, "0 + 0", 0, 0 + 0 ); 104 array[item++] = new TestCase( SECTION, "0 + -0", 0, 0 + -0 ); 105 array[item++] = new TestCase( SECTION, "0 - -0", 0, 0 - -0 ); 106 array[item++] = new TestCase( SECTION, "0 - 0", 0, 0 - 0 ); 107 array[item++] = new TestCase( SECTION, "-0 - -0", 0, -0 - -0 ); 108 array[item++] = new TestCase( SECTION, "-0 + 0", 0, -0 + 0 ); 109 110 array[item++] = new TestCase( SECTION, "Number.MAX_VALUE - Number.MAX_VALUE", 0, Number.MAX_VALUE - Number.MAX_VALUE ); 111 array[item++] = new TestCase( SECTION, "1/Number.MAX_VALUE - 1/Number.MAX_VALUE", 0, 1/Number.MAX_VALUE - 1/Number.MAX_VALUE ); 112 113 array[item++] = new TestCase( SECTION, "Number.MIN_VALUE - Number.MIN_VALUE", 0, Number.MIN_VALUE - Number.MIN_VALUE ); 114 115 return ( array ); 116} 117