1 // Copyright (c) 2005, 2007, Google Inc.
2 // All rights reserved.
3 // Copyright (C) 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // ---
32 // Author: Sanjay Ghemawat <opensource@google.com>
33 //
34 // A malloc that uses a per-thread cache to satisfy small malloc requests.
35 // (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
36 //
37 // See doc/tcmalloc.html for a high-level
38 // description of how this malloc works.
39 //
40 // SYNCHRONIZATION
41 // 1. The thread-specific lists are accessed without acquiring any locks.
42 // This is safe because each such list is only accessed by one thread.
43 // 2. We have a lock per central free-list, and hold it while manipulating
44 // the central free list for a particular size.
45 // 3. The central page allocator is protected by "pageheap_lock".
46 // 4. The pagemap (which maps from page-number to descriptor),
47 // can be read without holding any locks, and written while holding
48 // the "pageheap_lock".
49 // 5. To improve performance, a subset of the information one can get
50 // from the pagemap is cached in a data structure, pagemap_cache_,
51 // that atomically reads and writes its entries. This cache can be
52 // read and written without locking.
53 //
54 // This multi-threaded access to the pagemap is safe for fairly
55 // subtle reasons. We basically assume that when an object X is
56 // allocated by thread A and deallocated by thread B, there must
57 // have been appropriate synchronization in the handoff of object
58 // X from thread A to thread B. The same logic applies to pagemap_cache_.
59 //
60 // THE PAGEID-TO-SIZECLASS CACHE
61 // Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache
62 // returns 0 for a particular PageID then that means "no information," not that
63 // the sizeclass is 0. The cache may have stale information for pages that do
64 // not hold the beginning of any free()'able object. Staleness is eliminated
65 // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
66 // do_memalign() for all other relevant pages.
67 //
68 // TODO: Bias reclamation to larger addresses
69 // TODO: implement mallinfo/mallopt
70 // TODO: Better testing
71 //
72 // 9/28/2003 (new page-level allocator replaces ptmalloc2):
73 // * malloc/free of small objects goes from ~300 ns to ~50 ns.
74 // * allocation of a reasonably complicated struct
75 // goes from about 1100 ns to about 300 ns.
76
77 #include "config.h"
78 #include "FastMalloc.h"
79
80 #include "Assertions.h"
81 #include <limits>
82 #if ENABLE(JSC_MULTIPLE_THREADS)
83 #include <pthread.h>
84 #endif
85
86 #ifndef NO_TCMALLOC_SAMPLES
87 #ifdef WTF_CHANGES
88 #define NO_TCMALLOC_SAMPLES
89 #endif
90 #endif
91
92 #if !(defined(USE_SYSTEM_MALLOC) && USE_SYSTEM_MALLOC) && defined(NDEBUG)
93 #define FORCE_SYSTEM_MALLOC 0
94 #else
95 #define FORCE_SYSTEM_MALLOC 1
96 #endif
97
98 // Use a background thread to periodically scavenge memory to release back to the system
99 // https://bugs.webkit.org/show_bug.cgi?id=27900: don't turn this on for Tiger until we have figured out why it caused a crash.
100 #if defined(BUILDING_ON_TIGER)
101 #define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 0
102 #else
103 #define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 1
104 #endif
105
106 #ifndef NDEBUG
107 namespace WTF {
108
109 #if ENABLE(JSC_MULTIPLE_THREADS)
110 static pthread_key_t isForbiddenKey;
111 static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT;
initializeIsForbiddenKey()112 static void initializeIsForbiddenKey()
113 {
114 pthread_key_create(&isForbiddenKey, 0);
115 }
116
isForbidden()117 static bool isForbidden()
118 {
119 pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
120 return !!pthread_getspecific(isForbiddenKey);
121 }
122
fastMallocForbid()123 void fastMallocForbid()
124 {
125 pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
126 pthread_setspecific(isForbiddenKey, &isForbiddenKey);
127 }
128
fastMallocAllow()129 void fastMallocAllow()
130 {
131 pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
132 pthread_setspecific(isForbiddenKey, 0);
133 }
134
135 #else
136
137 static bool staticIsForbidden;
138 static bool isForbidden()
139 {
140 return staticIsForbidden;
141 }
142
143 void fastMallocForbid()
144 {
145 staticIsForbidden = true;
146 }
147
148 void fastMallocAllow()
149 {
150 staticIsForbidden = false;
151 }
152 #endif // ENABLE(JSC_MULTIPLE_THREADS)
153
154 } // namespace WTF
155 #endif // NDEBUG
156
157 #include <string.h>
158
159 namespace WTF {
160
161 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
162
163 namespace Internal {
164
fastMallocMatchFailed(void *)165 void fastMallocMatchFailed(void*)
166 {
167 CRASH();
168 }
169
170 } // namespace Internal
171
172 #endif
173
fastZeroedMalloc(size_t n)174 void* fastZeroedMalloc(size_t n)
175 {
176 void* result = fastMalloc(n);
177 memset(result, 0, n);
178 return result;
179 }
180
tryFastZeroedMalloc(size_t n)181 void* tryFastZeroedMalloc(size_t n)
182 {
183 void* result = tryFastMalloc(n);
184 if (!result)
185 return 0;
186 memset(result, 0, n);
187 return result;
188 }
189
190 } // namespace WTF
191
192 #if FORCE_SYSTEM_MALLOC
193
194 #include <stdlib.h>
195 #if !PLATFORM(WIN_OS)
196 #include <pthread.h>
197 #else
198 #include "windows.h"
199 #endif
200
201 namespace WTF {
202
tryFastMalloc(size_t n)203 void* tryFastMalloc(size_t n)
204 {
205 ASSERT(!isForbidden());
206
207 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
208 if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n) // If overflow would occur...
209 return 0;
210
211 void* result = malloc(n + sizeof(AllocAlignmentInteger));
212 if (!result)
213 return 0;
214
215 *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
216 result = static_cast<AllocAlignmentInteger*>(result) + 1;
217
218 return result;
219 #else
220 return malloc(n);
221 #endif
222 }
223
fastMalloc(size_t n)224 void* fastMalloc(size_t n)
225 {
226 ASSERT(!isForbidden());
227
228 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
229 void* result = tryFastMalloc(n);
230 #else
231 void* result = malloc(n);
232 #endif
233
234 if (!result)
235 CRASH();
236 return result;
237 }
238
tryFastCalloc(size_t n_elements,size_t element_size)239 void* tryFastCalloc(size_t n_elements, size_t element_size)
240 {
241 ASSERT(!isForbidden());
242
243 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
244 size_t totalBytes = n_elements * element_size;
245 if (n_elements > 1 && element_size && (totalBytes / element_size) != n_elements || (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes))
246 return 0;
247
248 totalBytes += sizeof(AllocAlignmentInteger);
249 void* result = malloc(totalBytes);
250 if (!result)
251 return 0;
252
253 memset(result, 0, totalBytes);
254 *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
255 result = static_cast<AllocAlignmentInteger*>(result) + 1;
256 return result;
257 #else
258 return calloc(n_elements, element_size);
259 #endif
260 }
261
fastCalloc(size_t n_elements,size_t element_size)262 void* fastCalloc(size_t n_elements, size_t element_size)
263 {
264 ASSERT(!isForbidden());
265
266 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
267 void* result = tryFastCalloc(n_elements, element_size);
268 #else
269 void* result = calloc(n_elements, element_size);
270 #endif
271
272 if (!result)
273 CRASH();
274 return result;
275 }
276
fastFree(void * p)277 void fastFree(void* p)
278 {
279 ASSERT(!isForbidden());
280
281 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
282 if (!p)
283 return;
284
285 AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p);
286 if (*header != Internal::AllocTypeMalloc)
287 Internal::fastMallocMatchFailed(p);
288 free(header);
289 #else
290 free(p);
291 #endif
292 }
293
tryFastRealloc(void * p,size_t n)294 void* tryFastRealloc(void* p, size_t n)
295 {
296 ASSERT(!isForbidden());
297
298 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
299 if (p) {
300 if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n) // If overflow would occur...
301 return 0;
302 AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p);
303 if (*header != Internal::AllocTypeMalloc)
304 Internal::fastMallocMatchFailed(p);
305 void* result = realloc(header, n + sizeof(AllocAlignmentInteger));
306 if (!result)
307 return 0;
308
309 // This should not be needed because the value is already there:
310 // *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
311 result = static_cast<AllocAlignmentInteger*>(result) + 1;
312 return result;
313 } else {
314 return fastMalloc(n);
315 }
316 #else
317 return realloc(p, n);
318 #endif
319 }
320
fastRealloc(void * p,size_t n)321 void* fastRealloc(void* p, size_t n)
322 {
323 ASSERT(!isForbidden());
324
325 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
326 void* result = tryFastRealloc(p, n);
327 #else
328 void* result = realloc(p, n);
329 #endif
330
331 if (!result)
332 CRASH();
333 return result;
334 }
335
releaseFastMallocFreeMemory()336 void releaseFastMallocFreeMemory() { }
337
fastMallocStatistics()338 FastMallocStatistics fastMallocStatistics()
339 {
340 FastMallocStatistics statistics = { 0, 0, 0, 0 };
341 return statistics;
342 }
343
344 } // namespace WTF
345
346 #if PLATFORM(DARWIN)
347 // This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled.
348 // It will never be used in this case, so it's type and value are less interesting than its presence.
349 extern "C" const int jscore_fastmalloc_introspection = 0;
350 #endif
351
352 #else // FORCE_SYSTEM_MALLOC
353
354 #if HAVE(STDINT_H)
355 #include <stdint.h>
356 #elif HAVE(INTTYPES_H)
357 #include <inttypes.h>
358 #else
359 #include <sys/types.h>
360 #endif
361
362 #include "AlwaysInline.h"
363 #include "Assertions.h"
364 #include "TCPackedCache.h"
365 #include "TCPageMap.h"
366 #include "TCSpinLock.h"
367 #include "TCSystemAlloc.h"
368 #include <algorithm>
369 #include <errno.h>
370 #include <limits>
371 #include <new>
372 #include <pthread.h>
373 #include <stdarg.h>
374 #include <stddef.h>
375 #include <stdio.h>
376 #if COMPILER(MSVC)
377 #ifndef WIN32_LEAN_AND_MEAN
378 #define WIN32_LEAN_AND_MEAN
379 #endif
380 #include <windows.h>
381 #endif
382
383 #if WTF_CHANGES
384
385 #if PLATFORM(DARWIN)
386 #include "MallocZoneSupport.h"
387 #include <wtf/HashSet.h>
388 #endif
389
390 #ifndef PRIuS
391 #define PRIuS "zu"
392 #endif
393
394 // Calling pthread_getspecific through a global function pointer is faster than a normal
395 // call to the function on Mac OS X, and it's used in performance-critical code. So we
396 // use a function pointer. But that's not necessarily faster on other platforms, and we had
397 // problems with this technique on Windows, so we'll do this only on Mac OS X.
398 #if PLATFORM(DARWIN)
399 static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific;
400 #define pthread_getspecific(key) pthread_getspecific_function_pointer(key)
401 #endif
402
403 #define DEFINE_VARIABLE(type, name, value, meaning) \
404 namespace FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead { \
405 type FLAGS_##name(value); \
406 char FLAGS_no##name; \
407 } \
408 using FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead::FLAGS_##name
409
410 #define DEFINE_int64(name, value, meaning) \
411 DEFINE_VARIABLE(int64_t, name, value, meaning)
412
413 #define DEFINE_double(name, value, meaning) \
414 DEFINE_VARIABLE(double, name, value, meaning)
415
416 namespace WTF {
417
418 #define malloc fastMalloc
419 #define calloc fastCalloc
420 #define free fastFree
421 #define realloc fastRealloc
422
423 #define MESSAGE LOG_ERROR
424 #define CHECK_CONDITION ASSERT
425
426 #if PLATFORM(DARWIN)
427 class Span;
428 class TCMalloc_Central_FreeListPadded;
429 class TCMalloc_PageHeap;
430 class TCMalloc_ThreadCache;
431 template <typename T> class PageHeapAllocator;
432
433 class FastMallocZone {
434 public:
435 static void init();
436
437 static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t);
goodSize(malloc_zone_t *,size_t size)438 static size_t goodSize(malloc_zone_t*, size_t size) { return size; }
check(malloc_zone_t *)439 static boolean_t check(malloc_zone_t*) { return true; }
print(malloc_zone_t *,boolean_t)440 static void print(malloc_zone_t*, boolean_t) { }
log(malloc_zone_t *,void *)441 static void log(malloc_zone_t*, void*) { }
forceLock(malloc_zone_t *)442 static void forceLock(malloc_zone_t*) { }
forceUnlock(malloc_zone_t *)443 static void forceUnlock(malloc_zone_t*) { }
statistics(malloc_zone_t *,malloc_statistics_t * stats)444 static void statistics(malloc_zone_t*, malloc_statistics_t* stats) { memset(stats, 0, sizeof(malloc_statistics_t)); }
445
446 private:
447 FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*, PageHeapAllocator<Span>*, PageHeapAllocator<TCMalloc_ThreadCache>*);
448 static size_t size(malloc_zone_t*, const void*);
449 static void* zoneMalloc(malloc_zone_t*, size_t);
450 static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size);
451 static void zoneFree(malloc_zone_t*, void*);
452 static void* zoneRealloc(malloc_zone_t*, void*, size_t);
zoneValloc(malloc_zone_t *,size_t)453 static void* zoneValloc(malloc_zone_t*, size_t) { LOG_ERROR("valloc is not supported"); return 0; }
zoneDestroy(malloc_zone_t *)454 static void zoneDestroy(malloc_zone_t*) { }
455
456 malloc_zone_t m_zone;
457 TCMalloc_PageHeap* m_pageHeap;
458 TCMalloc_ThreadCache** m_threadHeaps;
459 TCMalloc_Central_FreeListPadded* m_centralCaches;
460 PageHeapAllocator<Span>* m_spanAllocator;
461 PageHeapAllocator<TCMalloc_ThreadCache>* m_pageHeapAllocator;
462 };
463
464 #endif
465
466 #endif
467
468 #ifndef WTF_CHANGES
469 // This #ifdef should almost never be set. Set NO_TCMALLOC_SAMPLES if
470 // you're porting to a system where you really can't get a stacktrace.
471 #ifdef NO_TCMALLOC_SAMPLES
472 // We use #define so code compiles even if you #include stacktrace.h somehow.
473 # define GetStackTrace(stack, depth, skip) (0)
474 #else
475 # include <google/stacktrace.h>
476 #endif
477 #endif
478
479 // Even if we have support for thread-local storage in the compiler
480 // and linker, the OS may not support it. We need to check that at
481 // runtime. Right now, we have to keep a manual set of "bad" OSes.
482 #if defined(HAVE_TLS)
483 static bool kernel_supports_tls = false; // be conservative
KernelSupportsTLS()484 static inline bool KernelSupportsTLS() {
485 return kernel_supports_tls;
486 }
487 # if !HAVE_DECL_UNAME // if too old for uname, probably too old for TLS
CheckIfKernelSupportsTLS()488 static void CheckIfKernelSupportsTLS() {
489 kernel_supports_tls = false;
490 }
491 # else
492 # include <sys/utsname.h> // DECL_UNAME checked for <sys/utsname.h> too
CheckIfKernelSupportsTLS()493 static void CheckIfKernelSupportsTLS() {
494 struct utsname buf;
495 if (uname(&buf) != 0) { // should be impossible
496 MESSAGE("uname failed assuming no TLS support (errno=%d)\n", errno);
497 kernel_supports_tls = false;
498 } else if (strcasecmp(buf.sysname, "linux") == 0) {
499 // The linux case: the first kernel to support TLS was 2.6.0
500 if (buf.release[0] < '2' && buf.release[1] == '.') // 0.x or 1.x
501 kernel_supports_tls = false;
502 else if (buf.release[0] == '2' && buf.release[1] == '.' &&
503 buf.release[2] >= '0' && buf.release[2] < '6' &&
504 buf.release[3] == '.') // 2.0 - 2.5
505 kernel_supports_tls = false;
506 else
507 kernel_supports_tls = true;
508 } else { // some other kernel, we'll be optimisitic
509 kernel_supports_tls = true;
510 }
511 // TODO(csilvers): VLOG(1) the tls status once we support RAW_VLOG
512 }
513 # endif // HAVE_DECL_UNAME
514 #endif // HAVE_TLS
515
516 // __THROW is defined in glibc systems. It means, counter-intuitively,
517 // "This function will never throw an exception." It's an optional
518 // optimization tool, but we may need to use it to match glibc prototypes.
519 #ifndef __THROW // I guess we're not on a glibc system
520 # define __THROW // __THROW is just an optimization, so ok to make it ""
521 #endif
522
523 //-------------------------------------------------------------------
524 // Configuration
525 //-------------------------------------------------------------------
526
527 // Not all possible combinations of the following parameters make
528 // sense. In particular, if kMaxSize increases, you may have to
529 // increase kNumClasses as well.
530 static const size_t kPageShift = 12;
531 static const size_t kPageSize = 1 << kPageShift;
532 static const size_t kMaxSize = 8u * kPageSize;
533 static const size_t kAlignShift = 3;
534 static const size_t kAlignment = 1 << kAlignShift;
535 static const size_t kNumClasses = 68;
536
537 // Allocates a big block of memory for the pagemap once we reach more than
538 // 128MB
539 static const size_t kPageMapBigAllocationThreshold = 128 << 20;
540
541 // Minimum number of pages to fetch from system at a time. Must be
542 // significantly bigger than kBlockSize to amortize system-call
543 // overhead, and also to reduce external fragementation. Also, we
544 // should keep this value big because various incarnations of Linux
545 // have small limits on the number of mmap() regions per
546 // address-space.
547 static const size_t kMinSystemAlloc = 1 << (20 - kPageShift);
548
549 // Number of objects to move between a per-thread list and a central
550 // list in one shot. We want this to be not too small so we can
551 // amortize the lock overhead for accessing the central list. Making
552 // it too big may temporarily cause unnecessary memory wastage in the
553 // per-thread free list until the scavenger cleans up the list.
554 static int num_objects_to_move[kNumClasses];
555
556 // Maximum length we allow a per-thread free-list to have before we
557 // move objects from it into the corresponding central free-list. We
558 // want this big to avoid locking the central free-list too often. It
559 // should not hurt to make this list somewhat big because the
560 // scavenging code will shrink it down when its contents are not in use.
561 static const int kMaxFreeListLength = 256;
562
563 // Lower and upper bounds on the per-thread cache sizes
564 static const size_t kMinThreadCacheSize = kMaxSize * 2;
565 static const size_t kMaxThreadCacheSize = 2 << 20;
566
567 // Default bound on the total amount of thread caches
568 static const size_t kDefaultOverallThreadCacheSize = 16 << 20;
569
570 // For all span-lengths < kMaxPages we keep an exact-size list.
571 // REQUIRED: kMaxPages >= kMinSystemAlloc;
572 static const size_t kMaxPages = kMinSystemAlloc;
573
574 /* The smallest prime > 2^n */
575 static int primes_list[] = {
576 // Small values might cause high rates of sampling
577 // and hence commented out.
578 // 2, 5, 11, 17, 37, 67, 131, 257,
579 // 521, 1031, 2053, 4099, 8209, 16411,
580 32771, 65537, 131101, 262147, 524309, 1048583,
581 2097169, 4194319, 8388617, 16777259, 33554467 };
582
583 // Twice the approximate gap between sampling actions.
584 // I.e., we take one sample approximately once every
585 // tcmalloc_sample_parameter/2
586 // bytes of allocation, i.e., ~ once every 128KB.
587 // Must be a prime number.
588 #ifdef NO_TCMALLOC_SAMPLES
589 DEFINE_int64(tcmalloc_sample_parameter, 0,
590 "Unused: code is compiled with NO_TCMALLOC_SAMPLES");
591 static size_t sample_period = 0;
592 #else
593 DEFINE_int64(tcmalloc_sample_parameter, 262147,
594 "Twice the approximate gap between sampling actions."
595 " Must be a prime number. Otherwise will be rounded up to a "
596 " larger prime number");
597 static size_t sample_period = 262147;
598 #endif
599
600 // Protects sample_period above
601 static SpinLock sample_period_lock = SPINLOCK_INITIALIZER;
602
603 // Parameters for controlling how fast memory is returned to the OS.
604
605 DEFINE_double(tcmalloc_release_rate, 1,
606 "Rate at which we release unused memory to the system. "
607 "Zero means we never release memory back to the system. "
608 "Increase this flag to return memory faster; decrease it "
609 "to return memory slower. Reasonable rates are in the "
610 "range [0,10]");
611
612 //-------------------------------------------------------------------
613 // Mapping from size to size_class and vice versa
614 //-------------------------------------------------------------------
615
616 // Sizes <= 1024 have an alignment >= 8. So for such sizes we have an
617 // array indexed by ceil(size/8). Sizes > 1024 have an alignment >= 128.
618 // So for these larger sizes we have an array indexed by ceil(size/128).
619 //
620 // We flatten both logical arrays into one physical array and use
621 // arithmetic to compute an appropriate index. The constants used by
622 // ClassIndex() were selected to make the flattening work.
623 //
624 // Examples:
625 // Size Expression Index
626 // -------------------------------------------------------
627 // 0 (0 + 7) / 8 0
628 // 1 (1 + 7) / 8 1
629 // ...
630 // 1024 (1024 + 7) / 8 128
631 // 1025 (1025 + 127 + (120<<7)) / 128 129
632 // ...
633 // 32768 (32768 + 127 + (120<<7)) / 128 376
634 static const size_t kMaxSmallSize = 1024;
635 static const int shift_amount[2] = { 3, 7 }; // For divides by 8 or 128
636 static const int add_amount[2] = { 7, 127 + (120 << 7) };
637 static unsigned char class_array[377];
638
639 // Compute index of the class_array[] entry for a given size
ClassIndex(size_t s)640 static inline int ClassIndex(size_t s) {
641 const int i = (s > kMaxSmallSize);
642 return static_cast<int>((s + add_amount[i]) >> shift_amount[i]);
643 }
644
645 // Mapping from size class to max size storable in that class
646 static size_t class_to_size[kNumClasses];
647
648 // Mapping from size class to number of pages to allocate at a time
649 static size_t class_to_pages[kNumClasses];
650
651 // TransferCache is used to cache transfers of num_objects_to_move[size_class]
652 // back and forth between thread caches and the central cache for a given size
653 // class.
654 struct TCEntry {
655 void *head; // Head of chain of objects.
656 void *tail; // Tail of chain of objects.
657 };
658 // A central cache freelist can have anywhere from 0 to kNumTransferEntries
659 // slots to put link list chains into. To keep memory usage bounded the total
660 // number of TCEntries across size classes is fixed. Currently each size
661 // class is initially given one TCEntry which also means that the maximum any
662 // one class can have is kNumClasses.
663 static const int kNumTransferEntries = kNumClasses;
664
665 // Note: the following only works for "n"s that fit in 32-bits, but
666 // that is fine since we only use it for small sizes.
LgFloor(size_t n)667 static inline int LgFloor(size_t n) {
668 int log = 0;
669 for (int i = 4; i >= 0; --i) {
670 int shift = (1 << i);
671 size_t x = n >> shift;
672 if (x != 0) {
673 n = x;
674 log += shift;
675 }
676 }
677 ASSERT(n == 1);
678 return log;
679 }
680
681 // Some very basic linked list functions for dealing with using void * as
682 // storage.
683
SLL_Next(void * t)684 static inline void *SLL_Next(void *t) {
685 return *(reinterpret_cast<void**>(t));
686 }
687
SLL_SetNext(void * t,void * n)688 static inline void SLL_SetNext(void *t, void *n) {
689 *(reinterpret_cast<void**>(t)) = n;
690 }
691
SLL_Push(void ** list,void * element)692 static inline void SLL_Push(void **list, void *element) {
693 SLL_SetNext(element, *list);
694 *list = element;
695 }
696
SLL_Pop(void ** list)697 static inline void *SLL_Pop(void **list) {
698 void *result = *list;
699 *list = SLL_Next(*list);
700 return result;
701 }
702
703
704 // Remove N elements from a linked list to which head points. head will be
705 // modified to point to the new head. start and end will point to the first
706 // and last nodes of the range. Note that end will point to NULL after this
707 // function is called.
SLL_PopRange(void ** head,int N,void ** start,void ** end)708 static inline void SLL_PopRange(void **head, int N, void **start, void **end) {
709 if (N == 0) {
710 *start = NULL;
711 *end = NULL;
712 return;
713 }
714
715 void *tmp = *head;
716 for (int i = 1; i < N; ++i) {
717 tmp = SLL_Next(tmp);
718 }
719
720 *start = *head;
721 *end = tmp;
722 *head = SLL_Next(tmp);
723 // Unlink range from list.
724 SLL_SetNext(tmp, NULL);
725 }
726
SLL_PushRange(void ** head,void * start,void * end)727 static inline void SLL_PushRange(void **head, void *start, void *end) {
728 if (!start) return;
729 SLL_SetNext(end, *head);
730 *head = start;
731 }
732
SLL_Size(void * head)733 static inline size_t SLL_Size(void *head) {
734 int count = 0;
735 while (head) {
736 count++;
737 head = SLL_Next(head);
738 }
739 return count;
740 }
741
742 // Setup helper functions.
743
SizeClass(size_t size)744 static ALWAYS_INLINE size_t SizeClass(size_t size) {
745 return class_array[ClassIndex(size)];
746 }
747
748 // Get the byte-size for a specified class
ByteSizeForClass(size_t cl)749 static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) {
750 return class_to_size[cl];
751 }
NumMoveSize(size_t size)752 static int NumMoveSize(size_t size) {
753 if (size == 0) return 0;
754 // Use approx 64k transfers between thread and central caches.
755 int num = static_cast<int>(64.0 * 1024.0 / size);
756 if (num < 2) num = 2;
757 // Clamp well below kMaxFreeListLength to avoid ping pong between central
758 // and thread caches.
759 if (num > static_cast<int>(0.8 * kMaxFreeListLength))
760 num = static_cast<int>(0.8 * kMaxFreeListLength);
761
762 // Also, avoid bringing in too many objects into small object free
763 // lists. There are lots of such lists, and if we allow each one to
764 // fetch too many at a time, we end up having to scavenge too often
765 // (especially when there are lots of threads and each thread gets a
766 // small allowance for its thread cache).
767 //
768 // TODO: Make thread cache free list sizes dynamic so that we do not
769 // have to equally divide a fixed resource amongst lots of threads.
770 if (num > 32) num = 32;
771
772 return num;
773 }
774
775 // Initialize the mapping arrays
InitSizeClasses()776 static void InitSizeClasses() {
777 // Do some sanity checking on add_amount[]/shift_amount[]/class_array[]
778 if (ClassIndex(0) < 0) {
779 MESSAGE("Invalid class index %d for size 0\n", ClassIndex(0));
780 CRASH();
781 }
782 if (static_cast<size_t>(ClassIndex(kMaxSize)) >= sizeof(class_array)) {
783 MESSAGE("Invalid class index %d for kMaxSize\n", ClassIndex(kMaxSize));
784 CRASH();
785 }
786
787 // Compute the size classes we want to use
788 size_t sc = 1; // Next size class to assign
789 unsigned char alignshift = kAlignShift;
790 int last_lg = -1;
791 for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) {
792 int lg = LgFloor(size);
793 if (lg > last_lg) {
794 // Increase alignment every so often.
795 //
796 // Since we double the alignment every time size doubles and
797 // size >= 128, this means that space wasted due to alignment is
798 // at most 16/128 i.e., 12.5%. Plus we cap the alignment at 256
799 // bytes, so the space wasted as a percentage starts falling for
800 // sizes > 2K.
801 if ((lg >= 7) && (alignshift < 8)) {
802 alignshift++;
803 }
804 last_lg = lg;
805 }
806
807 // Allocate enough pages so leftover is less than 1/8 of total.
808 // This bounds wasted space to at most 12.5%.
809 size_t psize = kPageSize;
810 while ((psize % size) > (psize >> 3)) {
811 psize += kPageSize;
812 }
813 const size_t my_pages = psize >> kPageShift;
814
815 if (sc > 1 && my_pages == class_to_pages[sc-1]) {
816 // See if we can merge this into the previous class without
817 // increasing the fragmentation of the previous class.
818 const size_t my_objects = (my_pages << kPageShift) / size;
819 const size_t prev_objects = (class_to_pages[sc-1] << kPageShift)
820 / class_to_size[sc-1];
821 if (my_objects == prev_objects) {
822 // Adjust last class to include this size
823 class_to_size[sc-1] = size;
824 continue;
825 }
826 }
827
828 // Add new class
829 class_to_pages[sc] = my_pages;
830 class_to_size[sc] = size;
831 sc++;
832 }
833 if (sc != kNumClasses) {
834 MESSAGE("wrong number of size classes: found %" PRIuS " instead of %d\n",
835 sc, int(kNumClasses));
836 CRASH();
837 }
838
839 // Initialize the mapping arrays
840 int next_size = 0;
841 for (unsigned char c = 1; c < kNumClasses; c++) {
842 const size_t max_size_in_class = class_to_size[c];
843 for (size_t s = next_size; s <= max_size_in_class; s += kAlignment) {
844 class_array[ClassIndex(s)] = c;
845 }
846 next_size = static_cast<int>(max_size_in_class + kAlignment);
847 }
848
849 // Double-check sizes just to be safe
850 for (size_t size = 0; size <= kMaxSize; size++) {
851 const size_t sc = SizeClass(size);
852 if (sc == 0) {
853 MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
854 CRASH();
855 }
856 if (sc > 1 && size <= class_to_size[sc-1]) {
857 MESSAGE("Allocating unnecessarily large class %" PRIuS " for %" PRIuS
858 "\n", sc, size);
859 CRASH();
860 }
861 if (sc >= kNumClasses) {
862 MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
863 CRASH();
864 }
865 const size_t s = class_to_size[sc];
866 if (size > s) {
867 MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
868 CRASH();
869 }
870 if (s == 0) {
871 MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
872 CRASH();
873 }
874 }
875
876 // Initialize the num_objects_to_move array.
877 for (size_t cl = 1; cl < kNumClasses; ++cl) {
878 num_objects_to_move[cl] = NumMoveSize(ByteSizeForClass(cl));
879 }
880
881 #ifndef WTF_CHANGES
882 if (false) {
883 // Dump class sizes and maximum external wastage per size class
884 for (size_t cl = 1; cl < kNumClasses; ++cl) {
885 const int alloc_size = class_to_pages[cl] << kPageShift;
886 const int alloc_objs = alloc_size / class_to_size[cl];
887 const int min_used = (class_to_size[cl-1] + 1) * alloc_objs;
888 const int max_waste = alloc_size - min_used;
889 MESSAGE("SC %3d [ %8d .. %8d ] from %8d ; %2.0f%% maxwaste\n",
890 int(cl),
891 int(class_to_size[cl-1] + 1),
892 int(class_to_size[cl]),
893 int(class_to_pages[cl] << kPageShift),
894 max_waste * 100.0 / alloc_size
895 );
896 }
897 }
898 #endif
899 }
900
901 // -------------------------------------------------------------------------
902 // Simple allocator for objects of a specified type. External locking
903 // is required before accessing one of these objects.
904 // -------------------------------------------------------------------------
905
906 // Metadata allocator -- keeps stats about how many bytes allocated
907 static uint64_t metadata_system_bytes = 0;
MetaDataAlloc(size_t bytes)908 static void* MetaDataAlloc(size_t bytes) {
909 void* result = TCMalloc_SystemAlloc(bytes, 0);
910 if (result != NULL) {
911 metadata_system_bytes += bytes;
912 }
913 return result;
914 }
915
916 template <class T>
917 class PageHeapAllocator {
918 private:
919 // How much to allocate from system at a time
920 static const size_t kAllocIncrement = 32 << 10;
921
922 // Aligned size of T
923 static const size_t kAlignedSize
924 = (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment);
925
926 // Free area from which to carve new objects
927 char* free_area_;
928 size_t free_avail_;
929
930 // Linked list of all regions allocated by this allocator
931 void* allocated_regions_;
932
933 // Free list of already carved objects
934 void* free_list_;
935
936 // Number of allocated but unfreed objects
937 int inuse_;
938
939 public:
Init()940 void Init() {
941 ASSERT(kAlignedSize <= kAllocIncrement);
942 inuse_ = 0;
943 allocated_regions_ = 0;
944 free_area_ = NULL;
945 free_avail_ = 0;
946 free_list_ = NULL;
947 }
948
New()949 T* New() {
950 // Consult free list
951 void* result;
952 if (free_list_ != NULL) {
953 result = free_list_;
954 free_list_ = *(reinterpret_cast<void**>(result));
955 } else {
956 if (free_avail_ < kAlignedSize) {
957 // Need more room
958 char* new_allocation = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement));
959 if (!new_allocation)
960 CRASH();
961
962 *(void**)new_allocation = allocated_regions_;
963 allocated_regions_ = new_allocation;
964 free_area_ = new_allocation + kAlignedSize;
965 free_avail_ = kAllocIncrement - kAlignedSize;
966 }
967 result = free_area_;
968 free_area_ += kAlignedSize;
969 free_avail_ -= kAlignedSize;
970 }
971 inuse_++;
972 return reinterpret_cast<T*>(result);
973 }
974
Delete(T * p)975 void Delete(T* p) {
976 *(reinterpret_cast<void**>(p)) = free_list_;
977 free_list_ = p;
978 inuse_--;
979 }
980
inuse() const981 int inuse() const { return inuse_; }
982
983 #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
984 template <class Recorder>
recordAdministrativeRegions(Recorder & recorder,const RemoteMemoryReader & reader)985 void recordAdministrativeRegions(Recorder& recorder, const RemoteMemoryReader& reader)
986 {
987 vm_address_t adminAllocation = reinterpret_cast<vm_address_t>(allocated_regions_);
988 while (adminAllocation) {
989 recorder.recordRegion(adminAllocation, kAllocIncrement);
990 adminAllocation = *reader(reinterpret_cast<vm_address_t*>(adminAllocation));
991 }
992 }
993 #endif
994 };
995
996 // -------------------------------------------------------------------------
997 // Span - a contiguous run of pages
998 // -------------------------------------------------------------------------
999
1000 // Type that can hold a page number
1001 typedef uintptr_t PageID;
1002
1003 // Type that can hold the length of a run of pages
1004 typedef uintptr_t Length;
1005
1006 static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift;
1007
1008 // Convert byte size into pages. This won't overflow, but may return
1009 // an unreasonably large value if bytes is huge enough.
pages(size_t bytes)1010 static inline Length pages(size_t bytes) {
1011 return (bytes >> kPageShift) +
1012 ((bytes & (kPageSize - 1)) > 0 ? 1 : 0);
1013 }
1014
1015 // Convert a user size into the number of bytes that will actually be
1016 // allocated
AllocationSize(size_t bytes)1017 static size_t AllocationSize(size_t bytes) {
1018 if (bytes > kMaxSize) {
1019 // Large object: we allocate an integral number of pages
1020 ASSERT(bytes <= (kMaxValidPages << kPageShift));
1021 return pages(bytes) << kPageShift;
1022 } else {
1023 // Small object: find the size class to which it belongs
1024 return ByteSizeForClass(SizeClass(bytes));
1025 }
1026 }
1027
1028 // Information kept for a span (a contiguous run of pages).
1029 struct Span {
1030 PageID start; // Starting page number
1031 Length length; // Number of pages in span
1032 Span* next; // Used when in link list
1033 Span* prev; // Used when in link list
1034 void* objects; // Linked list of free objects
1035 unsigned int free : 1; // Is the span free
1036 #ifndef NO_TCMALLOC_SAMPLES
1037 unsigned int sample : 1; // Sampled object?
1038 #endif
1039 unsigned int sizeclass : 8; // Size-class for small objects (or 0)
1040 unsigned int refcount : 11; // Number of non-free objects
1041 bool decommitted : 1;
1042
1043 #undef SPAN_HISTORY
1044 #ifdef SPAN_HISTORY
1045 // For debugging, we can keep a log events per span
1046 int nexthistory;
1047 char history[64];
1048 int value[64];
1049 #endif
1050 };
1051
1052 #define ASSERT_SPAN_COMMITTED(span) ASSERT(!span->decommitted)
1053
1054 #ifdef SPAN_HISTORY
Event(Span * span,char op,int v=0)1055 void Event(Span* span, char op, int v = 0) {
1056 span->history[span->nexthistory] = op;
1057 span->value[span->nexthistory] = v;
1058 span->nexthistory++;
1059 if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0;
1060 }
1061 #else
1062 #define Event(s,o,v) ((void) 0)
1063 #endif
1064
1065 // Allocator/deallocator for spans
1066 static PageHeapAllocator<Span> span_allocator;
NewSpan(PageID p,Length len)1067 static Span* NewSpan(PageID p, Length len) {
1068 Span* result = span_allocator.New();
1069 memset(result, 0, sizeof(*result));
1070 result->start = p;
1071 result->length = len;
1072 #ifdef SPAN_HISTORY
1073 result->nexthistory = 0;
1074 #endif
1075 return result;
1076 }
1077
DeleteSpan(Span * span)1078 static inline void DeleteSpan(Span* span) {
1079 #ifndef NDEBUG
1080 // In debug mode, trash the contents of deleted Spans
1081 memset(span, 0x3f, sizeof(*span));
1082 #endif
1083 span_allocator.Delete(span);
1084 }
1085
1086 // -------------------------------------------------------------------------
1087 // Doubly linked list of spans.
1088 // -------------------------------------------------------------------------
1089
DLL_Init(Span * list)1090 static inline void DLL_Init(Span* list) {
1091 list->next = list;
1092 list->prev = list;
1093 }
1094
DLL_Remove(Span * span)1095 static inline void DLL_Remove(Span* span) {
1096 span->prev->next = span->next;
1097 span->next->prev = span->prev;
1098 span->prev = NULL;
1099 span->next = NULL;
1100 }
1101
DLL_IsEmpty(const Span * list)1102 static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list) {
1103 return list->next == list;
1104 }
1105
DLL_Length(const Span * list)1106 static int DLL_Length(const Span* list) {
1107 int result = 0;
1108 for (Span* s = list->next; s != list; s = s->next) {
1109 result++;
1110 }
1111 return result;
1112 }
1113
1114 #if 0 /* Not needed at the moment -- causes compiler warnings if not used */
1115 static void DLL_Print(const char* label, const Span* list) {
1116 MESSAGE("%-10s %p:", label, list);
1117 for (const Span* s = list->next; s != list; s = s->next) {
1118 MESSAGE(" <%p,%u,%u>", s, s->start, s->length);
1119 }
1120 MESSAGE("\n");
1121 }
1122 #endif
1123
DLL_Prepend(Span * list,Span * span)1124 static inline void DLL_Prepend(Span* list, Span* span) {
1125 ASSERT(span->next == NULL);
1126 ASSERT(span->prev == NULL);
1127 span->next = list->next;
1128 span->prev = list;
1129 list->next->prev = span;
1130 list->next = span;
1131 }
1132
1133 // -------------------------------------------------------------------------
1134 // Stack traces kept for sampled allocations
1135 // The following state is protected by pageheap_lock_.
1136 // -------------------------------------------------------------------------
1137
1138 // size/depth are made the same size as a pointer so that some generic
1139 // code below can conveniently cast them back and forth to void*.
1140 static const int kMaxStackDepth = 31;
1141 struct StackTrace {
1142 uintptr_t size; // Size of object
1143 uintptr_t depth; // Number of PC values stored in array below
1144 void* stack[kMaxStackDepth];
1145 };
1146 static PageHeapAllocator<StackTrace> stacktrace_allocator;
1147 static Span sampled_objects;
1148
1149 // -------------------------------------------------------------------------
1150 // Map from page-id to per-page data
1151 // -------------------------------------------------------------------------
1152
1153 // We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines.
1154 // We also use a simple one-level cache for hot PageID-to-sizeclass mappings,
1155 // because sometimes the sizeclass is all the information we need.
1156
1157 // Selector class -- general selector uses 3-level map
1158 template <int BITS> class MapSelector {
1159 public:
1160 typedef TCMalloc_PageMap3<BITS-kPageShift> Type;
1161 typedef PackedCache<BITS, uint64_t> CacheType;
1162 };
1163
1164 #if defined(WTF_CHANGES)
1165 #if PLATFORM(X86_64)
1166 // On all known X86-64 platforms, the upper 16 bits are always unused and therefore
1167 // can be excluded from the PageMap key.
1168 // See http://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details
1169
1170 static const size_t kBitsUnusedOn64Bit = 16;
1171 #else
1172 static const size_t kBitsUnusedOn64Bit = 0;
1173 #endif
1174
1175 // A three-level map for 64-bit machines
1176 template <> class MapSelector<64> {
1177 public:
1178 typedef TCMalloc_PageMap3<64 - kPageShift - kBitsUnusedOn64Bit> Type;
1179 typedef PackedCache<64, uint64_t> CacheType;
1180 };
1181 #endif
1182
1183 // A two-level map for 32-bit machines
1184 template <> class MapSelector<32> {
1185 public:
1186 typedef TCMalloc_PageMap2<32 - kPageShift> Type;
1187 typedef PackedCache<32 - kPageShift, uint16_t> CacheType;
1188 };
1189
1190 // -------------------------------------------------------------------------
1191 // Page-level allocator
1192 // * Eager coalescing
1193 //
1194 // Heap for page-level allocation. We allow allocating and freeing a
1195 // contiguous runs of pages (called a "span").
1196 // -------------------------------------------------------------------------
1197
1198 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1199 // The central page heap collects spans of memory that have been deleted but are still committed until they are released
1200 // back to the system. We use a background thread to periodically scan the list of free spans and release some back to the
1201 // system. Every 5 seconds, the background thread wakes up and does the following:
1202 // - Check if we needed to commit memory in the last 5 seconds. If so, skip this scavenge because it's a sign that we are short
1203 // of free committed pages and so we should not release them back to the system yet.
1204 // - Otherwise, go through the list of free spans (from largest to smallest) and release up to a fraction of the free committed pages
1205 // back to the system.
1206 // - If the number of free committed pages reaches kMinimumFreeCommittedPageCount, we can stop the scavenging and block the
1207 // scavenging thread until the number of free committed pages goes above kMinimumFreeCommittedPageCount.
1208
1209 // Background thread wakes up every 5 seconds to scavenge as long as there is memory available to return to the system.
1210 static const int kScavengeTimerDelayInSeconds = 5;
1211
1212 // Number of free committed pages that we want to keep around.
1213 static const size_t kMinimumFreeCommittedPageCount = 512;
1214
1215 // During a scavenge, we'll release up to a fraction of the free committed pages.
1216 #if PLATFORM(WIN)
1217 // We are slightly less aggressive in releasing memory on Windows due to performance reasons.
1218 static const int kMaxScavengeAmountFactor = 3;
1219 #else
1220 static const int kMaxScavengeAmountFactor = 2;
1221 #endif
1222 #endif
1223
1224 class TCMalloc_PageHeap {
1225 public:
1226 void init();
1227
1228 // Allocate a run of "n" pages. Returns zero if out of memory.
1229 Span* New(Length n);
1230
1231 // Delete the span "[p, p+n-1]".
1232 // REQUIRES: span was returned by earlier call to New() and
1233 // has not yet been deleted.
1234 void Delete(Span* span);
1235
1236 // Mark an allocated span as being used for small objects of the
1237 // specified size-class.
1238 // REQUIRES: span was returned by an earlier call to New()
1239 // and has not yet been deleted.
1240 void RegisterSizeClass(Span* span, size_t sc);
1241
1242 // Split an allocated span into two spans: one of length "n" pages
1243 // followed by another span of length "span->length - n" pages.
1244 // Modifies "*span" to point to the first span of length "n" pages.
1245 // Returns a pointer to the second span.
1246 //
1247 // REQUIRES: "0 < n < span->length"
1248 // REQUIRES: !span->free
1249 // REQUIRES: span->sizeclass == 0
1250 Span* Split(Span* span, Length n);
1251
1252 // Return the descriptor for the specified page.
GetDescriptor(PageID p) const1253 inline Span* GetDescriptor(PageID p) const {
1254 return reinterpret_cast<Span*>(pagemap_.get(p));
1255 }
1256
1257 #ifdef WTF_CHANGES
GetDescriptorEnsureSafe(PageID p)1258 inline Span* GetDescriptorEnsureSafe(PageID p)
1259 {
1260 pagemap_.Ensure(p, 1);
1261 return GetDescriptor(p);
1262 }
1263
1264 size_t ReturnedBytes() const;
1265 #endif
1266
1267 // Dump state to stderr
1268 #ifndef WTF_CHANGES
1269 void Dump(TCMalloc_Printer* out);
1270 #endif
1271
1272 // Return number of bytes allocated from system
SystemBytes() const1273 inline uint64_t SystemBytes() const { return system_bytes_; }
1274
1275 // Return number of free bytes in heap
FreeBytes() const1276 uint64_t FreeBytes() const {
1277 return (static_cast<uint64_t>(free_pages_) << kPageShift);
1278 }
1279
1280 bool Check();
1281 bool CheckList(Span* list, Length min_pages, Length max_pages);
1282
1283 // Release all pages on the free list for reuse by the OS:
1284 void ReleaseFreePages();
1285
1286 // Return 0 if we have no information, or else the correct sizeclass for p.
1287 // Reads and writes to pagemap_cache_ do not require locking.
1288 // The entries are 64 bits on 64-bit hardware and 16 bits on
1289 // 32-bit hardware, and we don't mind raciness as long as each read of
1290 // an entry yields a valid entry, not a partially updated entry.
GetSizeClassIfCached(PageID p) const1291 size_t GetSizeClassIfCached(PageID p) const {
1292 return pagemap_cache_.GetOrDefault(p, 0);
1293 }
CacheSizeClass(PageID p,size_t cl) const1294 void CacheSizeClass(PageID p, size_t cl) const { pagemap_cache_.Put(p, cl); }
1295
1296 private:
1297 // Pick the appropriate map and cache types based on pointer size
1298 typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap;
1299 typedef MapSelector<8*sizeof(uintptr_t)>::CacheType PageMapCache;
1300 PageMap pagemap_;
1301 mutable PageMapCache pagemap_cache_;
1302
1303 // We segregate spans of a given size into two circular linked
1304 // lists: one for normal spans, and one for spans whose memory
1305 // has been returned to the system.
1306 struct SpanList {
1307 Span normal;
1308 Span returned;
1309 };
1310
1311 // List of free spans of length >= kMaxPages
1312 SpanList large_;
1313
1314 // Array mapping from span length to a doubly linked list of free spans
1315 SpanList free_[kMaxPages];
1316
1317 // Number of pages kept in free lists
1318 uintptr_t free_pages_;
1319
1320 // Bytes allocated from system
1321 uint64_t system_bytes_;
1322
1323 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1324 // Number of pages kept in free lists that are still committed.
1325 Length free_committed_pages_;
1326
1327 // Number of pages that we committed in the last scavenge wait interval.
1328 Length pages_committed_since_last_scavenge_;
1329 #endif
1330
1331 bool GrowHeap(Length n);
1332
1333 // REQUIRES span->length >= n
1334 // Remove span from its free list, and move any leftover part of
1335 // span into appropriate free lists. Also update "span" to have
1336 // length exactly "n" and mark it as non-free so it can be returned
1337 // to the client.
1338 //
1339 // "released" is true iff "span" was found on a "returned" list.
1340 void Carve(Span* span, Length n, bool released);
1341
RecordSpan(Span * span)1342 void RecordSpan(Span* span) {
1343 pagemap_.set(span->start, span);
1344 if (span->length > 1) {
1345 pagemap_.set(span->start + span->length - 1, span);
1346 }
1347 }
1348
1349 // Allocate a large span of length == n. If successful, returns a
1350 // span of exactly the specified length. Else, returns NULL.
1351 Span* AllocLarge(Length n);
1352
1353 #if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1354 // Incrementally release some memory to the system.
1355 // IncrementalScavenge(n) is called whenever n pages are freed.
1356 void IncrementalScavenge(Length n);
1357 #endif
1358
1359 // Number of pages to deallocate before doing more scavenging
1360 int64_t scavenge_counter_;
1361
1362 // Index of last free list we scavenged
1363 size_t scavenge_index_;
1364
1365 #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
1366 friend class FastMallocZone;
1367 #endif
1368
1369 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1370 static NO_RETURN void* runScavengerThread(void*);
1371
1372 NO_RETURN void scavengerThread();
1373
1374 void scavenge();
1375
1376 inline bool shouldContinueScavenging() const;
1377
1378 pthread_mutex_t m_scavengeMutex;
1379
1380 pthread_cond_t m_scavengeCondition;
1381
1382 // Keeps track of whether the background thread is actively scavenging memory every kScavengeTimerDelayInSeconds, or
1383 // it's blocked waiting for more pages to be deleted.
1384 bool m_scavengeThreadActive;
1385 #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1386 };
1387
init()1388 void TCMalloc_PageHeap::init()
1389 {
1390 pagemap_.init(MetaDataAlloc);
1391 pagemap_cache_ = PageMapCache(0);
1392 free_pages_ = 0;
1393 system_bytes_ = 0;
1394
1395 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1396 free_committed_pages_ = 0;
1397 pages_committed_since_last_scavenge_ = 0;
1398 #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1399
1400 scavenge_counter_ = 0;
1401 // Start scavenging at kMaxPages list
1402 scavenge_index_ = kMaxPages-1;
1403 COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
1404 DLL_Init(&large_.normal);
1405 DLL_Init(&large_.returned);
1406 for (size_t i = 0; i < kMaxPages; i++) {
1407 DLL_Init(&free_[i].normal);
1408 DLL_Init(&free_[i].returned);
1409 }
1410
1411 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1412 pthread_mutex_init(&m_scavengeMutex, 0);
1413 pthread_cond_init(&m_scavengeCondition, 0);
1414 m_scavengeThreadActive = true;
1415 pthread_t thread;
1416 pthread_create(&thread, 0, runScavengerThread, this);
1417 #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1418 }
1419
1420 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
runScavengerThread(void * context)1421 void* TCMalloc_PageHeap::runScavengerThread(void* context)
1422 {
1423 static_cast<TCMalloc_PageHeap*>(context)->scavengerThread();
1424 #if COMPILER(MSVC)
1425 // Without this, Visual Studio will complain that this method does not return a value.
1426 return 0;
1427 #endif
1428 }
1429
scavenge()1430 void TCMalloc_PageHeap::scavenge()
1431 {
1432 // If we have to commit memory in the last 5 seconds, it means we don't have enough free committed pages
1433 // for the amount of allocations that we do. So hold off on releasing memory back to the system.
1434 if (pages_committed_since_last_scavenge_ > 0) {
1435 pages_committed_since_last_scavenge_ = 0;
1436 return;
1437 }
1438 Length pagesDecommitted = 0;
1439 for (int i = kMaxPages; i >= 0; i--) {
1440 SpanList* slist = (static_cast<size_t>(i) == kMaxPages) ? &large_ : &free_[i];
1441 if (!DLL_IsEmpty(&slist->normal)) {
1442 // Release the last span on the normal portion of this list
1443 Span* s = slist->normal.prev;
1444 // Only decommit up to a fraction of the free committed pages if pages_allocated_since_last_scavenge_ > 0.
1445 if ((pagesDecommitted + s->length) * kMaxScavengeAmountFactor > free_committed_pages_)
1446 continue;
1447 DLL_Remove(s);
1448 TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
1449 static_cast<size_t>(s->length << kPageShift));
1450 if (!s->decommitted) {
1451 pagesDecommitted += s->length;
1452 s->decommitted = true;
1453 }
1454 DLL_Prepend(&slist->returned, s);
1455 // We can stop scavenging if the number of free committed pages left is less than or equal to the minimum number we want to keep around.
1456 if (free_committed_pages_ <= kMinimumFreeCommittedPageCount + pagesDecommitted)
1457 break;
1458 }
1459 }
1460 pages_committed_since_last_scavenge_ = 0;
1461 ASSERT(free_committed_pages_ >= pagesDecommitted);
1462 free_committed_pages_ -= pagesDecommitted;
1463 }
1464
shouldContinueScavenging() const1465 inline bool TCMalloc_PageHeap::shouldContinueScavenging() const
1466 {
1467 return free_committed_pages_ > kMinimumFreeCommittedPageCount;
1468 }
1469
1470 #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1471
New(Length n)1472 inline Span* TCMalloc_PageHeap::New(Length n) {
1473 ASSERT(Check());
1474 ASSERT(n > 0);
1475
1476 // Find first size >= n that has a non-empty list
1477 for (Length s = n; s < kMaxPages; s++) {
1478 Span* ll = NULL;
1479 bool released = false;
1480 if (!DLL_IsEmpty(&free_[s].normal)) {
1481 // Found normal span
1482 ll = &free_[s].normal;
1483 } else if (!DLL_IsEmpty(&free_[s].returned)) {
1484 // Found returned span; reallocate it
1485 ll = &free_[s].returned;
1486 released = true;
1487 } else {
1488 // Keep looking in larger classes
1489 continue;
1490 }
1491
1492 Span* result = ll->next;
1493 Carve(result, n, released);
1494 if (result->decommitted) {
1495 TCMalloc_SystemCommit(reinterpret_cast<void*>(result->start << kPageShift), static_cast<size_t>(n << kPageShift));
1496 result->decommitted = false;
1497 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1498 pages_committed_since_last_scavenge_ += n;
1499 #endif
1500 }
1501 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1502 else {
1503 // The newly allocated memory is from a span that's in the normal span list (already committed). Update the
1504 // free committed pages count.
1505 ASSERT(free_committed_pages_ >= n);
1506 free_committed_pages_ -= n;
1507 }
1508 #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1509 ASSERT(Check());
1510 free_pages_ -= n;
1511 return result;
1512 }
1513
1514 Span* result = AllocLarge(n);
1515 if (result != NULL) {
1516 ASSERT_SPAN_COMMITTED(result);
1517 return result;
1518 }
1519
1520 // Grow the heap and try again
1521 if (!GrowHeap(n)) {
1522 ASSERT(Check());
1523 return NULL;
1524 }
1525
1526 return AllocLarge(n);
1527 }
1528
AllocLarge(Length n)1529 Span* TCMalloc_PageHeap::AllocLarge(Length n) {
1530 // find the best span (closest to n in size).
1531 // The following loops implements address-ordered best-fit.
1532 bool from_released = false;
1533 Span *best = NULL;
1534
1535 // Search through normal list
1536 for (Span* span = large_.normal.next;
1537 span != &large_.normal;
1538 span = span->next) {
1539 if (span->length >= n) {
1540 if ((best == NULL)
1541 || (span->length < best->length)
1542 || ((span->length == best->length) && (span->start < best->start))) {
1543 best = span;
1544 from_released = false;
1545 }
1546 }
1547 }
1548
1549 // Search through released list in case it has a better fit
1550 for (Span* span = large_.returned.next;
1551 span != &large_.returned;
1552 span = span->next) {
1553 if (span->length >= n) {
1554 if ((best == NULL)
1555 || (span->length < best->length)
1556 || ((span->length == best->length) && (span->start < best->start))) {
1557 best = span;
1558 from_released = true;
1559 }
1560 }
1561 }
1562
1563 if (best != NULL) {
1564 Carve(best, n, from_released);
1565 if (best->decommitted) {
1566 TCMalloc_SystemCommit(reinterpret_cast<void*>(best->start << kPageShift), static_cast<size_t>(n << kPageShift));
1567 best->decommitted = false;
1568 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1569 pages_committed_since_last_scavenge_ += n;
1570 #endif
1571 }
1572 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1573 else {
1574 // The newly allocated memory is from a span that's in the normal span list (already committed). Update the
1575 // free committed pages count.
1576 ASSERT(free_committed_pages_ >= n);
1577 free_committed_pages_ -= n;
1578 }
1579 #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1580 ASSERT(Check());
1581 free_pages_ -= n;
1582 return best;
1583 }
1584 return NULL;
1585 }
1586
Split(Span * span,Length n)1587 Span* TCMalloc_PageHeap::Split(Span* span, Length n) {
1588 ASSERT(0 < n);
1589 ASSERT(n < span->length);
1590 ASSERT(!span->free);
1591 ASSERT(span->sizeclass == 0);
1592 Event(span, 'T', n);
1593
1594 const Length extra = span->length - n;
1595 Span* leftover = NewSpan(span->start + n, extra);
1596 Event(leftover, 'U', extra);
1597 RecordSpan(leftover);
1598 pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
1599 span->length = n;
1600
1601 return leftover;
1602 }
1603
propagateDecommittedState(Span * destination,Span * source)1604 static ALWAYS_INLINE void propagateDecommittedState(Span* destination, Span* source)
1605 {
1606 destination->decommitted = source->decommitted;
1607 }
1608
Carve(Span * span,Length n,bool released)1609 inline void TCMalloc_PageHeap::Carve(Span* span, Length n, bool released) {
1610 ASSERT(n > 0);
1611 DLL_Remove(span);
1612 span->free = 0;
1613 Event(span, 'A', n);
1614
1615 const int extra = static_cast<int>(span->length - n);
1616 ASSERT(extra >= 0);
1617 if (extra > 0) {
1618 Span* leftover = NewSpan(span->start + n, extra);
1619 leftover->free = 1;
1620 propagateDecommittedState(leftover, span);
1621 Event(leftover, 'S', extra);
1622 RecordSpan(leftover);
1623
1624 // Place leftover span on appropriate free list
1625 SpanList* listpair = (static_cast<size_t>(extra) < kMaxPages) ? &free_[extra] : &large_;
1626 Span* dst = released ? &listpair->returned : &listpair->normal;
1627 DLL_Prepend(dst, leftover);
1628
1629 span->length = n;
1630 pagemap_.set(span->start + n - 1, span);
1631 }
1632 }
1633
mergeDecommittedStates(Span * destination,Span * other)1634 static ALWAYS_INLINE void mergeDecommittedStates(Span* destination, Span* other)
1635 {
1636 if (destination->decommitted && !other->decommitted) {
1637 TCMalloc_SystemRelease(reinterpret_cast<void*>(other->start << kPageShift),
1638 static_cast<size_t>(other->length << kPageShift));
1639 } else if (other->decommitted && !destination->decommitted) {
1640 TCMalloc_SystemRelease(reinterpret_cast<void*>(destination->start << kPageShift),
1641 static_cast<size_t>(destination->length << kPageShift));
1642 destination->decommitted = true;
1643 }
1644 }
1645
Delete(Span * span)1646 inline void TCMalloc_PageHeap::Delete(Span* span) {
1647 ASSERT(Check());
1648 ASSERT(!span->free);
1649 ASSERT(span->length > 0);
1650 ASSERT(GetDescriptor(span->start) == span);
1651 ASSERT(GetDescriptor(span->start + span->length - 1) == span);
1652 span->sizeclass = 0;
1653 #ifndef NO_TCMALLOC_SAMPLES
1654 span->sample = 0;
1655 #endif
1656
1657 // Coalesce -- we guarantee that "p" != 0, so no bounds checking
1658 // necessary. We do not bother resetting the stale pagemap
1659 // entries for the pieces we are merging together because we only
1660 // care about the pagemap entries for the boundaries.
1661 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1662 // Track the total size of the neighboring free spans that are committed.
1663 Length neighboringCommittedSpansLength = 0;
1664 #endif
1665 const PageID p = span->start;
1666 const Length n = span->length;
1667 Span* prev = GetDescriptor(p-1);
1668 if (prev != NULL && prev->free) {
1669 // Merge preceding span into this span
1670 ASSERT(prev->start + prev->length == p);
1671 const Length len = prev->length;
1672 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1673 if (!prev->decommitted)
1674 neighboringCommittedSpansLength += len;
1675 #endif
1676 mergeDecommittedStates(span, prev);
1677 DLL_Remove(prev);
1678 DeleteSpan(prev);
1679 span->start -= len;
1680 span->length += len;
1681 pagemap_.set(span->start, span);
1682 Event(span, 'L', len);
1683 }
1684 Span* next = GetDescriptor(p+n);
1685 if (next != NULL && next->free) {
1686 // Merge next span into this span
1687 ASSERT(next->start == p+n);
1688 const Length len = next->length;
1689 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1690 if (!next->decommitted)
1691 neighboringCommittedSpansLength += len;
1692 #endif
1693 mergeDecommittedStates(span, next);
1694 DLL_Remove(next);
1695 DeleteSpan(next);
1696 span->length += len;
1697 pagemap_.set(span->start + span->length - 1, span);
1698 Event(span, 'R', len);
1699 }
1700
1701 Event(span, 'D', span->length);
1702 span->free = 1;
1703 if (span->decommitted) {
1704 if (span->length < kMaxPages)
1705 DLL_Prepend(&free_[span->length].returned, span);
1706 else
1707 DLL_Prepend(&large_.returned, span);
1708 } else {
1709 if (span->length < kMaxPages)
1710 DLL_Prepend(&free_[span->length].normal, span);
1711 else
1712 DLL_Prepend(&large_.normal, span);
1713 }
1714 free_pages_ += n;
1715
1716 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1717 if (span->decommitted) {
1718 // If the merged span is decommitted, that means we decommitted any neighboring spans that were
1719 // committed. Update the free committed pages count.
1720 free_committed_pages_ -= neighboringCommittedSpansLength;
1721 } else {
1722 // If the merged span remains committed, add the deleted span's size to the free committed pages count.
1723 free_committed_pages_ += n;
1724 }
1725
1726 // Make sure the scavenge thread becomes active if we have enough freed pages to release some back to the system.
1727 if (!m_scavengeThreadActive && shouldContinueScavenging())
1728 pthread_cond_signal(&m_scavengeCondition);
1729 #else
1730 IncrementalScavenge(n);
1731 #endif
1732
1733 ASSERT(Check());
1734 }
1735
1736 #if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
IncrementalScavenge(Length n)1737 void TCMalloc_PageHeap::IncrementalScavenge(Length n) {
1738 // Fast path; not yet time to release memory
1739 scavenge_counter_ -= n;
1740 if (scavenge_counter_ >= 0) return; // Not yet time to scavenge
1741
1742 // If there is nothing to release, wait for so many pages before
1743 // scavenging again. With 4K pages, this comes to 16MB of memory.
1744 static const size_t kDefaultReleaseDelay = 1 << 8;
1745
1746 // Find index of free list to scavenge
1747 size_t index = scavenge_index_ + 1;
1748 for (size_t i = 0; i < kMaxPages+1; i++) {
1749 if (index > kMaxPages) index = 0;
1750 SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index];
1751 if (!DLL_IsEmpty(&slist->normal)) {
1752 // Release the last span on the normal portion of this list
1753 Span* s = slist->normal.prev;
1754 DLL_Remove(s);
1755 TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
1756 static_cast<size_t>(s->length << kPageShift));
1757 s->decommitted = true;
1758 DLL_Prepend(&slist->returned, s);
1759
1760 scavenge_counter_ = std::max<size_t>(64UL, std::min<size_t>(kDefaultReleaseDelay, kDefaultReleaseDelay - (free_pages_ / kDefaultReleaseDelay)));
1761
1762 if (index == kMaxPages && !DLL_IsEmpty(&slist->normal))
1763 scavenge_index_ = index - 1;
1764 else
1765 scavenge_index_ = index;
1766 return;
1767 }
1768 index++;
1769 }
1770
1771 // Nothing to scavenge, delay for a while
1772 scavenge_counter_ = kDefaultReleaseDelay;
1773 }
1774 #endif
1775
RegisterSizeClass(Span * span,size_t sc)1776 void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) {
1777 // Associate span object with all interior pages as well
1778 ASSERT(!span->free);
1779 ASSERT(GetDescriptor(span->start) == span);
1780 ASSERT(GetDescriptor(span->start+span->length-1) == span);
1781 Event(span, 'C', sc);
1782 span->sizeclass = static_cast<unsigned int>(sc);
1783 for (Length i = 1; i < span->length-1; i++) {
1784 pagemap_.set(span->start+i, span);
1785 }
1786 }
1787
1788 #ifdef WTF_CHANGES
ReturnedBytes() const1789 size_t TCMalloc_PageHeap::ReturnedBytes() const {
1790 size_t result = 0;
1791 for (unsigned s = 0; s < kMaxPages; s++) {
1792 const int r_length = DLL_Length(&free_[s].returned);
1793 unsigned r_pages = s * r_length;
1794 result += r_pages << kPageShift;
1795 }
1796
1797 for (Span* s = large_.returned.next; s != &large_.returned; s = s->next)
1798 result += s->length << kPageShift;
1799 return result;
1800 }
1801 #endif
1802
1803 #ifndef WTF_CHANGES
PagesToMB(uint64_t pages)1804 static double PagesToMB(uint64_t pages) {
1805 return (pages << kPageShift) / 1048576.0;
1806 }
1807
Dump(TCMalloc_Printer * out)1808 void TCMalloc_PageHeap::Dump(TCMalloc_Printer* out) {
1809 int nonempty_sizes = 0;
1810 for (int s = 0; s < kMaxPages; s++) {
1811 if (!DLL_IsEmpty(&free_[s].normal) || !DLL_IsEmpty(&free_[s].returned)) {
1812 nonempty_sizes++;
1813 }
1814 }
1815 out->printf("------------------------------------------------\n");
1816 out->printf("PageHeap: %d sizes; %6.1f MB free\n",
1817 nonempty_sizes, PagesToMB(free_pages_));
1818 out->printf("------------------------------------------------\n");
1819 uint64_t total_normal = 0;
1820 uint64_t total_returned = 0;
1821 for (int s = 0; s < kMaxPages; s++) {
1822 const int n_length = DLL_Length(&free_[s].normal);
1823 const int r_length = DLL_Length(&free_[s].returned);
1824 if (n_length + r_length > 0) {
1825 uint64_t n_pages = s * n_length;
1826 uint64_t r_pages = s * r_length;
1827 total_normal += n_pages;
1828 total_returned += r_pages;
1829 out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum"
1830 "; unmapped: %6.1f MB; %6.1f MB cum\n",
1831 s,
1832 (n_length + r_length),
1833 PagesToMB(n_pages + r_pages),
1834 PagesToMB(total_normal + total_returned),
1835 PagesToMB(r_pages),
1836 PagesToMB(total_returned));
1837 }
1838 }
1839
1840 uint64_t n_pages = 0;
1841 uint64_t r_pages = 0;
1842 int n_spans = 0;
1843 int r_spans = 0;
1844 out->printf("Normal large spans:\n");
1845 for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) {
1846 out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n",
1847 s->length, PagesToMB(s->length));
1848 n_pages += s->length;
1849 n_spans++;
1850 }
1851 out->printf("Unmapped large spans:\n");
1852 for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) {
1853 out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n",
1854 s->length, PagesToMB(s->length));
1855 r_pages += s->length;
1856 r_spans++;
1857 }
1858 total_normal += n_pages;
1859 total_returned += r_pages;
1860 out->printf(">255 large * %6u spans ~ %6.1f MB; %6.1f MB cum"
1861 "; unmapped: %6.1f MB; %6.1f MB cum\n",
1862 (n_spans + r_spans),
1863 PagesToMB(n_pages + r_pages),
1864 PagesToMB(total_normal + total_returned),
1865 PagesToMB(r_pages),
1866 PagesToMB(total_returned));
1867 }
1868 #endif
1869
GrowHeap(Length n)1870 bool TCMalloc_PageHeap::GrowHeap(Length n) {
1871 ASSERT(kMaxPages >= kMinSystemAlloc);
1872 if (n > kMaxValidPages) return false;
1873 Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
1874 size_t actual_size;
1875 void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
1876 if (ptr == NULL) {
1877 if (n < ask) {
1878 // Try growing just "n" pages
1879 ask = n;
1880 ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
1881 }
1882 if (ptr == NULL) return false;
1883 }
1884 ask = actual_size >> kPageShift;
1885
1886 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1887 pages_committed_since_last_scavenge_ += ask;
1888 #endif
1889
1890 uint64_t old_system_bytes = system_bytes_;
1891 system_bytes_ += (ask << kPageShift);
1892 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
1893 ASSERT(p > 0);
1894
1895 // If we have already a lot of pages allocated, just pre allocate a bunch of
1896 // memory for the page map. This prevents fragmentation by pagemap metadata
1897 // when a program keeps allocating and freeing large blocks.
1898
1899 if (old_system_bytes < kPageMapBigAllocationThreshold
1900 && system_bytes_ >= kPageMapBigAllocationThreshold) {
1901 pagemap_.PreallocateMoreMemory();
1902 }
1903
1904 // Make sure pagemap_ has entries for all of the new pages.
1905 // Plus ensure one before and one after so coalescing code
1906 // does not need bounds-checking.
1907 if (pagemap_.Ensure(p-1, ask+2)) {
1908 // Pretend the new area is allocated and then Delete() it to
1909 // cause any necessary coalescing to occur.
1910 //
1911 // We do not adjust free_pages_ here since Delete() will do it for us.
1912 Span* span = NewSpan(p, ask);
1913 RecordSpan(span);
1914 Delete(span);
1915 ASSERT(Check());
1916 return true;
1917 } else {
1918 // We could not allocate memory within "pagemap_"
1919 // TODO: Once we can return memory to the system, return the new span
1920 return false;
1921 }
1922 }
1923
Check()1924 bool TCMalloc_PageHeap::Check() {
1925 ASSERT(free_[0].normal.next == &free_[0].normal);
1926 ASSERT(free_[0].returned.next == &free_[0].returned);
1927 CheckList(&large_.normal, kMaxPages, 1000000000);
1928 CheckList(&large_.returned, kMaxPages, 1000000000);
1929 for (Length s = 1; s < kMaxPages; s++) {
1930 CheckList(&free_[s].normal, s, s);
1931 CheckList(&free_[s].returned, s, s);
1932 }
1933 return true;
1934 }
1935
1936 #if ASSERT_DISABLED
CheckList(Span *,Length,Length)1937 bool TCMalloc_PageHeap::CheckList(Span*, Length, Length) {
1938 return true;
1939 }
1940 #else
CheckList(Span * list,Length min_pages,Length max_pages)1941 bool TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages) {
1942 for (Span* s = list->next; s != list; s = s->next) {
1943 CHECK_CONDITION(s->free);
1944 CHECK_CONDITION(s->length >= min_pages);
1945 CHECK_CONDITION(s->length <= max_pages);
1946 CHECK_CONDITION(GetDescriptor(s->start) == s);
1947 CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
1948 }
1949 return true;
1950 }
1951 #endif
1952
ReleaseFreeList(Span * list,Span * returned)1953 static void ReleaseFreeList(Span* list, Span* returned) {
1954 // Walk backwards through list so that when we push these
1955 // spans on the "returned" list, we preserve the order.
1956 while (!DLL_IsEmpty(list)) {
1957 Span* s = list->prev;
1958 DLL_Remove(s);
1959 DLL_Prepend(returned, s);
1960 TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
1961 static_cast<size_t>(s->length << kPageShift));
1962 }
1963 }
1964
ReleaseFreePages()1965 void TCMalloc_PageHeap::ReleaseFreePages() {
1966 for (Length s = 0; s < kMaxPages; s++) {
1967 ReleaseFreeList(&free_[s].normal, &free_[s].returned);
1968 }
1969 ReleaseFreeList(&large_.normal, &large_.returned);
1970 ASSERT(Check());
1971 }
1972
1973 //-------------------------------------------------------------------
1974 // Free list
1975 //-------------------------------------------------------------------
1976
1977 class TCMalloc_ThreadCache_FreeList {
1978 private:
1979 void* list_; // Linked list of nodes
1980 uint16_t length_; // Current length
1981 uint16_t lowater_; // Low water mark for list length
1982
1983 public:
Init()1984 void Init() {
1985 list_ = NULL;
1986 length_ = 0;
1987 lowater_ = 0;
1988 }
1989
1990 // Return current length of list
length() const1991 int length() const {
1992 return length_;
1993 }
1994
1995 // Is list empty?
empty() const1996 bool empty() const {
1997 return list_ == NULL;
1998 }
1999
2000 // Low-water mark management
lowwatermark() const2001 int lowwatermark() const { return lowater_; }
clear_lowwatermark()2002 void clear_lowwatermark() { lowater_ = length_; }
2003
Push(void * ptr)2004 ALWAYS_INLINE void Push(void* ptr) {
2005 SLL_Push(&list_, ptr);
2006 length_++;
2007 }
2008
PushRange(int N,void * start,void * end)2009 void PushRange(int N, void *start, void *end) {
2010 SLL_PushRange(&list_, start, end);
2011 length_ = length_ + static_cast<uint16_t>(N);
2012 }
2013
PopRange(int N,void ** start,void ** end)2014 void PopRange(int N, void **start, void **end) {
2015 SLL_PopRange(&list_, N, start, end);
2016 ASSERT(length_ >= N);
2017 length_ = length_ - static_cast<uint16_t>(N);
2018 if (length_ < lowater_) lowater_ = length_;
2019 }
2020
Pop()2021 ALWAYS_INLINE void* Pop() {
2022 ASSERT(list_ != NULL);
2023 length_--;
2024 if (length_ < lowater_) lowater_ = length_;
2025 return SLL_Pop(&list_);
2026 }
2027
2028 #ifdef WTF_CHANGES
2029 template <class Finder, class Reader>
enumerateFreeObjects(Finder & finder,const Reader & reader)2030 void enumerateFreeObjects(Finder& finder, const Reader& reader)
2031 {
2032 for (void* nextObject = list_; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
2033 finder.visit(nextObject);
2034 }
2035 #endif
2036 };
2037
2038 //-------------------------------------------------------------------
2039 // Data kept per thread
2040 //-------------------------------------------------------------------
2041
2042 class TCMalloc_ThreadCache {
2043 private:
2044 typedef TCMalloc_ThreadCache_FreeList FreeList;
2045 #if COMPILER(MSVC)
2046 typedef DWORD ThreadIdentifier;
2047 #else
2048 typedef pthread_t ThreadIdentifier;
2049 #endif
2050
2051 size_t size_; // Combined size of data
2052 ThreadIdentifier tid_; // Which thread owns it
2053 bool in_setspecific_; // Called pthread_setspecific?
2054 FreeList list_[kNumClasses]; // Array indexed by size-class
2055
2056 // We sample allocations, biased by the size of the allocation
2057 uint32_t rnd_; // Cheap random number generator
2058 size_t bytes_until_sample_; // Bytes until we sample next
2059
2060 // Allocate a new heap. REQUIRES: pageheap_lock is held.
2061 static inline TCMalloc_ThreadCache* NewHeap(ThreadIdentifier tid);
2062
2063 // Use only as pthread thread-specific destructor function.
2064 static void DestroyThreadCache(void* ptr);
2065 public:
2066 // All ThreadCache objects are kept in a linked list (for stats collection)
2067 TCMalloc_ThreadCache* next_;
2068 TCMalloc_ThreadCache* prev_;
2069
2070 void Init(ThreadIdentifier tid);
2071 void Cleanup();
2072
2073 // Accessors (mostly just for printing stats)
freelist_length(size_t cl) const2074 int freelist_length(size_t cl) const { return list_[cl].length(); }
2075
2076 // Total byte size in cache
Size() const2077 size_t Size() const { return size_; }
2078
2079 void* Allocate(size_t size);
2080 void Deallocate(void* ptr, size_t size_class);
2081
2082 void FetchFromCentralCache(size_t cl, size_t allocationSize);
2083 void ReleaseToCentralCache(size_t cl, int N);
2084 void Scavenge();
2085 void Print() const;
2086
2087 // Record allocation of "k" bytes. Return true iff allocation
2088 // should be sampled
2089 bool SampleAllocation(size_t k);
2090
2091 // Pick next sampling point
2092 void PickNextSample(size_t k);
2093
2094 static void InitModule();
2095 static void InitTSD();
2096 static TCMalloc_ThreadCache* GetThreadHeap();
2097 static TCMalloc_ThreadCache* GetCache();
2098 static TCMalloc_ThreadCache* GetCacheIfPresent();
2099 static TCMalloc_ThreadCache* CreateCacheIfNecessary();
2100 static void DeleteCache(TCMalloc_ThreadCache* heap);
2101 static void BecomeIdle();
2102 static void RecomputeThreadCacheSize();
2103
2104 #ifdef WTF_CHANGES
2105 template <class Finder, class Reader>
enumerateFreeObjects(Finder & finder,const Reader & reader)2106 void enumerateFreeObjects(Finder& finder, const Reader& reader)
2107 {
2108 for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++)
2109 list_[sizeClass].enumerateFreeObjects(finder, reader);
2110 }
2111 #endif
2112 };
2113
2114 //-------------------------------------------------------------------
2115 // Data kept per size-class in central cache
2116 //-------------------------------------------------------------------
2117
2118 class TCMalloc_Central_FreeList {
2119 public:
2120 void Init(size_t cl);
2121
2122 // These methods all do internal locking.
2123
2124 // Insert the specified range into the central freelist. N is the number of
2125 // elements in the range.
2126 void InsertRange(void *start, void *end, int N);
2127
2128 // Returns the actual number of fetched elements into N.
2129 void RemoveRange(void **start, void **end, int *N);
2130
2131 // Returns the number of free objects in cache.
length()2132 size_t length() {
2133 SpinLockHolder h(&lock_);
2134 return counter_;
2135 }
2136
2137 // Returns the number of free objects in the transfer cache.
tc_length()2138 int tc_length() {
2139 SpinLockHolder h(&lock_);
2140 return used_slots_ * num_objects_to_move[size_class_];
2141 }
2142
2143 #ifdef WTF_CHANGES
2144 template <class Finder, class Reader>
enumerateFreeObjects(Finder & finder,const Reader & reader,TCMalloc_Central_FreeList * remoteCentralFreeList)2145 void enumerateFreeObjects(Finder& finder, const Reader& reader, TCMalloc_Central_FreeList* remoteCentralFreeList)
2146 {
2147 for (Span* span = &empty_; span && span != &empty_; span = (span->next ? reader(span->next) : 0))
2148 ASSERT(!span->objects);
2149
2150 ASSERT(!nonempty_.objects);
2151 static const ptrdiff_t nonemptyOffset = reinterpret_cast<const char*>(&nonempty_) - reinterpret_cast<const char*>(this);
2152
2153 Span* remoteNonempty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + nonemptyOffset);
2154 Span* remoteSpan = nonempty_.next;
2155
2156 for (Span* span = reader(remoteSpan); span && remoteSpan != remoteNonempty; remoteSpan = span->next, span = (span->next ? reader(span->next) : 0)) {
2157 for (void* nextObject = span->objects; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
2158 finder.visit(nextObject);
2159 }
2160 }
2161 #endif
2162
2163 private:
2164 // REQUIRES: lock_ is held
2165 // Remove object from cache and return.
2166 // Return NULL if no free entries in cache.
2167 void* FetchFromSpans();
2168
2169 // REQUIRES: lock_ is held
2170 // Remove object from cache and return. Fetches
2171 // from pageheap if cache is empty. Only returns
2172 // NULL on allocation failure.
2173 void* FetchFromSpansSafe();
2174
2175 // REQUIRES: lock_ is held
2176 // Release a linked list of objects to spans.
2177 // May temporarily release lock_.
2178 void ReleaseListToSpans(void *start);
2179
2180 // REQUIRES: lock_ is held
2181 // Release an object to spans.
2182 // May temporarily release lock_.
2183 void ReleaseToSpans(void* object);
2184
2185 // REQUIRES: lock_ is held
2186 // Populate cache by fetching from the page heap.
2187 // May temporarily release lock_.
2188 void Populate();
2189
2190 // REQUIRES: lock is held.
2191 // Tries to make room for a TCEntry. If the cache is full it will try to
2192 // expand it at the cost of some other cache size. Return false if there is
2193 // no space.
2194 bool MakeCacheSpace();
2195
2196 // REQUIRES: lock_ for locked_size_class is held.
2197 // Picks a "random" size class to steal TCEntry slot from. In reality it
2198 // just iterates over the sizeclasses but does so without taking a lock.
2199 // Returns true on success.
2200 // May temporarily lock a "random" size class.
2201 static bool EvictRandomSizeClass(size_t locked_size_class, bool force);
2202
2203 // REQUIRES: lock_ is *not* held.
2204 // Tries to shrink the Cache. If force is true it will relase objects to
2205 // spans if it allows it to shrink the cache. Return false if it failed to
2206 // shrink the cache. Decrements cache_size_ on succeess.
2207 // May temporarily take lock_. If it takes lock_, the locked_size_class
2208 // lock is released to the thread from holding two size class locks
2209 // concurrently which could lead to a deadlock.
2210 bool ShrinkCache(int locked_size_class, bool force);
2211
2212 // This lock protects all the data members. cached_entries and cache_size_
2213 // may be looked at without holding the lock.
2214 SpinLock lock_;
2215
2216 // We keep linked lists of empty and non-empty spans.
2217 size_t size_class_; // My size class
2218 Span empty_; // Dummy header for list of empty spans
2219 Span nonempty_; // Dummy header for list of non-empty spans
2220 size_t counter_; // Number of free objects in cache entry
2221
2222 // Here we reserve space for TCEntry cache slots. Since one size class can
2223 // end up getting all the TCEntries quota in the system we just preallocate
2224 // sufficient number of entries here.
2225 TCEntry tc_slots_[kNumTransferEntries];
2226
2227 // Number of currently used cached entries in tc_slots_. This variable is
2228 // updated under a lock but can be read without one.
2229 int32_t used_slots_;
2230 // The current number of slots for this size class. This is an
2231 // adaptive value that is increased if there is lots of traffic
2232 // on a given size class.
2233 int32_t cache_size_;
2234 };
2235
2236 // Pad each CentralCache object to multiple of 64 bytes
2237 class TCMalloc_Central_FreeListPadded : public TCMalloc_Central_FreeList {
2238 private:
2239 char pad_[(64 - (sizeof(TCMalloc_Central_FreeList) % 64)) % 64];
2240 };
2241
2242 //-------------------------------------------------------------------
2243 // Global variables
2244 //-------------------------------------------------------------------
2245
2246 // Central cache -- a collection of free-lists, one per size-class.
2247 // We have a separate lock per free-list to reduce contention.
2248 static TCMalloc_Central_FreeListPadded central_cache[kNumClasses];
2249
2250 // Page-level allocator
2251 static SpinLock pageheap_lock = SPINLOCK_INITIALIZER;
2252 static void* pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(void*) - 1) / sizeof(void*)];
2253 static bool phinited = false;
2254
2255 // Avoid extra level of indirection by making "pageheap" be just an alias
2256 // of pageheap_memory.
2257 typedef union {
2258 void* m_memory;
2259 TCMalloc_PageHeap* m_pageHeap;
2260 } PageHeapUnion;
2261
getPageHeap()2262 static inline TCMalloc_PageHeap* getPageHeap()
2263 {
2264 PageHeapUnion u = { &pageheap_memory[0] };
2265 return u.m_pageHeap;
2266 }
2267
2268 #define pageheap getPageHeap()
2269
2270 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2271 #if PLATFORM(WIN)
sleep(unsigned seconds)2272 static void sleep(unsigned seconds)
2273 {
2274 ::Sleep(seconds * 1000);
2275 }
2276 #endif
2277
scavengerThread()2278 void TCMalloc_PageHeap::scavengerThread()
2279 {
2280 while (1) {
2281 if (!shouldContinueScavenging()) {
2282 pthread_mutex_lock(&m_scavengeMutex);
2283 m_scavengeThreadActive = false;
2284 // Block until there are enough freed pages to release back to the system.
2285 pthread_cond_wait(&m_scavengeCondition, &m_scavengeMutex);
2286 m_scavengeThreadActive = true;
2287 pthread_mutex_unlock(&m_scavengeMutex);
2288 }
2289 sleep(kScavengeTimerDelayInSeconds);
2290 {
2291 SpinLockHolder h(&pageheap_lock);
2292 pageheap->scavenge();
2293 }
2294 }
2295 }
2296 #endif
2297
2298 // If TLS is available, we also store a copy
2299 // of the per-thread object in a __thread variable
2300 // since __thread variables are faster to read
2301 // than pthread_getspecific(). We still need
2302 // pthread_setspecific() because __thread
2303 // variables provide no way to run cleanup
2304 // code when a thread is destroyed.
2305 #ifdef HAVE_TLS
2306 static __thread TCMalloc_ThreadCache *threadlocal_heap;
2307 #endif
2308 // Thread-specific key. Initialization here is somewhat tricky
2309 // because some Linux startup code invokes malloc() before it
2310 // is in a good enough state to handle pthread_keycreate().
2311 // Therefore, we use TSD keys only after tsd_inited is set to true.
2312 // Until then, we use a slow path to get the heap object.
2313 static bool tsd_inited = false;
2314 static pthread_key_t heap_key;
2315 #if COMPILER(MSVC)
2316 DWORD tlsIndex = TLS_OUT_OF_INDEXES;
2317 #endif
2318
setThreadHeap(TCMalloc_ThreadCache * heap)2319 static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap)
2320 {
2321 // still do pthread_setspecific when using MSVC fast TLS to
2322 // benefit from the delete callback.
2323 pthread_setspecific(heap_key, heap);
2324 #if COMPILER(MSVC)
2325 TlsSetValue(tlsIndex, heap);
2326 #endif
2327 }
2328
2329 // Allocator for thread heaps
2330 static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator;
2331
2332 // Linked list of heap objects. Protected by pageheap_lock.
2333 static TCMalloc_ThreadCache* thread_heaps = NULL;
2334 static int thread_heap_count = 0;
2335
2336 // Overall thread cache size. Protected by pageheap_lock.
2337 static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize;
2338
2339 // Global per-thread cache size. Writes are protected by
2340 // pageheap_lock. Reads are done without any locking, which should be
2341 // fine as long as size_t can be written atomically and we don't place
2342 // invariants between this variable and other pieces of state.
2343 static volatile size_t per_thread_cache_size = kMaxThreadCacheSize;
2344
2345 //-------------------------------------------------------------------
2346 // Central cache implementation
2347 //-------------------------------------------------------------------
2348
Init(size_t cl)2349 void TCMalloc_Central_FreeList::Init(size_t cl) {
2350 lock_.Init();
2351 size_class_ = cl;
2352 DLL_Init(&empty_);
2353 DLL_Init(&nonempty_);
2354 counter_ = 0;
2355
2356 cache_size_ = 1;
2357 used_slots_ = 0;
2358 ASSERT(cache_size_ <= kNumTransferEntries);
2359 }
2360
ReleaseListToSpans(void * start)2361 void TCMalloc_Central_FreeList::ReleaseListToSpans(void* start) {
2362 while (start) {
2363 void *next = SLL_Next(start);
2364 ReleaseToSpans(start);
2365 start = next;
2366 }
2367 }
2368
ReleaseToSpans(void * object)2369 ALWAYS_INLINE void TCMalloc_Central_FreeList::ReleaseToSpans(void* object) {
2370 const PageID p = reinterpret_cast<uintptr_t>(object) >> kPageShift;
2371 Span* span = pageheap->GetDescriptor(p);
2372 ASSERT(span != NULL);
2373 ASSERT(span->refcount > 0);
2374
2375 // If span is empty, move it to non-empty list
2376 if (span->objects == NULL) {
2377 DLL_Remove(span);
2378 DLL_Prepend(&nonempty_, span);
2379 Event(span, 'N', 0);
2380 }
2381
2382 // The following check is expensive, so it is disabled by default
2383 if (false) {
2384 // Check that object does not occur in list
2385 int got = 0;
2386 for (void* p = span->objects; p != NULL; p = *((void**) p)) {
2387 ASSERT(p != object);
2388 got++;
2389 }
2390 ASSERT(got + span->refcount ==
2391 (span->length<<kPageShift)/ByteSizeForClass(span->sizeclass));
2392 }
2393
2394 counter_++;
2395 span->refcount--;
2396 if (span->refcount == 0) {
2397 Event(span, '#', 0);
2398 counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass);
2399 DLL_Remove(span);
2400
2401 // Release central list lock while operating on pageheap
2402 lock_.Unlock();
2403 {
2404 SpinLockHolder h(&pageheap_lock);
2405 pageheap->Delete(span);
2406 }
2407 lock_.Lock();
2408 } else {
2409 *(reinterpret_cast<void**>(object)) = span->objects;
2410 span->objects = object;
2411 }
2412 }
2413
EvictRandomSizeClass(size_t locked_size_class,bool force)2414 ALWAYS_INLINE bool TCMalloc_Central_FreeList::EvictRandomSizeClass(
2415 size_t locked_size_class, bool force) {
2416 static int race_counter = 0;
2417 int t = race_counter++; // Updated without a lock, but who cares.
2418 if (t >= static_cast<int>(kNumClasses)) {
2419 while (t >= static_cast<int>(kNumClasses)) {
2420 t -= kNumClasses;
2421 }
2422 race_counter = t;
2423 }
2424 ASSERT(t >= 0);
2425 ASSERT(t < static_cast<int>(kNumClasses));
2426 if (t == static_cast<int>(locked_size_class)) return false;
2427 return central_cache[t].ShrinkCache(static_cast<int>(locked_size_class), force);
2428 }
2429
MakeCacheSpace()2430 bool TCMalloc_Central_FreeList::MakeCacheSpace() {
2431 // Is there room in the cache?
2432 if (used_slots_ < cache_size_) return true;
2433 // Check if we can expand this cache?
2434 if (cache_size_ == kNumTransferEntries) return false;
2435 // Ok, we'll try to grab an entry from some other size class.
2436 if (EvictRandomSizeClass(size_class_, false) ||
2437 EvictRandomSizeClass(size_class_, true)) {
2438 // Succeeded in evicting, we're going to make our cache larger.
2439 cache_size_++;
2440 return true;
2441 }
2442 return false;
2443 }
2444
2445
2446 namespace {
2447 class LockInverter {
2448 private:
2449 SpinLock *held_, *temp_;
2450 public:
LockInverter(SpinLock * held,SpinLock * temp)2451 inline explicit LockInverter(SpinLock* held, SpinLock *temp)
2452 : held_(held), temp_(temp) { held_->Unlock(); temp_->Lock(); }
~LockInverter()2453 inline ~LockInverter() { temp_->Unlock(); held_->Lock(); }
2454 };
2455 }
2456
ShrinkCache(int locked_size_class,bool force)2457 bool TCMalloc_Central_FreeList::ShrinkCache(int locked_size_class, bool force) {
2458 // Start with a quick check without taking a lock.
2459 if (cache_size_ == 0) return false;
2460 // We don't evict from a full cache unless we are 'forcing'.
2461 if (force == false && used_slots_ == cache_size_) return false;
2462
2463 // Grab lock, but first release the other lock held by this thread. We use
2464 // the lock inverter to ensure that we never hold two size class locks
2465 // concurrently. That can create a deadlock because there is no well
2466 // defined nesting order.
2467 LockInverter li(¢ral_cache[locked_size_class].lock_, &lock_);
2468 ASSERT(used_slots_ <= cache_size_);
2469 ASSERT(0 <= cache_size_);
2470 if (cache_size_ == 0) return false;
2471 if (used_slots_ == cache_size_) {
2472 if (force == false) return false;
2473 // ReleaseListToSpans releases the lock, so we have to make all the
2474 // updates to the central list before calling it.
2475 cache_size_--;
2476 used_slots_--;
2477 ReleaseListToSpans(tc_slots_[used_slots_].head);
2478 return true;
2479 }
2480 cache_size_--;
2481 return true;
2482 }
2483
InsertRange(void * start,void * end,int N)2484 void TCMalloc_Central_FreeList::InsertRange(void *start, void *end, int N) {
2485 SpinLockHolder h(&lock_);
2486 if (N == num_objects_to_move[size_class_] &&
2487 MakeCacheSpace()) {
2488 int slot = used_slots_++;
2489 ASSERT(slot >=0);
2490 ASSERT(slot < kNumTransferEntries);
2491 TCEntry *entry = &tc_slots_[slot];
2492 entry->head = start;
2493 entry->tail = end;
2494 return;
2495 }
2496 ReleaseListToSpans(start);
2497 }
2498
RemoveRange(void ** start,void ** end,int * N)2499 void TCMalloc_Central_FreeList::RemoveRange(void **start, void **end, int *N) {
2500 int num = *N;
2501 ASSERT(num > 0);
2502
2503 SpinLockHolder h(&lock_);
2504 if (num == num_objects_to_move[size_class_] && used_slots_ > 0) {
2505 int slot = --used_slots_;
2506 ASSERT(slot >= 0);
2507 TCEntry *entry = &tc_slots_[slot];
2508 *start = entry->head;
2509 *end = entry->tail;
2510 return;
2511 }
2512
2513 // TODO: Prefetch multiple TCEntries?
2514 void *tail = FetchFromSpansSafe();
2515 if (!tail) {
2516 // We are completely out of memory.
2517 *start = *end = NULL;
2518 *N = 0;
2519 return;
2520 }
2521
2522 SLL_SetNext(tail, NULL);
2523 void *head = tail;
2524 int count = 1;
2525 while (count < num) {
2526 void *t = FetchFromSpans();
2527 if (!t) break;
2528 SLL_Push(&head, t);
2529 count++;
2530 }
2531 *start = head;
2532 *end = tail;
2533 *N = count;
2534 }
2535
2536
FetchFromSpansSafe()2537 void* TCMalloc_Central_FreeList::FetchFromSpansSafe() {
2538 void *t = FetchFromSpans();
2539 if (!t) {
2540 Populate();
2541 t = FetchFromSpans();
2542 }
2543 return t;
2544 }
2545
FetchFromSpans()2546 void* TCMalloc_Central_FreeList::FetchFromSpans() {
2547 if (DLL_IsEmpty(&nonempty_)) return NULL;
2548 Span* span = nonempty_.next;
2549
2550 ASSERT(span->objects != NULL);
2551 ASSERT_SPAN_COMMITTED(span);
2552 span->refcount++;
2553 void* result = span->objects;
2554 span->objects = *(reinterpret_cast<void**>(result));
2555 if (span->objects == NULL) {
2556 // Move to empty list
2557 DLL_Remove(span);
2558 DLL_Prepend(&empty_, span);
2559 Event(span, 'E', 0);
2560 }
2561 counter_--;
2562 return result;
2563 }
2564
2565 // Fetch memory from the system and add to the central cache freelist.
Populate()2566 ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() {
2567 // Release central list lock while operating on pageheap
2568 lock_.Unlock();
2569 const size_t npages = class_to_pages[size_class_];
2570
2571 Span* span;
2572 {
2573 SpinLockHolder h(&pageheap_lock);
2574 span = pageheap->New(npages);
2575 if (span) pageheap->RegisterSizeClass(span, size_class_);
2576 }
2577 if (span == NULL) {
2578 MESSAGE("allocation failed: %d\n", errno);
2579 lock_.Lock();
2580 return;
2581 }
2582 ASSERT_SPAN_COMMITTED(span);
2583 ASSERT(span->length == npages);
2584 // Cache sizeclass info eagerly. Locking is not necessary.
2585 // (Instead of being eager, we could just replace any stale info
2586 // about this span, but that seems to be no better in practice.)
2587 for (size_t i = 0; i < npages; i++) {
2588 pageheap->CacheSizeClass(span->start + i, size_class_);
2589 }
2590
2591 // Split the block into pieces and add to the free-list
2592 // TODO: coloring of objects to avoid cache conflicts?
2593 void** tail = &span->objects;
2594 char* ptr = reinterpret_cast<char*>(span->start << kPageShift);
2595 char* limit = ptr + (npages << kPageShift);
2596 const size_t size = ByteSizeForClass(size_class_);
2597 int num = 0;
2598 char* nptr;
2599 while ((nptr = ptr + size) <= limit) {
2600 *tail = ptr;
2601 tail = reinterpret_cast<void**>(ptr);
2602 ptr = nptr;
2603 num++;
2604 }
2605 ASSERT(ptr <= limit);
2606 *tail = NULL;
2607 span->refcount = 0; // No sub-object in use yet
2608
2609 // Add span to list of non-empty spans
2610 lock_.Lock();
2611 DLL_Prepend(&nonempty_, span);
2612 counter_ += num;
2613 }
2614
2615 //-------------------------------------------------------------------
2616 // TCMalloc_ThreadCache implementation
2617 //-------------------------------------------------------------------
2618
SampleAllocation(size_t k)2619 inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) {
2620 if (bytes_until_sample_ < k) {
2621 PickNextSample(k);
2622 return true;
2623 } else {
2624 bytes_until_sample_ -= k;
2625 return false;
2626 }
2627 }
2628
Init(ThreadIdentifier tid)2629 void TCMalloc_ThreadCache::Init(ThreadIdentifier tid) {
2630 size_ = 0;
2631 next_ = NULL;
2632 prev_ = NULL;
2633 tid_ = tid;
2634 in_setspecific_ = false;
2635 for (size_t cl = 0; cl < kNumClasses; ++cl) {
2636 list_[cl].Init();
2637 }
2638
2639 // Initialize RNG -- run it for a bit to get to good values
2640 bytes_until_sample_ = 0;
2641 rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
2642 for (int i = 0; i < 100; i++) {
2643 PickNextSample(static_cast<size_t>(FLAGS_tcmalloc_sample_parameter * 2));
2644 }
2645 }
2646
Cleanup()2647 void TCMalloc_ThreadCache::Cleanup() {
2648 // Put unused memory back into central cache
2649 for (size_t cl = 0; cl < kNumClasses; ++cl) {
2650 if (list_[cl].length() > 0) {
2651 ReleaseToCentralCache(cl, list_[cl].length());
2652 }
2653 }
2654 }
2655
Allocate(size_t size)2656 ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) {
2657 ASSERT(size <= kMaxSize);
2658 const size_t cl = SizeClass(size);
2659 FreeList* list = &list_[cl];
2660 size_t allocationSize = ByteSizeForClass(cl);
2661 if (list->empty()) {
2662 FetchFromCentralCache(cl, allocationSize);
2663 if (list->empty()) return NULL;
2664 }
2665 size_ -= allocationSize;
2666 return list->Pop();
2667 }
2668
Deallocate(void * ptr,size_t cl)2669 inline void TCMalloc_ThreadCache::Deallocate(void* ptr, size_t cl) {
2670 size_ += ByteSizeForClass(cl);
2671 FreeList* list = &list_[cl];
2672 list->Push(ptr);
2673 // If enough data is free, put back into central cache
2674 if (list->length() > kMaxFreeListLength) {
2675 ReleaseToCentralCache(cl, num_objects_to_move[cl]);
2676 }
2677 if (size_ >= per_thread_cache_size) Scavenge();
2678 }
2679
2680 // Remove some objects of class "cl" from central cache and add to thread heap
FetchFromCentralCache(size_t cl,size_t allocationSize)2681 ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t allocationSize) {
2682 int fetch_count = num_objects_to_move[cl];
2683 void *start, *end;
2684 central_cache[cl].RemoveRange(&start, &end, &fetch_count);
2685 list_[cl].PushRange(fetch_count, start, end);
2686 size_ += allocationSize * fetch_count;
2687 }
2688
2689 // Remove some objects of class "cl" from thread heap and add to central cache
ReleaseToCentralCache(size_t cl,int N)2690 inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) {
2691 ASSERT(N > 0);
2692 FreeList* src = &list_[cl];
2693 if (N > src->length()) N = src->length();
2694 size_ -= N*ByteSizeForClass(cl);
2695
2696 // We return prepackaged chains of the correct size to the central cache.
2697 // TODO: Use the same format internally in the thread caches?
2698 int batch_size = num_objects_to_move[cl];
2699 while (N > batch_size) {
2700 void *tail, *head;
2701 src->PopRange(batch_size, &head, &tail);
2702 central_cache[cl].InsertRange(head, tail, batch_size);
2703 N -= batch_size;
2704 }
2705 void *tail, *head;
2706 src->PopRange(N, &head, &tail);
2707 central_cache[cl].InsertRange(head, tail, N);
2708 }
2709
2710 // Release idle memory to the central cache
Scavenge()2711 inline void TCMalloc_ThreadCache::Scavenge() {
2712 // If the low-water mark for the free list is L, it means we would
2713 // not have had to allocate anything from the central cache even if
2714 // we had reduced the free list size by L. We aim to get closer to
2715 // that situation by dropping L/2 nodes from the free list. This
2716 // may not release much memory, but if so we will call scavenge again
2717 // pretty soon and the low-water marks will be high on that call.
2718 //int64 start = CycleClock::Now();
2719
2720 for (size_t cl = 0; cl < kNumClasses; cl++) {
2721 FreeList* list = &list_[cl];
2722 const int lowmark = list->lowwatermark();
2723 if (lowmark > 0) {
2724 const int drop = (lowmark > 1) ? lowmark/2 : 1;
2725 ReleaseToCentralCache(cl, drop);
2726 }
2727 list->clear_lowwatermark();
2728 }
2729
2730 //int64 finish = CycleClock::Now();
2731 //CycleTimer ct;
2732 //MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0);
2733 }
2734
PickNextSample(size_t k)2735 void TCMalloc_ThreadCache::PickNextSample(size_t k) {
2736 // Make next "random" number
2737 // x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers
2738 static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0);
2739 uint32_t r = rnd_;
2740 rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly);
2741
2742 // Next point is "rnd_ % (sample_period)". I.e., average
2743 // increment is "sample_period/2".
2744 const int flag_value = static_cast<int>(FLAGS_tcmalloc_sample_parameter);
2745 static int last_flag_value = -1;
2746
2747 if (flag_value != last_flag_value) {
2748 SpinLockHolder h(&sample_period_lock);
2749 int i;
2750 for (i = 0; i < (static_cast<int>(sizeof(primes_list)/sizeof(primes_list[0])) - 1); i++) {
2751 if (primes_list[i] >= flag_value) {
2752 break;
2753 }
2754 }
2755 sample_period = primes_list[i];
2756 last_flag_value = flag_value;
2757 }
2758
2759 bytes_until_sample_ += rnd_ % sample_period;
2760
2761 if (k > (static_cast<size_t>(-1) >> 2)) {
2762 // If the user has asked for a huge allocation then it is possible
2763 // for the code below to loop infinitely. Just return (note that
2764 // this throws off the sampling accuracy somewhat, but a user who
2765 // is allocating more than 1G of memory at a time can live with a
2766 // minor inaccuracy in profiling of small allocations, and also
2767 // would rather not wait for the loop below to terminate).
2768 return;
2769 }
2770
2771 while (bytes_until_sample_ < k) {
2772 // Increase bytes_until_sample_ by enough average sampling periods
2773 // (sample_period >> 1) to allow us to sample past the current
2774 // allocation.
2775 bytes_until_sample_ += (sample_period >> 1);
2776 }
2777
2778 bytes_until_sample_ -= k;
2779 }
2780
InitModule()2781 void TCMalloc_ThreadCache::InitModule() {
2782 // There is a slight potential race here because of double-checked
2783 // locking idiom. However, as long as the program does a small
2784 // allocation before switching to multi-threaded mode, we will be
2785 // fine. We increase the chances of doing such a small allocation
2786 // by doing one in the constructor of the module_enter_exit_hook
2787 // object declared below.
2788 SpinLockHolder h(&pageheap_lock);
2789 if (!phinited) {
2790 #ifdef WTF_CHANGES
2791 InitTSD();
2792 #endif
2793 InitSizeClasses();
2794 threadheap_allocator.Init();
2795 span_allocator.Init();
2796 span_allocator.New(); // Reduce cache conflicts
2797 span_allocator.New(); // Reduce cache conflicts
2798 stacktrace_allocator.Init();
2799 DLL_Init(&sampled_objects);
2800 for (size_t i = 0; i < kNumClasses; ++i) {
2801 central_cache[i].Init(i);
2802 }
2803 pageheap->init();
2804 phinited = 1;
2805 #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
2806 FastMallocZone::init();
2807 #endif
2808 }
2809 }
2810
NewHeap(ThreadIdentifier tid)2811 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::NewHeap(ThreadIdentifier tid) {
2812 // Create the heap and add it to the linked list
2813 TCMalloc_ThreadCache *heap = threadheap_allocator.New();
2814 heap->Init(tid);
2815 heap->next_ = thread_heaps;
2816 heap->prev_ = NULL;
2817 if (thread_heaps != NULL) thread_heaps->prev_ = heap;
2818 thread_heaps = heap;
2819 thread_heap_count++;
2820 RecomputeThreadCacheSize();
2821 return heap;
2822 }
2823
GetThreadHeap()2824 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetThreadHeap() {
2825 #ifdef HAVE_TLS
2826 // __thread is faster, but only when the kernel supports it
2827 if (KernelSupportsTLS())
2828 return threadlocal_heap;
2829 #elif COMPILER(MSVC)
2830 return static_cast<TCMalloc_ThreadCache*>(TlsGetValue(tlsIndex));
2831 #else
2832 return static_cast<TCMalloc_ThreadCache*>(pthread_getspecific(heap_key));
2833 #endif
2834 }
2835
GetCache()2836 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() {
2837 TCMalloc_ThreadCache* ptr = NULL;
2838 if (!tsd_inited) {
2839 InitModule();
2840 } else {
2841 ptr = GetThreadHeap();
2842 }
2843 if (ptr == NULL) ptr = CreateCacheIfNecessary();
2844 return ptr;
2845 }
2846
2847 // In deletion paths, we do not try to create a thread-cache. This is
2848 // because we may be in the thread destruction code and may have
2849 // already cleaned up the cache for this thread.
GetCacheIfPresent()2850 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() {
2851 if (!tsd_inited) return NULL;
2852 void* const p = GetThreadHeap();
2853 return reinterpret_cast<TCMalloc_ThreadCache*>(p);
2854 }
2855
InitTSD()2856 void TCMalloc_ThreadCache::InitTSD() {
2857 ASSERT(!tsd_inited);
2858 pthread_key_create(&heap_key, DestroyThreadCache);
2859 #if COMPILER(MSVC)
2860 tlsIndex = TlsAlloc();
2861 #endif
2862 tsd_inited = true;
2863
2864 #if !COMPILER(MSVC)
2865 // We may have used a fake pthread_t for the main thread. Fix it.
2866 pthread_t zero;
2867 memset(&zero, 0, sizeof(zero));
2868 #endif
2869 #ifndef WTF_CHANGES
2870 SpinLockHolder h(&pageheap_lock);
2871 #else
2872 ASSERT(pageheap_lock.IsHeld());
2873 #endif
2874 for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
2875 #if COMPILER(MSVC)
2876 if (h->tid_ == 0) {
2877 h->tid_ = GetCurrentThreadId();
2878 }
2879 #else
2880 if (pthread_equal(h->tid_, zero)) {
2881 h->tid_ = pthread_self();
2882 }
2883 #endif
2884 }
2885 }
2886
CreateCacheIfNecessary()2887 TCMalloc_ThreadCache* TCMalloc_ThreadCache::CreateCacheIfNecessary() {
2888 // Initialize per-thread data if necessary
2889 TCMalloc_ThreadCache* heap = NULL;
2890 {
2891 SpinLockHolder h(&pageheap_lock);
2892
2893 #if COMPILER(MSVC)
2894 DWORD me;
2895 if (!tsd_inited) {
2896 me = 0;
2897 } else {
2898 me = GetCurrentThreadId();
2899 }
2900 #else
2901 // Early on in glibc's life, we cannot even call pthread_self()
2902 pthread_t me;
2903 if (!tsd_inited) {
2904 memset(&me, 0, sizeof(me));
2905 } else {
2906 me = pthread_self();
2907 }
2908 #endif
2909
2910 // This may be a recursive malloc call from pthread_setspecific()
2911 // In that case, the heap for this thread has already been created
2912 // and added to the linked list. So we search for that first.
2913 for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
2914 #if COMPILER(MSVC)
2915 if (h->tid_ == me) {
2916 #else
2917 if (pthread_equal(h->tid_, me)) {
2918 #endif
2919 heap = h;
2920 break;
2921 }
2922 }
2923
2924 if (heap == NULL) heap = NewHeap(me);
2925 }
2926
2927 // We call pthread_setspecific() outside the lock because it may
2928 // call malloc() recursively. The recursive call will never get
2929 // here again because it will find the already allocated heap in the
2930 // linked list of heaps.
2931 if (!heap->in_setspecific_ && tsd_inited) {
2932 heap->in_setspecific_ = true;
2933 setThreadHeap(heap);
2934 }
2935 return heap;
2936 }
2937
2938 void TCMalloc_ThreadCache::BecomeIdle() {
2939 if (!tsd_inited) return; // No caches yet
2940 TCMalloc_ThreadCache* heap = GetThreadHeap();
2941 if (heap == NULL) return; // No thread cache to remove
2942 if (heap->in_setspecific_) return; // Do not disturb the active caller
2943
2944 heap->in_setspecific_ = true;
2945 pthread_setspecific(heap_key, NULL);
2946 #ifdef HAVE_TLS
2947 // Also update the copy in __thread
2948 threadlocal_heap = NULL;
2949 #endif
2950 heap->in_setspecific_ = false;
2951 if (GetThreadHeap() == heap) {
2952 // Somehow heap got reinstated by a recursive call to malloc
2953 // from pthread_setspecific. We give up in this case.
2954 return;
2955 }
2956
2957 // We can now get rid of the heap
2958 DeleteCache(heap);
2959 }
2960
2961 void TCMalloc_ThreadCache::DestroyThreadCache(void* ptr) {
2962 // Note that "ptr" cannot be NULL since pthread promises not
2963 // to invoke the destructor on NULL values, but for safety,
2964 // we check anyway.
2965 if (ptr == NULL) return;
2966 #ifdef HAVE_TLS
2967 // Prevent fast path of GetThreadHeap() from returning heap.
2968 threadlocal_heap = NULL;
2969 #endif
2970 DeleteCache(reinterpret_cast<TCMalloc_ThreadCache*>(ptr));
2971 }
2972
2973 void TCMalloc_ThreadCache::DeleteCache(TCMalloc_ThreadCache* heap) {
2974 // Remove all memory from heap
2975 heap->Cleanup();
2976
2977 // Remove from linked list
2978 SpinLockHolder h(&pageheap_lock);
2979 if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_;
2980 if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_;
2981 if (thread_heaps == heap) thread_heaps = heap->next_;
2982 thread_heap_count--;
2983 RecomputeThreadCacheSize();
2984
2985 threadheap_allocator.Delete(heap);
2986 }
2987
2988 void TCMalloc_ThreadCache::RecomputeThreadCacheSize() {
2989 // Divide available space across threads
2990 int n = thread_heap_count > 0 ? thread_heap_count : 1;
2991 size_t space = overall_thread_cache_size / n;
2992
2993 // Limit to allowed range
2994 if (space < kMinThreadCacheSize) space = kMinThreadCacheSize;
2995 if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize;
2996
2997 per_thread_cache_size = space;
2998 }
2999
3000 void TCMalloc_ThreadCache::Print() const {
3001 for (size_t cl = 0; cl < kNumClasses; ++cl) {
3002 MESSAGE(" %5" PRIuS " : %4d len; %4d lo\n",
3003 ByteSizeForClass(cl),
3004 list_[cl].length(),
3005 list_[cl].lowwatermark());
3006 }
3007 }
3008
3009 // Extract interesting stats
3010 struct TCMallocStats {
3011 uint64_t system_bytes; // Bytes alloced from system
3012 uint64_t thread_bytes; // Bytes in thread caches
3013 uint64_t central_bytes; // Bytes in central cache
3014 uint64_t transfer_bytes; // Bytes in central transfer cache
3015 uint64_t pageheap_bytes; // Bytes in page heap
3016 uint64_t metadata_bytes; // Bytes alloced for metadata
3017 };
3018
3019 #ifndef WTF_CHANGES
3020 // Get stats into "r". Also get per-size-class counts if class_count != NULL
3021 static void ExtractStats(TCMallocStats* r, uint64_t* class_count) {
3022 r->central_bytes = 0;
3023 r->transfer_bytes = 0;
3024 for (int cl = 0; cl < kNumClasses; ++cl) {
3025 const int length = central_cache[cl].length();
3026 const int tc_length = central_cache[cl].tc_length();
3027 r->central_bytes += static_cast<uint64_t>(ByteSizeForClass(cl)) * length;
3028 r->transfer_bytes +=
3029 static_cast<uint64_t>(ByteSizeForClass(cl)) * tc_length;
3030 if (class_count) class_count[cl] = length + tc_length;
3031 }
3032
3033 // Add stats from per-thread heaps
3034 r->thread_bytes = 0;
3035 { // scope
3036 SpinLockHolder h(&pageheap_lock);
3037 for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
3038 r->thread_bytes += h->Size();
3039 if (class_count) {
3040 for (size_t cl = 0; cl < kNumClasses; ++cl) {
3041 class_count[cl] += h->freelist_length(cl);
3042 }
3043 }
3044 }
3045 }
3046
3047 { //scope
3048 SpinLockHolder h(&pageheap_lock);
3049 r->system_bytes = pageheap->SystemBytes();
3050 r->metadata_bytes = metadata_system_bytes;
3051 r->pageheap_bytes = pageheap->FreeBytes();
3052 }
3053 }
3054 #endif
3055
3056 #ifndef WTF_CHANGES
3057 // WRITE stats to "out"
3058 static void DumpStats(TCMalloc_Printer* out, int level) {
3059 TCMallocStats stats;
3060 uint64_t class_count[kNumClasses];
3061 ExtractStats(&stats, (level >= 2 ? class_count : NULL));
3062
3063 if (level >= 2) {
3064 out->printf("------------------------------------------------\n");
3065 uint64_t cumulative = 0;
3066 for (int cl = 0; cl < kNumClasses; ++cl) {
3067 if (class_count[cl] > 0) {
3068 uint64_t class_bytes = class_count[cl] * ByteSizeForClass(cl);
3069 cumulative += class_bytes;
3070 out->printf("class %3d [ %8" PRIuS " bytes ] : "
3071 "%8" PRIu64 " objs; %5.1f MB; %5.1f cum MB\n",
3072 cl, ByteSizeForClass(cl),
3073 class_count[cl],
3074 class_bytes / 1048576.0,
3075 cumulative / 1048576.0);
3076 }
3077 }
3078
3079 SpinLockHolder h(&pageheap_lock);
3080 pageheap->Dump(out);
3081 }
3082
3083 const uint64_t bytes_in_use = stats.system_bytes
3084 - stats.pageheap_bytes
3085 - stats.central_bytes
3086 - stats.transfer_bytes
3087 - stats.thread_bytes;
3088
3089 out->printf("------------------------------------------------\n"
3090 "MALLOC: %12" PRIu64 " Heap size\n"
3091 "MALLOC: %12" PRIu64 " Bytes in use by application\n"
3092 "MALLOC: %12" PRIu64 " Bytes free in page heap\n"
3093 "MALLOC: %12" PRIu64 " Bytes free in central cache\n"
3094 "MALLOC: %12" PRIu64 " Bytes free in transfer cache\n"
3095 "MALLOC: %12" PRIu64 " Bytes free in thread caches\n"
3096 "MALLOC: %12" PRIu64 " Spans in use\n"
3097 "MALLOC: %12" PRIu64 " Thread heaps in use\n"
3098 "MALLOC: %12" PRIu64 " Metadata allocated\n"
3099 "------------------------------------------------\n",
3100 stats.system_bytes,
3101 bytes_in_use,
3102 stats.pageheap_bytes,
3103 stats.central_bytes,
3104 stats.transfer_bytes,
3105 stats.thread_bytes,
3106 uint64_t(span_allocator.inuse()),
3107 uint64_t(threadheap_allocator.inuse()),
3108 stats.metadata_bytes);
3109 }
3110
3111 static void PrintStats(int level) {
3112 const int kBufferSize = 16 << 10;
3113 char* buffer = new char[kBufferSize];
3114 TCMalloc_Printer printer(buffer, kBufferSize);
3115 DumpStats(&printer, level);
3116 write(STDERR_FILENO, buffer, strlen(buffer));
3117 delete[] buffer;
3118 }
3119
3120 static void** DumpStackTraces() {
3121 // Count how much space we need
3122 int needed_slots = 0;
3123 {
3124 SpinLockHolder h(&pageheap_lock);
3125 for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
3126 StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
3127 needed_slots += 3 + stack->depth;
3128 }
3129 needed_slots += 100; // Slop in case sample grows
3130 needed_slots += needed_slots/8; // An extra 12.5% slop
3131 }
3132
3133 void** result = new void*[needed_slots];
3134 if (result == NULL) {
3135 MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n",
3136 needed_slots);
3137 return NULL;
3138 }
3139
3140 SpinLockHolder h(&pageheap_lock);
3141 int used_slots = 0;
3142 for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
3143 ASSERT(used_slots < needed_slots); // Need to leave room for terminator
3144 StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
3145 if (used_slots + 3 + stack->depth >= needed_slots) {
3146 // No more room
3147 break;
3148 }
3149
3150 result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
3151 result[used_slots+1] = reinterpret_cast<void*>(stack->size);
3152 result[used_slots+2] = reinterpret_cast<void*>(stack->depth);
3153 for (int d = 0; d < stack->depth; d++) {
3154 result[used_slots+3+d] = stack->stack[d];
3155 }
3156 used_slots += 3 + stack->depth;
3157 }
3158 result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
3159 return result;
3160 }
3161 #endif
3162
3163 #ifndef WTF_CHANGES
3164
3165 // TCMalloc's support for extra malloc interfaces
3166 class TCMallocImplementation : public MallocExtension {
3167 public:
3168 virtual void GetStats(char* buffer, int buffer_length) {
3169 ASSERT(buffer_length > 0);
3170 TCMalloc_Printer printer(buffer, buffer_length);
3171
3172 // Print level one stats unless lots of space is available
3173 if (buffer_length < 10000) {
3174 DumpStats(&printer, 1);
3175 } else {
3176 DumpStats(&printer, 2);
3177 }
3178 }
3179
3180 virtual void** ReadStackTraces() {
3181 return DumpStackTraces();
3182 }
3183
3184 virtual bool GetNumericProperty(const char* name, size_t* value) {
3185 ASSERT(name != NULL);
3186
3187 if (strcmp(name, "generic.current_allocated_bytes") == 0) {
3188 TCMallocStats stats;
3189 ExtractStats(&stats, NULL);
3190 *value = stats.system_bytes
3191 - stats.thread_bytes
3192 - stats.central_bytes
3193 - stats.pageheap_bytes;
3194 return true;
3195 }
3196
3197 if (strcmp(name, "generic.heap_size") == 0) {
3198 TCMallocStats stats;
3199 ExtractStats(&stats, NULL);
3200 *value = stats.system_bytes;
3201 return true;
3202 }
3203
3204 if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
3205 // We assume that bytes in the page heap are not fragmented too
3206 // badly, and are therefore available for allocation.
3207 SpinLockHolder l(&pageheap_lock);
3208 *value = pageheap->FreeBytes();
3209 return true;
3210 }
3211
3212 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
3213 SpinLockHolder l(&pageheap_lock);
3214 *value = overall_thread_cache_size;
3215 return true;
3216 }
3217
3218 if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
3219 TCMallocStats stats;
3220 ExtractStats(&stats, NULL);
3221 *value = stats.thread_bytes;
3222 return true;
3223 }
3224
3225 return false;
3226 }
3227
3228 virtual bool SetNumericProperty(const char* name, size_t value) {
3229 ASSERT(name != NULL);
3230
3231 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
3232 // Clip the value to a reasonable range
3233 if (value < kMinThreadCacheSize) value = kMinThreadCacheSize;
3234 if (value > (1<<30)) value = (1<<30); // Limit to 1GB
3235
3236 SpinLockHolder l(&pageheap_lock);
3237 overall_thread_cache_size = static_cast<size_t>(value);
3238 TCMalloc_ThreadCache::RecomputeThreadCacheSize();
3239 return true;
3240 }
3241
3242 return false;
3243 }
3244
3245 virtual void MarkThreadIdle() {
3246 TCMalloc_ThreadCache::BecomeIdle();
3247 }
3248
3249 virtual void ReleaseFreeMemory() {
3250 SpinLockHolder h(&pageheap_lock);
3251 pageheap->ReleaseFreePages();
3252 }
3253 };
3254 #endif
3255
3256 // The constructor allocates an object to ensure that initialization
3257 // runs before main(), and therefore we do not have a chance to become
3258 // multi-threaded before initialization. We also create the TSD key
3259 // here. Presumably by the time this constructor runs, glibc is in
3260 // good enough shape to handle pthread_key_create().
3261 //
3262 // The constructor also takes the opportunity to tell STL to use
3263 // tcmalloc. We want to do this early, before construct time, so
3264 // all user STL allocations go through tcmalloc (which works really
3265 // well for STL).
3266 //
3267 // The destructor prints stats when the program exits.
3268 class TCMallocGuard {
3269 public:
3270
3271 TCMallocGuard() {
3272 #ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS
3273 // Check whether the kernel also supports TLS (needs to happen at runtime)
3274 CheckIfKernelSupportsTLS();
3275 #endif
3276 #ifndef WTF_CHANGES
3277 #ifdef WIN32 // patch the windows VirtualAlloc, etc.
3278 PatchWindowsFunctions(); // defined in windows/patch_functions.cc
3279 #endif
3280 #endif
3281 free(malloc(1));
3282 TCMalloc_ThreadCache::InitTSD();
3283 free(malloc(1));
3284 #ifndef WTF_CHANGES
3285 MallocExtension::Register(new TCMallocImplementation);
3286 #endif
3287 }
3288
3289 #ifndef WTF_CHANGES
3290 ~TCMallocGuard() {
3291 const char* env = getenv("MALLOCSTATS");
3292 if (env != NULL) {
3293 int level = atoi(env);
3294 if (level < 1) level = 1;
3295 PrintStats(level);
3296 }
3297 #ifdef WIN32
3298 UnpatchWindowsFunctions();
3299 #endif
3300 }
3301 #endif
3302 };
3303
3304 #ifndef WTF_CHANGES
3305 static TCMallocGuard module_enter_exit_hook;
3306 #endif
3307
3308
3309 //-------------------------------------------------------------------
3310 // Helpers for the exported routines below
3311 //-------------------------------------------------------------------
3312
3313 #ifndef WTF_CHANGES
3314
3315 static Span* DoSampledAllocation(size_t size) {
3316
3317 // Grab the stack trace outside the heap lock
3318 StackTrace tmp;
3319 tmp.depth = GetStackTrace(tmp.stack, kMaxStackDepth, 1);
3320 tmp.size = size;
3321
3322 SpinLockHolder h(&pageheap_lock);
3323 // Allocate span
3324 Span *span = pageheap->New(pages(size == 0 ? 1 : size));
3325 if (span == NULL) {
3326 return NULL;
3327 }
3328
3329 // Allocate stack trace
3330 StackTrace *stack = stacktrace_allocator.New();
3331 if (stack == NULL) {
3332 // Sampling failed because of lack of memory
3333 return span;
3334 }
3335
3336 *stack = tmp;
3337 span->sample = 1;
3338 span->objects = stack;
3339 DLL_Prepend(&sampled_objects, span);
3340
3341 return span;
3342 }
3343 #endif
3344
3345 static inline bool CheckCachedSizeClass(void *ptr) {
3346 PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
3347 size_t cached_value = pageheap->GetSizeClassIfCached(p);
3348 return cached_value == 0 ||
3349 cached_value == pageheap->GetDescriptor(p)->sizeclass;
3350 }
3351
3352 static inline void* CheckedMallocResult(void *result)
3353 {
3354 ASSERT(result == 0 || CheckCachedSizeClass(result));
3355 return result;
3356 }
3357
3358 static inline void* SpanToMallocResult(Span *span) {
3359 ASSERT_SPAN_COMMITTED(span);
3360 pageheap->CacheSizeClass(span->start, 0);
3361 return
3362 CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
3363 }
3364
3365 #ifdef WTF_CHANGES
3366 template <bool crashOnFailure>
3367 #endif
3368 static ALWAYS_INLINE void* do_malloc(size_t size) {
3369 void* ret = NULL;
3370
3371 #ifdef WTF_CHANGES
3372 ASSERT(!isForbidden());
3373 #endif
3374
3375 // The following call forces module initialization
3376 TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
3377 #ifndef WTF_CHANGES
3378 if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
3379 Span* span = DoSampledAllocation(size);
3380 if (span != NULL) {
3381 ret = SpanToMallocResult(span);
3382 }
3383 } else
3384 #endif
3385 if (size > kMaxSize) {
3386 // Use page-level allocator
3387 SpinLockHolder h(&pageheap_lock);
3388 Span* span = pageheap->New(pages(size));
3389 if (span != NULL) {
3390 ret = SpanToMallocResult(span);
3391 }
3392 } else {
3393 // The common case, and also the simplest. This just pops the
3394 // size-appropriate freelist, afer replenishing it if it's empty.
3395 ret = CheckedMallocResult(heap->Allocate(size));
3396 }
3397 if (!ret) {
3398 #ifdef WTF_CHANGES
3399 if (crashOnFailure) // This branch should be optimized out by the compiler.
3400 CRASH();
3401 #else
3402 errno = ENOMEM;
3403 #endif
3404 }
3405 return ret;
3406 }
3407
3408 static ALWAYS_INLINE void do_free(void* ptr) {
3409 if (ptr == NULL) return;
3410 ASSERT(pageheap != NULL); // Should not call free() before malloc()
3411 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
3412 Span* span = NULL;
3413 size_t cl = pageheap->GetSizeClassIfCached(p);
3414
3415 if (cl == 0) {
3416 span = pageheap->GetDescriptor(p);
3417 cl = span->sizeclass;
3418 pageheap->CacheSizeClass(p, cl);
3419 }
3420 if (cl != 0) {
3421 #ifndef NO_TCMALLOC_SAMPLES
3422 ASSERT(!pageheap->GetDescriptor(p)->sample);
3423 #endif
3424 TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent();
3425 if (heap != NULL) {
3426 heap->Deallocate(ptr, cl);
3427 } else {
3428 // Delete directly into central cache
3429 SLL_SetNext(ptr, NULL);
3430 central_cache[cl].InsertRange(ptr, ptr, 1);
3431 }
3432 } else {
3433 SpinLockHolder h(&pageheap_lock);
3434 ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
3435 ASSERT(span != NULL && span->start == p);
3436 #ifndef NO_TCMALLOC_SAMPLES
3437 if (span->sample) {
3438 DLL_Remove(span);
3439 stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects));
3440 span->objects = NULL;
3441 }
3442 #endif
3443 pageheap->Delete(span);
3444 }
3445 }
3446
3447 #ifndef WTF_CHANGES
3448 // For use by exported routines below that want specific alignments
3449 //
3450 // Note: this code can be slow, and can significantly fragment memory.
3451 // The expectation is that memalign/posix_memalign/valloc/pvalloc will
3452 // not be invoked very often. This requirement simplifies our
3453 // implementation and allows us to tune for expected allocation
3454 // patterns.
3455 static void* do_memalign(size_t align, size_t size) {
3456 ASSERT((align & (align - 1)) == 0);
3457 ASSERT(align > 0);
3458 if (pageheap == NULL) TCMalloc_ThreadCache::InitModule();
3459
3460 // Allocate at least one byte to avoid boundary conditions below
3461 if (size == 0) size = 1;
3462
3463 if (size <= kMaxSize && align < kPageSize) {
3464 // Search through acceptable size classes looking for one with
3465 // enough alignment. This depends on the fact that
3466 // InitSizeClasses() currently produces several size classes that
3467 // are aligned at powers of two. We will waste time and space if
3468 // we miss in the size class array, but that is deemed acceptable
3469 // since memalign() should be used rarely.
3470 size_t cl = SizeClass(size);
3471 while (cl < kNumClasses && ((class_to_size[cl] & (align - 1)) != 0)) {
3472 cl++;
3473 }
3474 if (cl < kNumClasses) {
3475 TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
3476 return CheckedMallocResult(heap->Allocate(class_to_size[cl]));
3477 }
3478 }
3479
3480 // We will allocate directly from the page heap
3481 SpinLockHolder h(&pageheap_lock);
3482
3483 if (align <= kPageSize) {
3484 // Any page-level allocation will be fine
3485 // TODO: We could put the rest of this page in the appropriate
3486 // TODO: cache but it does not seem worth it.
3487 Span* span = pageheap->New(pages(size));
3488 return span == NULL ? NULL : SpanToMallocResult(span);
3489 }
3490
3491 // Allocate extra pages and carve off an aligned portion
3492 const Length alloc = pages(size + align);
3493 Span* span = pageheap->New(alloc);
3494 if (span == NULL) return NULL;
3495
3496 // Skip starting portion so that we end up aligned
3497 Length skip = 0;
3498 while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
3499 skip++;
3500 }
3501 ASSERT(skip < alloc);
3502 if (skip > 0) {
3503 Span* rest = pageheap->Split(span, skip);
3504 pageheap->Delete(span);
3505 span = rest;
3506 }
3507
3508 // Skip trailing portion that we do not need to return
3509 const Length needed = pages(size);
3510 ASSERT(span->length >= needed);
3511 if (span->length > needed) {
3512 Span* trailer = pageheap->Split(span, needed);
3513 pageheap->Delete(trailer);
3514 }
3515 return SpanToMallocResult(span);
3516 }
3517 #endif
3518
3519 // Helpers for use by exported routines below:
3520
3521 #ifndef WTF_CHANGES
3522 static inline void do_malloc_stats() {
3523 PrintStats(1);
3524 }
3525 #endif
3526
3527 static inline int do_mallopt(int, int) {
3528 return 1; // Indicates error
3529 }
3530
3531 #ifdef HAVE_STRUCT_MALLINFO // mallinfo isn't defined on freebsd, for instance
3532 static inline struct mallinfo do_mallinfo() {
3533 TCMallocStats stats;
3534 ExtractStats(&stats, NULL);
3535
3536 // Just some of the fields are filled in.
3537 struct mallinfo info;
3538 memset(&info, 0, sizeof(info));
3539
3540 // Unfortunately, the struct contains "int" field, so some of the
3541 // size values will be truncated.
3542 info.arena = static_cast<int>(stats.system_bytes);
3543 info.fsmblks = static_cast<int>(stats.thread_bytes
3544 + stats.central_bytes
3545 + stats.transfer_bytes);
3546 info.fordblks = static_cast<int>(stats.pageheap_bytes);
3547 info.uordblks = static_cast<int>(stats.system_bytes
3548 - stats.thread_bytes
3549 - stats.central_bytes
3550 - stats.transfer_bytes
3551 - stats.pageheap_bytes);
3552
3553 return info;
3554 }
3555 #endif
3556
3557 //-------------------------------------------------------------------
3558 // Exported routines
3559 //-------------------------------------------------------------------
3560
3561 // CAVEAT: The code structure below ensures that MallocHook methods are always
3562 // called from the stack frame of the invoked allocation function.
3563 // heap-checker.cc depends on this to start a stack trace from
3564 // the call to the (de)allocation function.
3565
3566 #ifndef WTF_CHANGES
3567 extern "C"
3568 #else
3569 #define do_malloc do_malloc<crashOnFailure>
3570
3571 template <bool crashOnFailure>
3572 void* malloc(size_t);
3573
3574 void* fastMalloc(size_t size)
3575 {
3576 return malloc<true>(size);
3577 }
3578
3579 void* tryFastMalloc(size_t size)
3580 {
3581 return malloc<false>(size);
3582 }
3583
3584 template <bool crashOnFailure>
3585 ALWAYS_INLINE
3586 #endif
3587 void* malloc(size_t size) {
3588 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3589 if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= size) // If overflow would occur...
3590 return 0;
3591 size += sizeof(AllocAlignmentInteger);
3592 void* result = do_malloc(size);
3593 if (!result)
3594 return 0;
3595
3596 *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
3597 result = static_cast<AllocAlignmentInteger*>(result) + 1;
3598 #else
3599 void* result = do_malloc(size);
3600 #endif
3601
3602 #ifndef WTF_CHANGES
3603 MallocHook::InvokeNewHook(result, size);
3604 #endif
3605 return result;
3606 }
3607
3608 #ifndef WTF_CHANGES
3609 extern "C"
3610 #endif
3611 void free(void* ptr) {
3612 #ifndef WTF_CHANGES
3613 MallocHook::InvokeDeleteHook(ptr);
3614 #endif
3615
3616 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3617 if (!ptr)
3618 return;
3619
3620 AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(ptr);
3621 if (*header != Internal::AllocTypeMalloc)
3622 Internal::fastMallocMatchFailed(ptr);
3623 do_free(header);
3624 #else
3625 do_free(ptr);
3626 #endif
3627 }
3628
3629 #ifndef WTF_CHANGES
3630 extern "C"
3631 #else
3632 template <bool crashOnFailure>
3633 void* calloc(size_t, size_t);
3634
3635 void* fastCalloc(size_t n, size_t elem_size)
3636 {
3637 return calloc<true>(n, elem_size);
3638 }
3639
3640 void* tryFastCalloc(size_t n, size_t elem_size)
3641 {
3642 return calloc<false>(n, elem_size);
3643 }
3644
3645 template <bool crashOnFailure>
3646 ALWAYS_INLINE
3647 #endif
3648 void* calloc(size_t n, size_t elem_size) {
3649 size_t totalBytes = n * elem_size;
3650
3651 // Protect against overflow
3652 if (n > 1 && elem_size && (totalBytes / elem_size) != n)
3653 return 0;
3654
3655 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3656 if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes) // If overflow would occur...
3657 return 0;
3658
3659 totalBytes += sizeof(AllocAlignmentInteger);
3660 void* result = do_malloc(totalBytes);
3661 if (!result)
3662 return 0;
3663
3664 memset(result, 0, totalBytes);
3665 *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
3666 result = static_cast<AllocAlignmentInteger*>(result) + 1;
3667 #else
3668 void* result = do_malloc(totalBytes);
3669 if (result != NULL) {
3670 memset(result, 0, totalBytes);
3671 }
3672 #endif
3673
3674 #ifndef WTF_CHANGES
3675 MallocHook::InvokeNewHook(result, totalBytes);
3676 #endif
3677 return result;
3678 }
3679
3680 // Since cfree isn't used anywhere, we don't compile it in.
3681 #ifndef WTF_CHANGES
3682 #ifndef WTF_CHANGES
3683 extern "C"
3684 #endif
3685 void cfree(void* ptr) {
3686 #ifndef WTF_CHANGES
3687 MallocHook::InvokeDeleteHook(ptr);
3688 #endif
3689 do_free(ptr);
3690 }
3691 #endif
3692
3693 #ifndef WTF_CHANGES
3694 extern "C"
3695 #else
3696 template <bool crashOnFailure>
3697 void* realloc(void*, size_t);
3698
3699 void* fastRealloc(void* old_ptr, size_t new_size)
3700 {
3701 return realloc<true>(old_ptr, new_size);
3702 }
3703
3704 void* tryFastRealloc(void* old_ptr, size_t new_size)
3705 {
3706 return realloc<false>(old_ptr, new_size);
3707 }
3708
3709 template <bool crashOnFailure>
3710 ALWAYS_INLINE
3711 #endif
3712 void* realloc(void* old_ptr, size_t new_size) {
3713 if (old_ptr == NULL) {
3714 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3715 void* result = malloc(new_size);
3716 #else
3717 void* result = do_malloc(new_size);
3718 #ifndef WTF_CHANGES
3719 MallocHook::InvokeNewHook(result, new_size);
3720 #endif
3721 #endif
3722 return result;
3723 }
3724 if (new_size == 0) {
3725 #ifndef WTF_CHANGES
3726 MallocHook::InvokeDeleteHook(old_ptr);
3727 #endif
3728 free(old_ptr);
3729 return NULL;
3730 }
3731
3732 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3733 if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= new_size) // If overflow would occur...
3734 return 0;
3735 new_size += sizeof(AllocAlignmentInteger);
3736 AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(old_ptr);
3737 if (*header != Internal::AllocTypeMalloc)
3738 Internal::fastMallocMatchFailed(old_ptr);
3739 old_ptr = header;
3740 #endif
3741
3742 // Get the size of the old entry
3743 const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift;
3744 size_t cl = pageheap->GetSizeClassIfCached(p);
3745 Span *span = NULL;
3746 size_t old_size;
3747 if (cl == 0) {
3748 span = pageheap->GetDescriptor(p);
3749 cl = span->sizeclass;
3750 pageheap->CacheSizeClass(p, cl);
3751 }
3752 if (cl != 0) {
3753 old_size = ByteSizeForClass(cl);
3754 } else {
3755 ASSERT(span != NULL);
3756 old_size = span->length << kPageShift;
3757 }
3758
3759 // Reallocate if the new size is larger than the old size,
3760 // or if the new size is significantly smaller than the old size.
3761 if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) {
3762 // Need to reallocate
3763 void* new_ptr = do_malloc(new_size);
3764 if (new_ptr == NULL) {
3765 return NULL;
3766 }
3767 #ifndef WTF_CHANGES
3768 MallocHook::InvokeNewHook(new_ptr, new_size);
3769 #endif
3770 memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
3771 #ifndef WTF_CHANGES
3772 MallocHook::InvokeDeleteHook(old_ptr);
3773 #endif
3774 // We could use a variant of do_free() that leverages the fact
3775 // that we already know the sizeclass of old_ptr. The benefit
3776 // would be small, so don't bother.
3777 do_free(old_ptr);
3778 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3779 new_ptr = static_cast<AllocAlignmentInteger*>(new_ptr) + 1;
3780 #endif
3781 return new_ptr;
3782 } else {
3783 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3784 old_ptr = pByte + sizeof(AllocAlignmentInteger); // Set old_ptr back to the user pointer.
3785 #endif
3786 return old_ptr;
3787 }
3788 }
3789
3790 #ifdef WTF_CHANGES
3791 #undef do_malloc
3792 #else
3793
3794 static SpinLock set_new_handler_lock = SPINLOCK_INITIALIZER;
3795
3796 static inline void* cpp_alloc(size_t size, bool nothrow) {
3797 for (;;) {
3798 void* p = do_malloc(size);
3799 #ifdef PREANSINEW
3800 return p;
3801 #else
3802 if (p == NULL) { // allocation failed
3803 // Get the current new handler. NB: this function is not
3804 // thread-safe. We make a feeble stab at making it so here, but
3805 // this lock only protects against tcmalloc interfering with
3806 // itself, not with other libraries calling set_new_handler.
3807 std::new_handler nh;
3808 {
3809 SpinLockHolder h(&set_new_handler_lock);
3810 nh = std::set_new_handler(0);
3811 (void) std::set_new_handler(nh);
3812 }
3813 // If no new_handler is established, the allocation failed.
3814 if (!nh) {
3815 if (nothrow) return 0;
3816 throw std::bad_alloc();
3817 }
3818 // Otherwise, try the new_handler. If it returns, retry the
3819 // allocation. If it throws std::bad_alloc, fail the allocation.
3820 // if it throws something else, don't interfere.
3821 try {
3822 (*nh)();
3823 } catch (const std::bad_alloc&) {
3824 if (!nothrow) throw;
3825 return p;
3826 }
3827 } else { // allocation success
3828 return p;
3829 }
3830 #endif
3831 }
3832 }
3833
3834 void* operator new(size_t size) {
3835 void* p = cpp_alloc(size, false);
3836 // We keep this next instruction out of cpp_alloc for a reason: when
3837 // it's in, and new just calls cpp_alloc, the optimizer may fold the
3838 // new call into cpp_alloc, which messes up our whole section-based
3839 // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
3840 // isn't the last thing this fn calls, and prevents the folding.
3841 MallocHook::InvokeNewHook(p, size);
3842 return p;
3843 }
3844
3845 void* operator new(size_t size, const std::nothrow_t&) __THROW {
3846 void* p = cpp_alloc(size, true);
3847 MallocHook::InvokeNewHook(p, size);
3848 return p;
3849 }
3850
3851 void operator delete(void* p) __THROW {
3852 MallocHook::InvokeDeleteHook(p);
3853 do_free(p);
3854 }
3855
3856 void operator delete(void* p, const std::nothrow_t&) __THROW {
3857 MallocHook::InvokeDeleteHook(p);
3858 do_free(p);
3859 }
3860
3861 void* operator new[](size_t size) {
3862 void* p = cpp_alloc(size, false);
3863 // We keep this next instruction out of cpp_alloc for a reason: when
3864 // it's in, and new just calls cpp_alloc, the optimizer may fold the
3865 // new call into cpp_alloc, which messes up our whole section-based
3866 // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
3867 // isn't the last thing this fn calls, and prevents the folding.
3868 MallocHook::InvokeNewHook(p, size);
3869 return p;
3870 }
3871
3872 void* operator new[](size_t size, const std::nothrow_t&) __THROW {
3873 void* p = cpp_alloc(size, true);
3874 MallocHook::InvokeNewHook(p, size);
3875 return p;
3876 }
3877
3878 void operator delete[](void* p) __THROW {
3879 MallocHook::InvokeDeleteHook(p);
3880 do_free(p);
3881 }
3882
3883 void operator delete[](void* p, const std::nothrow_t&) __THROW {
3884 MallocHook::InvokeDeleteHook(p);
3885 do_free(p);
3886 }
3887
3888 extern "C" void* memalign(size_t align, size_t size) __THROW {
3889 void* result = do_memalign(align, size);
3890 MallocHook::InvokeNewHook(result, size);
3891 return result;
3892 }
3893
3894 extern "C" int posix_memalign(void** result_ptr, size_t align, size_t size)
3895 __THROW {
3896 if (((align % sizeof(void*)) != 0) ||
3897 ((align & (align - 1)) != 0) ||
3898 (align == 0)) {
3899 return EINVAL;
3900 }
3901
3902 void* result = do_memalign(align, size);
3903 MallocHook::InvokeNewHook(result, size);
3904 if (result == NULL) {
3905 return ENOMEM;
3906 } else {
3907 *result_ptr = result;
3908 return 0;
3909 }
3910 }
3911
3912 static size_t pagesize = 0;
3913
3914 extern "C" void* valloc(size_t size) __THROW {
3915 // Allocate page-aligned object of length >= size bytes
3916 if (pagesize == 0) pagesize = getpagesize();
3917 void* result = do_memalign(pagesize, size);
3918 MallocHook::InvokeNewHook(result, size);
3919 return result;
3920 }
3921
3922 extern "C" void* pvalloc(size_t size) __THROW {
3923 // Round up size to a multiple of pagesize
3924 if (pagesize == 0) pagesize = getpagesize();
3925 size = (size + pagesize - 1) & ~(pagesize - 1);
3926 void* result = do_memalign(pagesize, size);
3927 MallocHook::InvokeNewHook(result, size);
3928 return result;
3929 }
3930
3931 extern "C" void malloc_stats(void) {
3932 do_malloc_stats();
3933 }
3934
3935 extern "C" int mallopt(int cmd, int value) {
3936 return do_mallopt(cmd, value);
3937 }
3938
3939 #ifdef HAVE_STRUCT_MALLINFO
3940 extern "C" struct mallinfo mallinfo(void) {
3941 return do_mallinfo();
3942 }
3943 #endif
3944
3945 //-------------------------------------------------------------------
3946 // Some library routines on RedHat 9 allocate memory using malloc()
3947 // and free it using __libc_free() (or vice-versa). Since we provide
3948 // our own implementations of malloc/free, we need to make sure that
3949 // the __libc_XXX variants (defined as part of glibc) also point to
3950 // the same implementations.
3951 //-------------------------------------------------------------------
3952
3953 #if defined(__GLIBC__)
3954 extern "C" {
3955 #if COMPILER(GCC) && !defined(__MACH__) && defined(HAVE___ATTRIBUTE__)
3956 // Potentially faster variants that use the gcc alias extension.
3957 // Mach-O (Darwin) does not support weak aliases, hence the __MACH__ check.
3958 # define ALIAS(x) __attribute__ ((weak, alias (x)))
3959 void* __libc_malloc(size_t size) ALIAS("malloc");
3960 void __libc_free(void* ptr) ALIAS("free");
3961 void* __libc_realloc(void* ptr, size_t size) ALIAS("realloc");
3962 void* __libc_calloc(size_t n, size_t size) ALIAS("calloc");
3963 void __libc_cfree(void* ptr) ALIAS("cfree");
3964 void* __libc_memalign(size_t align, size_t s) ALIAS("memalign");
3965 void* __libc_valloc(size_t size) ALIAS("valloc");
3966 void* __libc_pvalloc(size_t size) ALIAS("pvalloc");
3967 int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign");
3968 # undef ALIAS
3969 # else /* not __GNUC__ */
3970 // Portable wrappers
3971 void* __libc_malloc(size_t size) { return malloc(size); }
3972 void __libc_free(void* ptr) { free(ptr); }
3973 void* __libc_realloc(void* ptr, size_t size) { return realloc(ptr, size); }
3974 void* __libc_calloc(size_t n, size_t size) { return calloc(n, size); }
3975 void __libc_cfree(void* ptr) { cfree(ptr); }
3976 void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); }
3977 void* __libc_valloc(size_t size) { return valloc(size); }
3978 void* __libc_pvalloc(size_t size) { return pvalloc(size); }
3979 int __posix_memalign(void** r, size_t a, size_t s) {
3980 return posix_memalign(r, a, s);
3981 }
3982 # endif /* __GNUC__ */
3983 }
3984 #endif /* __GLIBC__ */
3985
3986 // Override __libc_memalign in libc on linux boxes specially.
3987 // They have a bug in libc that causes them to (very rarely) allocate
3988 // with __libc_memalign() yet deallocate with free() and the
3989 // definitions above don't catch it.
3990 // This function is an exception to the rule of calling MallocHook method
3991 // from the stack frame of the allocation function;
3992 // heap-checker handles this special case explicitly.
3993 static void *MemalignOverride(size_t align, size_t size, const void *caller)
3994 __THROW {
3995 void* result = do_memalign(align, size);
3996 MallocHook::InvokeNewHook(result, size);
3997 return result;
3998 }
3999 void *(*__memalign_hook)(size_t, size_t, const void *) = MemalignOverride;
4000
4001 #endif
4002
4003 #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
4004
4005 class FreeObjectFinder {
4006 const RemoteMemoryReader& m_reader;
4007 HashSet<void*> m_freeObjects;
4008
4009 public:
4010 FreeObjectFinder(const RemoteMemoryReader& reader) : m_reader(reader) { }
4011
4012 void visit(void* ptr) { m_freeObjects.add(ptr); }
4013 bool isFreeObject(void* ptr) const { return m_freeObjects.contains(ptr); }
4014 bool isFreeObject(vm_address_t ptr) const { return isFreeObject(reinterpret_cast<void*>(ptr)); }
4015 size_t freeObjectCount() const { return m_freeObjects.size(); }
4016
4017 void findFreeObjects(TCMalloc_ThreadCache* threadCache)
4018 {
4019 for (; threadCache; threadCache = (threadCache->next_ ? m_reader(threadCache->next_) : 0))
4020 threadCache->enumerateFreeObjects(*this, m_reader);
4021 }
4022
4023 void findFreeObjects(TCMalloc_Central_FreeListPadded* centralFreeList, size_t numSizes, TCMalloc_Central_FreeListPadded* remoteCentralFreeList)
4024 {
4025 for (unsigned i = 0; i < numSizes; i++)
4026 centralFreeList[i].enumerateFreeObjects(*this, m_reader, remoteCentralFreeList + i);
4027 }
4028 };
4029
4030 class PageMapFreeObjectFinder {
4031 const RemoteMemoryReader& m_reader;
4032 FreeObjectFinder& m_freeObjectFinder;
4033
4034 public:
4035 PageMapFreeObjectFinder(const RemoteMemoryReader& reader, FreeObjectFinder& freeObjectFinder)
4036 : m_reader(reader)
4037 , m_freeObjectFinder(freeObjectFinder)
4038 { }
4039
4040 int visit(void* ptr) const
4041 {
4042 if (!ptr)
4043 return 1;
4044
4045 Span* span = m_reader(reinterpret_cast<Span*>(ptr));
4046 if (span->free) {
4047 void* ptr = reinterpret_cast<void*>(span->start << kPageShift);
4048 m_freeObjectFinder.visit(ptr);
4049 } else if (span->sizeclass) {
4050 // Walk the free list of the small-object span, keeping track of each object seen
4051 for (void* nextObject = span->objects; nextObject; nextObject = *m_reader(reinterpret_cast<void**>(nextObject)))
4052 m_freeObjectFinder.visit(nextObject);
4053 }
4054 return span->length;
4055 }
4056 };
4057
4058 class PageMapMemoryUsageRecorder {
4059 task_t m_task;
4060 void* m_context;
4061 unsigned m_typeMask;
4062 vm_range_recorder_t* m_recorder;
4063 const RemoteMemoryReader& m_reader;
4064 const FreeObjectFinder& m_freeObjectFinder;
4065
4066 HashSet<void*> m_seenPointers;
4067 Vector<Span*> m_coalescedSpans;
4068
4069 public:
4070 PageMapMemoryUsageRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader, const FreeObjectFinder& freeObjectFinder)
4071 : m_task(task)
4072 , m_context(context)
4073 , m_typeMask(typeMask)
4074 , m_recorder(recorder)
4075 , m_reader(reader)
4076 , m_freeObjectFinder(freeObjectFinder)
4077 { }
4078
4079 ~PageMapMemoryUsageRecorder()
4080 {
4081 ASSERT(!m_coalescedSpans.size());
4082 }
4083
4084 void recordPendingRegions()
4085 {
4086 Span* lastSpan = m_coalescedSpans[m_coalescedSpans.size() - 1];
4087 vm_range_t ptrRange = { m_coalescedSpans[0]->start << kPageShift, 0 };
4088 ptrRange.size = (lastSpan->start << kPageShift) - ptrRange.address + (lastSpan->length * kPageSize);
4089
4090 // Mark the memory region the spans represent as a candidate for containing pointers
4091 if (m_typeMask & MALLOC_PTR_REGION_RANGE_TYPE)
4092 (*m_recorder)(m_task, m_context, MALLOC_PTR_REGION_RANGE_TYPE, &ptrRange, 1);
4093
4094 if (!(m_typeMask & MALLOC_PTR_IN_USE_RANGE_TYPE)) {
4095 m_coalescedSpans.clear();
4096 return;
4097 }
4098
4099 Vector<vm_range_t, 1024> allocatedPointers;
4100 for (size_t i = 0; i < m_coalescedSpans.size(); ++i) {
4101 Span *theSpan = m_coalescedSpans[i];
4102 if (theSpan->free)
4103 continue;
4104
4105 vm_address_t spanStartAddress = theSpan->start << kPageShift;
4106 vm_size_t spanSizeInBytes = theSpan->length * kPageSize;
4107
4108 if (!theSpan->sizeclass) {
4109 // If it's an allocated large object span, mark it as in use
4110 if (!m_freeObjectFinder.isFreeObject(spanStartAddress))
4111 allocatedPointers.append((vm_range_t){spanStartAddress, spanSizeInBytes});
4112 } else {
4113 const size_t objectSize = ByteSizeForClass(theSpan->sizeclass);
4114
4115 // Mark each allocated small object within the span as in use
4116 const vm_address_t endOfSpan = spanStartAddress + spanSizeInBytes;
4117 for (vm_address_t object = spanStartAddress; object + objectSize <= endOfSpan; object += objectSize) {
4118 if (!m_freeObjectFinder.isFreeObject(object))
4119 allocatedPointers.append((vm_range_t){object, objectSize});
4120 }
4121 }
4122 }
4123
4124 (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, allocatedPointers.data(), allocatedPointers.size());
4125
4126 m_coalescedSpans.clear();
4127 }
4128
4129 int visit(void* ptr)
4130 {
4131 if (!ptr)
4132 return 1;
4133
4134 Span* span = m_reader(reinterpret_cast<Span*>(ptr));
4135 if (!span->start)
4136 return 1;
4137
4138 if (m_seenPointers.contains(ptr))
4139 return span->length;
4140 m_seenPointers.add(ptr);
4141
4142 if (!m_coalescedSpans.size()) {
4143 m_coalescedSpans.append(span);
4144 return span->length;
4145 }
4146
4147 Span* previousSpan = m_coalescedSpans[m_coalescedSpans.size() - 1];
4148 vm_address_t previousSpanStartAddress = previousSpan->start << kPageShift;
4149 vm_size_t previousSpanSizeInBytes = previousSpan->length * kPageSize;
4150
4151 // If the new span is adjacent to the previous span, do nothing for now.
4152 vm_address_t spanStartAddress = span->start << kPageShift;
4153 if (spanStartAddress == previousSpanStartAddress + previousSpanSizeInBytes) {
4154 m_coalescedSpans.append(span);
4155 return span->length;
4156 }
4157
4158 // New span is not adjacent to previous span, so record the spans coalesced so far.
4159 recordPendingRegions();
4160 m_coalescedSpans.append(span);
4161
4162 return span->length;
4163 }
4164 };
4165
4166 class AdminRegionRecorder {
4167 task_t m_task;
4168 void* m_context;
4169 unsigned m_typeMask;
4170 vm_range_recorder_t* m_recorder;
4171 const RemoteMemoryReader& m_reader;
4172
4173 Vector<vm_range_t, 1024> m_pendingRegions;
4174
4175 public:
4176 AdminRegionRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader)
4177 : m_task(task)
4178 , m_context(context)
4179 , m_typeMask(typeMask)
4180 , m_recorder(recorder)
4181 , m_reader(reader)
4182 { }
4183
4184 void recordRegion(vm_address_t ptr, size_t size)
4185 {
4186 if (m_typeMask & MALLOC_ADMIN_REGION_RANGE_TYPE)
4187 m_pendingRegions.append((vm_range_t){ ptr, size });
4188 }
4189
4190 void visit(void *ptr, size_t size)
4191 {
4192 recordRegion(reinterpret_cast<vm_address_t>(ptr), size);
4193 }
4194
4195 void recordPendingRegions()
4196 {
4197 if (m_pendingRegions.size()) {
4198 (*m_recorder)(m_task, m_context, MALLOC_ADMIN_REGION_RANGE_TYPE, m_pendingRegions.data(), m_pendingRegions.size());
4199 m_pendingRegions.clear();
4200 }
4201 }
4202
4203 ~AdminRegionRecorder()
4204 {
4205 ASSERT(!m_pendingRegions.size());
4206 }
4207 };
4208
4209 kern_return_t FastMallocZone::enumerate(task_t task, void* context, unsigned typeMask, vm_address_t zoneAddress, memory_reader_t reader, vm_range_recorder_t recorder)
4210 {
4211 RemoteMemoryReader memoryReader(task, reader);
4212
4213 InitSizeClasses();
4214
4215 FastMallocZone* mzone = memoryReader(reinterpret_cast<FastMallocZone*>(zoneAddress));
4216 TCMalloc_PageHeap* pageHeap = memoryReader(mzone->m_pageHeap);
4217 TCMalloc_ThreadCache** threadHeapsPointer = memoryReader(mzone->m_threadHeaps);
4218 TCMalloc_ThreadCache* threadHeaps = memoryReader(*threadHeapsPointer);
4219
4220 TCMalloc_Central_FreeListPadded* centralCaches = memoryReader(mzone->m_centralCaches, sizeof(TCMalloc_Central_FreeListPadded) * kNumClasses);
4221
4222 FreeObjectFinder finder(memoryReader);
4223 finder.findFreeObjects(threadHeaps);
4224 finder.findFreeObjects(centralCaches, kNumClasses, mzone->m_centralCaches);
4225
4226 TCMalloc_PageHeap::PageMap* pageMap = &pageHeap->pagemap_;
4227 PageMapFreeObjectFinder pageMapFinder(memoryReader, finder);
4228 pageMap->visitValues(pageMapFinder, memoryReader);
4229
4230 PageMapMemoryUsageRecorder usageRecorder(task, context, typeMask, recorder, memoryReader, finder);
4231 pageMap->visitValues(usageRecorder, memoryReader);
4232 usageRecorder.recordPendingRegions();
4233
4234 AdminRegionRecorder adminRegionRecorder(task, context, typeMask, recorder, memoryReader);
4235 pageMap->visitAllocations(adminRegionRecorder, memoryReader);
4236
4237 PageHeapAllocator<Span>* spanAllocator = memoryReader(mzone->m_spanAllocator);
4238 PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator = memoryReader(mzone->m_pageHeapAllocator);
4239
4240 spanAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
4241 pageHeapAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
4242
4243 adminRegionRecorder.recordPendingRegions();
4244
4245 return 0;
4246 }
4247
4248 size_t FastMallocZone::size(malloc_zone_t*, const void*)
4249 {
4250 return 0;
4251 }
4252
4253 void* FastMallocZone::zoneMalloc(malloc_zone_t*, size_t)
4254 {
4255 return 0;
4256 }
4257
4258 void* FastMallocZone::zoneCalloc(malloc_zone_t*, size_t, size_t)
4259 {
4260 return 0;
4261 }
4262
4263 void FastMallocZone::zoneFree(malloc_zone_t*, void* ptr)
4264 {
4265 // Due to <rdar://problem/5671357> zoneFree may be called by the system free even if the pointer
4266 // is not in this zone. When this happens, the pointer being freed was not allocated by any
4267 // zone so we need to print a useful error for the application developer.
4268 malloc_printf("*** error for object %p: pointer being freed was not allocated\n", ptr);
4269 }
4270
4271 void* FastMallocZone::zoneRealloc(malloc_zone_t*, void*, size_t)
4272 {
4273 return 0;
4274 }
4275
4276
4277 #undef malloc
4278 #undef free
4279 #undef realloc
4280 #undef calloc
4281
4282 extern "C" {
4283 malloc_introspection_t jscore_fastmalloc_introspection = { &FastMallocZone::enumerate, &FastMallocZone::goodSize, &FastMallocZone::check, &FastMallocZone::print,
4284 &FastMallocZone::log, &FastMallocZone::forceLock, &FastMallocZone::forceUnlock, &FastMallocZone::statistics
4285
4286 #if !defined(BUILDING_ON_TIGER) && !defined(BUILDING_ON_LEOPARD) && !PLATFORM(IPHONE)
4287 , 0 // zone_locked will not be called on the zone unless it advertises itself as version five or higher.
4288 #endif
4289
4290 };
4291 }
4292
4293 FastMallocZone::FastMallocZone(TCMalloc_PageHeap* pageHeap, TCMalloc_ThreadCache** threadHeaps, TCMalloc_Central_FreeListPadded* centralCaches, PageHeapAllocator<Span>* spanAllocator, PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator)
4294 : m_pageHeap(pageHeap)
4295 , m_threadHeaps(threadHeaps)
4296 , m_centralCaches(centralCaches)
4297 , m_spanAllocator(spanAllocator)
4298 , m_pageHeapAllocator(pageHeapAllocator)
4299 {
4300 memset(&m_zone, 0, sizeof(m_zone));
4301 m_zone.version = 4;
4302 m_zone.zone_name = "JavaScriptCore FastMalloc";
4303 m_zone.size = &FastMallocZone::size;
4304 m_zone.malloc = &FastMallocZone::zoneMalloc;
4305 m_zone.calloc = &FastMallocZone::zoneCalloc;
4306 m_zone.realloc = &FastMallocZone::zoneRealloc;
4307 m_zone.free = &FastMallocZone::zoneFree;
4308 m_zone.valloc = &FastMallocZone::zoneValloc;
4309 m_zone.destroy = &FastMallocZone::zoneDestroy;
4310 m_zone.introspect = &jscore_fastmalloc_introspection;
4311 malloc_zone_register(&m_zone);
4312 }
4313
4314
4315 void FastMallocZone::init()
4316 {
4317 static FastMallocZone zone(pageheap, &thread_heaps, static_cast<TCMalloc_Central_FreeListPadded*>(central_cache), &span_allocator, &threadheap_allocator);
4318 }
4319
4320 #endif
4321
4322 #if WTF_CHANGES
4323 void releaseFastMallocFreeMemory()
4324 {
4325 // Flush free pages in the current thread cache back to the page heap.
4326 // Low watermark mechanism in Scavenge() prevents full return on the first pass.
4327 // The second pass flushes everything.
4328 if (TCMalloc_ThreadCache* threadCache = TCMalloc_ThreadCache::GetCacheIfPresent()) {
4329 threadCache->Scavenge();
4330 threadCache->Scavenge();
4331 }
4332
4333 SpinLockHolder h(&pageheap_lock);
4334 pageheap->ReleaseFreePages();
4335 }
4336
4337 FastMallocStatistics fastMallocStatistics()
4338 {
4339 FastMallocStatistics statistics;
4340 {
4341 SpinLockHolder lockHolder(&pageheap_lock);
4342 statistics.heapSize = static_cast<size_t>(pageheap->SystemBytes());
4343 statistics.freeSizeInHeap = static_cast<size_t>(pageheap->FreeBytes());
4344 statistics.returnedSize = pageheap->ReturnedBytes();
4345 statistics.freeSizeInCaches = 0;
4346 for (TCMalloc_ThreadCache* threadCache = thread_heaps; threadCache ; threadCache = threadCache->next_)
4347 statistics.freeSizeInCaches += threadCache->Size();
4348 }
4349 for (unsigned cl = 0; cl < kNumClasses; ++cl) {
4350 const int length = central_cache[cl].length();
4351 const int tc_length = central_cache[cl].tc_length();
4352 statistics.freeSizeInCaches += ByteSizeForClass(cl) * (length + tc_length);
4353 }
4354 return statistics;
4355 }
4356
4357 } // namespace WTF
4358 #endif
4359
4360 #endif // FORCE_SYSTEM_MALLOC
4361