/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Miscellaneous utility functions. */ #include "Dalvik.h" #include #include #include #include #include #include #include #include #include #include #define ALIGN_UP_TO_PAGE_SIZE(p) \ (((size_t)(p) + (SYSTEM_PAGE_SIZE - 1)) & ~(SYSTEM_PAGE_SIZE - 1)) /* * Print a hex dump in this format: * 01234567: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff 0123456789abcdef\n * * If "mode" is kHexDumpLocal, we start at offset zero, and show a full * 16 bytes on the first line. If it's kHexDumpMem, we make this look * like a memory dump, using the actual address, outputting a partial line * if "vaddr" isn't aligned on a 16-byte boundary. * * "priority" and "tag" determine the values passed to the log calls. * * Does not use printf() or other string-formatting calls. */ void dvmPrintHexDumpEx(int priority, const char* tag, const void* vaddr, size_t length, HexDumpMode mode) { static const char gHexDigit[] = "0123456789abcdef"; const unsigned char* addr = vaddr; char out[77]; /* exact fit */ unsigned int offset; /* offset to show while printing */ char* hex; char* asc; int gap; //int trickle = 0; if (mode == kHexDumpLocal) offset = 0; else offset = (int) addr; memset(out, ' ', sizeof(out)-1); out[8] = ':'; out[sizeof(out)-2] = '\n'; out[sizeof(out)-1] = '\0'; gap = (int) offset & 0x0f; while (length) { unsigned int lineOffset = offset & ~0x0f; int i, count; hex = out; asc = out + 59; for (i = 0; i < 8; i++) { *hex++ = gHexDigit[lineOffset >> 28]; lineOffset <<= 4; } hex++; hex++; count = ((int)length > 16-gap) ? 16-gap : (int)length; /* cap length */ assert(count != 0); assert(count+gap <= 16); if (gap) { /* only on first line */ hex += gap * 3; asc += gap; } for (i = gap ; i < count+gap; i++) { *hex++ = gHexDigit[*addr >> 4]; *hex++ = gHexDigit[*addr & 0x0f]; hex++; if (*addr >= 0x20 && *addr < 0x7f /*isprint(*addr)*/) *asc++ = *addr; else *asc++ = '.'; addr++; } for ( ; i < 16; i++) { /* erase extra stuff; only happens on last line */ *hex++ = ' '; *hex++ = ' '; hex++; *asc++ = ' '; } LOG_PRI(priority, tag, "%s", out); #if 0 //def HAVE_ANDROID_OS /* * We can overrun logcat easily by writing at full speed. On the * other hand, we can make Eclipse time out if we're showing * packet dumps while debugging JDWP. */ { if (trickle++ == 8) { trickle = 0; usleep(20000); } } #endif gap = 0; length -= count; offset += count; } } /* * Fill out a DebugOutputTarget, suitable for printing to the log. */ void dvmCreateLogOutputTarget(DebugOutputTarget* target, int priority, const char* tag) { assert(target != NULL); assert(tag != NULL); target->which = kDebugTargetLog; target->data.log.priority = priority; target->data.log.tag = tag; } /* * Fill out a DebugOutputTarget suitable for printing to a file pointer. */ void dvmCreateFileOutputTarget(DebugOutputTarget* target, FILE* fp) { assert(target != NULL); assert(fp != NULL); target->which = kDebugTargetFile; target->data.file.fp = fp; } /* * Free "target" and any associated data. */ void dvmFreeOutputTarget(DebugOutputTarget* target) { free(target); } /* * Print a debug message, to either a file or the log. */ void dvmPrintDebugMessage(const DebugOutputTarget* target, const char* format, ...) { va_list args; va_start(args, format); switch (target->which) { case kDebugTargetLog: LOG_PRI_VA(target->data.log.priority, target->data.log.tag, format, args); break; case kDebugTargetFile: vfprintf(target->data.file.fp, format, args); break; default: LOGE("unexpected 'which' %d\n", target->which); break; } va_end(args); } /* * Allocate a bit vector with enough space to hold at least the specified * number of bits. */ BitVector* dvmAllocBitVector(int startBits, bool expandable) { BitVector* bv; int count; assert(sizeof(bv->storage[0]) == 4); /* assuming 32-bit units */ assert(startBits >= 0); bv = (BitVector*) malloc(sizeof(BitVector)); count = (startBits + 31) >> 5; bv->storageSize = count; bv->expandable = expandable; bv->storage = (u4*) malloc(count * sizeof(u4)); memset(bv->storage, 0x00, count * sizeof(u4)); return bv; } /* * Free a BitVector. */ void dvmFreeBitVector(BitVector* pBits) { if (pBits == NULL) return; free(pBits->storage); free(pBits); } /* * "Allocate" the first-available bit in the bitmap. * * This is not synchronized. The caller is expected to hold some sort of * lock that prevents multiple threads from executing simultaneously in * dvmAllocBit/dvmFreeBit. */ int dvmAllocBit(BitVector* pBits) { int word, bit; retry: for (word = 0; word < pBits->storageSize; word++) { if (pBits->storage[word] != 0xffffffff) { /* * There are unallocated bits in this word. Return the first. */ bit = ffs(~(pBits->storage[word])) -1; assert(bit >= 0 && bit < 32); pBits->storage[word] |= 1 << bit; return (word << 5) | bit; } } /* * Ran out of space, allocate more if we're allowed to. */ if (!pBits->expandable) return -1; pBits->storage = realloc(pBits->storage, (pBits->storageSize + kBitVectorGrowth) * sizeof(u4)); memset(&pBits->storage[pBits->storageSize], 0x00, kBitVectorGrowth * sizeof(u4)); pBits->storageSize += kBitVectorGrowth; goto retry; } /* * Mark the specified bit as "set". * * Returns "false" if the bit is outside the range of the vector and we're * not allowed to expand. */ bool dvmSetBit(BitVector* pBits, int num) { assert(num >= 0); if (num >= pBits->storageSize * (int)sizeof(u4) * 8) { if (!pBits->expandable) return false; int newSize = (num + 31) >> 5; assert(newSize > pBits->storageSize); pBits->storage = realloc(pBits->storage, newSize * sizeof(u4)); memset(&pBits->storage[pBits->storageSize], 0x00, (newSize - pBits->storageSize) * sizeof(u4)); pBits->storageSize = newSize; } pBits->storage[num >> 5] |= 1 << (num & 0x1f); return true; } /* * Mark the specified bit as "clear". */ void dvmClearBit(BitVector* pBits, int num) { assert(num >= 0 && num < (int) pBits->storageSize * (int)sizeof(u4) * 8); pBits->storage[num >> 5] &= ~(1 << (num & 0x1f)); } /* * Mark all bits bit as "clear". */ void dvmClearAllBits(BitVector* pBits) { int count = pBits->storageSize; memset(pBits->storage, 0, count * sizeof(u4)); } /* * Determine whether or not the specified bit is set. */ bool dvmIsBitSet(const BitVector* pBits, int num) { assert(num >= 0 && num < (int) pBits->storageSize * (int)sizeof(u4) * 8); int val = pBits->storage[num >> 5] & (1 << (num & 0x1f)); return (val != 0); } /* * Count the number of bits that are set. */ int dvmCountSetBits(const BitVector* pBits) { int word; int count = 0; for (word = 0; word < pBits->storageSize; word++) { u4 val = pBits->storage[word]; if (val != 0) { if (val == 0xffffffff) { count += 32; } else { /* count the number of '1' bits */ while (val != 0) { val &= val - 1; count++; } } } } return count; } /* * Copy a whole vector to the other. Only do that when the both vectors have * the same size and attribute. */ bool dvmCopyBitVector(BitVector *dest, const BitVector *src) { if (dest->storageSize != src->storageSize || dest->expandable != src->expandable) return false; memcpy(dest->storage, src->storage, sizeof(u4) * dest->storageSize); return true; } /* * Intersect two bit vectores and merge the result on top of the pre-existing * value in the dest vector. */ bool dvmIntersectBitVectors(BitVector *dest, const BitVector *src1, const BitVector *src2) { if (dest->storageSize != src1->storageSize || dest->storageSize != src2->storageSize || dest->expandable != src1->expandable || dest->expandable != src2->expandable) return false; int i; for (i = 0; i < dest->storageSize; i++) { dest->storage[i] |= src1->storage[i] & src2->storage[i]; } return true; } /* * Return a newly-allocated string in which all occurrences of '.' have * been changed to '/'. If we find a '/' in the original string, NULL * is returned to avoid ambiguity. */ char* dvmDotToSlash(const char* str) { char* newStr = strdup(str); char* cp = newStr; if (newStr == NULL) return NULL; while (*cp != '\0') { if (*cp == '/') { assert(false); return NULL; } if (*cp == '.') *cp = '/'; cp++; } return newStr; } /* * Return a newly-allocated string for the "dot version" of the class * name for the given type descriptor. That is, The initial "L" and * final ";" (if any) have been removed and all occurrences of '/' * have been changed to '.'. */ char* dvmDescriptorToDot(const char* str) { size_t at = strlen(str); char* newStr; if ((at >= 2) && (str[0] == 'L') && (str[at - 1] == ';')) { at -= 2; /* Two fewer chars to copy. */ str++; /* Skip the 'L'. */ } newStr = malloc(at + 1); /* Add one for the '\0'. */ if (newStr == NULL) return NULL; newStr[at] = '\0'; while (at > 0) { at--; newStr[at] = (str[at] == '/') ? '.' : str[at]; } return newStr; } /* * Return a newly-allocated string for the type descriptor * corresponding to the "dot version" of the given class name. That * is, non-array names are surrounded by "L" and ";", and all * occurrences of '.' are changed to '/'. */ char* dvmDotToDescriptor(const char* str) { size_t length = strlen(str); int wrapElSemi = 0; char* newStr; char* at; if (str[0] != '[') { length += 2; /* for "L" and ";" */ wrapElSemi = 1; } newStr = at = malloc(length + 1); /* + 1 for the '\0' */ if (newStr == NULL) { return NULL; } if (wrapElSemi) { *(at++) = 'L'; } while (*str) { char c = *(str++); if (c == '.') { c = '/'; } *(at++) = c; } if (wrapElSemi) { *(at++) = ';'; } *at = '\0'; return newStr; } /* * Return a newly-allocated string for the internal-form class name for * the given type descriptor. That is, the initial "L" and final ";" (if * any) have been removed. */ char* dvmDescriptorToName(const char* str) { if (str[0] == 'L') { size_t length = strlen(str) - 1; char* newStr = malloc(length); if (newStr == NULL) { return NULL; } strlcpy(newStr, str + 1, length); return newStr; } return strdup(str); } /* * Return a newly-allocated string for the type descriptor for the given * internal-form class name. That is, a non-array class name will get * surrounded by "L" and ";", while array names are left as-is. */ char* dvmNameToDescriptor(const char* str) { if (str[0] != '[') { size_t length = strlen(str); char* descriptor = malloc(length + 3); if (descriptor == NULL) { return NULL; } descriptor[0] = 'L'; strcpy(descriptor + 1, str); descriptor[length + 1] = ';'; descriptor[length + 2] = '\0'; return descriptor; } return strdup(str); } /* * Get a notion of the current time, in nanoseconds. This is meant for * computing durations (e.g. "operation X took 52nsec"), so the result * should not be used to get the current date/time. */ u8 dvmGetRelativeTimeNsec(void) { #ifdef HAVE_POSIX_CLOCKS struct timespec now; clock_gettime(CLOCK_MONOTONIC, &now); return (u8)now.tv_sec*1000000000LL + now.tv_nsec; #else struct timeval now; gettimeofday(&now, NULL); return (u8)now.tv_sec*1000000000LL + now.tv_usec * 1000LL; #endif } /* * Get the per-thread CPU time, in nanoseconds. * * Only useful for time deltas. */ u8 dvmGetThreadCpuTimeNsec(void) { #ifdef HAVE_POSIX_CLOCKS struct timespec now; clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now); return (u8)now.tv_sec*1000000000LL + now.tv_nsec; #else return (u8) -1; #endif } /* * Get the per-thread CPU time, in nanoseconds, for the specified thread. */ u8 dvmGetOtherThreadCpuTimeNsec(pthread_t thread) { #if 0 /*def HAVE_POSIX_CLOCKS*/ int clockId; if (pthread_getcpuclockid(thread, &clockId) != 0) return (u8) -1; struct timespec now; clock_gettime(clockId, &now); return (u8)now.tv_sec*1000000000LL + now.tv_nsec; #else return (u8) -1; #endif } /* * Call this repeatedly, with successively higher values for "iteration", * to sleep for a period of time not to exceed "maxTotalSleep". * * For example, when called with iteration==0 we will sleep for a very * brief time. On the next call we will sleep for a longer time. When * the sum total of all sleeps reaches "maxTotalSleep", this returns false. * * The initial start time value for "relStartTime" MUST come from the * dvmGetRelativeTimeUsec call. On the device this must come from the * monotonic clock source, not the wall clock. * * This should be used wherever you might be tempted to call sched_yield() * in a loop. The problem with sched_yield is that, for a high-priority * thread, the kernel might not actually transfer control elsewhere. * * Returns "false" if we were unable to sleep because our time was up. */ bool dvmIterativeSleep(int iteration, int maxTotalSleep, u8 relStartTime) { const int minSleep = 10000; u8 curTime; int curDelay; /* * Get current time, and see if we've already exceeded the limit. */ curTime = dvmGetRelativeTimeUsec(); if (curTime >= relStartTime + maxTotalSleep) { LOGVV("exsl: sleep exceeded (start=%llu max=%d now=%llu)\n", relStartTime, maxTotalSleep, curTime); return false; } /* * Compute current delay. We're bounded by "maxTotalSleep", so no * real risk of overflow assuming "usleep" isn't returning early. * (Besides, 2^30 usec is about 18 minutes by itself.) * * For iteration==0 we just call sched_yield(), so the first sleep * at iteration==1 is actually (minSleep * 2). */ curDelay = minSleep; while (iteration-- > 0) curDelay *= 2; assert(curDelay > 0); if (curTime + curDelay >= relStartTime + maxTotalSleep) { LOGVV("exsl: reduced delay from %d to %d\n", curDelay, (int) ((relStartTime + maxTotalSleep) - curTime)); curDelay = (int) ((relStartTime + maxTotalSleep) - curTime); } if (iteration == 0) { LOGVV("exsl: yield\n"); sched_yield(); } else { LOGVV("exsl: sleep for %d\n", curDelay); usleep(curDelay); } return true; } /* * Set the "close on exec" flag so we don't expose our file descriptors * to processes launched by us. */ bool dvmSetCloseOnExec(int fd) { int flags; /* * There's presently only one flag defined, so getting the previous * value of the fd flags is probably unnecessary. */ flags = fcntl(fd, F_GETFD); if (flags < 0) { LOGW("Unable to get fd flags for fd %d\n", fd); return false; } if (fcntl(fd, F_SETFD, flags | FD_CLOEXEC) < 0) { LOGW("Unable to set close-on-exec for fd %d\n", fd); return false; } return true; } #if (!HAVE_STRLCPY) /* Implementation of strlcpy() for platforms that don't already have it. */ size_t strlcpy(char *dst, const char *src, size_t size) { size_t srcLength = strlen(src); size_t copyLength = srcLength; if (srcLength > (size - 1)) { copyLength = size - 1; } if (size != 0) { strncpy(dst, src, copyLength); dst[copyLength] = '\0'; } return srcLength; } #endif /* * Allocates a memory region using ashmem and mmap, initialized to * zero. Actual allocation rounded up to page multiple. Returns * NULL on failure. */ void *dvmAllocRegion(size_t size, int prot, const char *name) { void *base; int fd, ret; size = ALIGN_UP_TO_PAGE_SIZE(size); fd = ashmem_create_region(name, size); if (fd == -1) { return NULL; } base = mmap(NULL, size, prot, MAP_PRIVATE, fd, 0); ret = close(fd); if (base == MAP_FAILED) { return NULL; } if (ret == -1) { return NULL; } return base; } /* documented in header file */ const char* dvmPathToAbsolutePortion(const char* path) { if (path == NULL) { return NULL; } if (path[0] == '/') { /* It's a regular absolute path. Return it. */ return path; } const char* sentinel = strstr(path, "/./"); if (sentinel != NULL) { /* It's got the sentinel. Return a pointer to the second slash. */ return sentinel + 2; } return NULL; }