/* * q_cbq.c CBQ. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Alexey Kuznetsov, * */ #include #include #include #include #include #include #include #include #include #include "utils.h" #include "tc_util.h" #include "tc_cbq.h" static void explain_class(void) { fprintf(stderr, "Usage: ... cbq bandwidth BPS rate BPS maxburst PKTS [ avpkt BYTES ]\n"); fprintf(stderr, " [ minburst PKTS ] [ bounded ] [ isolated ]\n"); fprintf(stderr, " [ allot BYTES ] [ mpu BYTES ] [ weight RATE ]\n"); fprintf(stderr, " [ prio NUMBER ] [ cell BYTES ] [ ewma LOG ]\n"); fprintf(stderr, " [ estimator INTERVAL TIME_CONSTANT ]\n"); fprintf(stderr, " [ split CLASSID ] [ defmap MASK/CHANGE ]\n"); fprintf(stderr, " [ overhead BYTES ] [ linklayer TYPE ]\n"); } static void explain(void) { fprintf(stderr, "Usage: ... cbq bandwidth BPS avpkt BYTES [ mpu BYTES ]\n"); fprintf(stderr, " [ cell BYTES ] [ ewma LOG ]\n"); } static void explain1(char *arg) { fprintf(stderr, "Illegal \"%s\"\n", arg); } #define usage() return(-1) static int cbq_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n) { struct tc_ratespec r; struct tc_cbq_lssopt lss; __u32 rtab[256]; unsigned mpu=0, avpkt=0, allot=0; unsigned short overhead=0; unsigned int linklayer = LINKLAYER_ETHERNET; /* Assume ethernet */ int cell_log=-1; int ewma_log=-1; struct rtattr *tail; memset(&lss, 0, sizeof(lss)); memset(&r, 0, sizeof(r)); while (argc > 0) { if (matches(*argv, "bandwidth") == 0 || matches(*argv, "rate") == 0) { NEXT_ARG(); if (get_rate(&r.rate, *argv)) { explain1("bandwidth"); return -1; } } else if (matches(*argv, "ewma") == 0) { NEXT_ARG(); if (get_integer(&ewma_log, *argv, 0)) { explain1("ewma"); return -1; } if (ewma_log > 31) { fprintf(stderr, "ewma_log must be < 32\n"); return -1; } } else if (matches(*argv, "cell") == 0) { unsigned cell; int i; NEXT_ARG(); if (get_size(&cell, *argv)) { explain1("cell"); return -1; } for (i=0; i<32; i++) if ((1<=32) { fprintf(stderr, "cell must be 2^n\n"); return -1; } cell_log = i; } else if (matches(*argv, "avpkt") == 0) { NEXT_ARG(); if (get_size(&avpkt, *argv)) { explain1("avpkt"); return -1; } } else if (matches(*argv, "mpu") == 0) { NEXT_ARG(); if (get_size(&mpu, *argv)) { explain1("mpu"); return -1; } } else if (matches(*argv, "allot") == 0) { NEXT_ARG(); /* Accept and ignore "allot" for backward compatibility */ if (get_size(&allot, *argv)) { explain1("allot"); return -1; } } else if (matches(*argv, "overhead") == 0) { NEXT_ARG(); if (get_u16(&overhead, *argv, 10)) { explain1("overhead"); return -1; } } else if (matches(*argv, "linklayer") == 0) { NEXT_ARG(); if (get_linklayer(&linklayer, *argv)) { explain1("linklayer"); return -1; } } else if (matches(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } argc--; argv++; } /* OK. All options are parsed. */ if (r.rate == 0) { fprintf(stderr, "CBQ: bandwidth is required parameter.\n"); return -1; } if (avpkt == 0) { fprintf(stderr, "CBQ: \"avpkt\" is required.\n"); return -1; } if (allot < (avpkt*3)/2) allot = (avpkt*3)/2; r.mpu = mpu; r.overhead = overhead; if (tc_calc_rtable(&r, rtab, cell_log, allot, linklayer) < 0) { fprintf(stderr, "CBQ: failed to calculate rate table.\n"); return -1; } if (ewma_log < 0) ewma_log = TC_CBQ_DEF_EWMA; lss.ewma_log = ewma_log; lss.maxidle = tc_calc_xmittime(r.rate, avpkt); lss.change = TCF_CBQ_LSS_MAXIDLE|TCF_CBQ_LSS_EWMA|TCF_CBQ_LSS_AVPKT; lss.avpkt = avpkt; tail = NLMSG_TAIL(n); addattr_l(n, 1024, TCA_OPTIONS, NULL, 0); addattr_l(n, 1024, TCA_CBQ_RATE, &r, sizeof(r)); addattr_l(n, 1024, TCA_CBQ_LSSOPT, &lss, sizeof(lss)); addattr_l(n, 3024, TCA_CBQ_RTAB, rtab, 1024); if (show_raw) { int i; for (i=0; i<256; i++) printf("%u ", rtab[i]); printf("\n"); } tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail; return 0; } static int cbq_parse_class_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n) { int wrr_ok=0, fopt_ok=0; struct tc_ratespec r; struct tc_cbq_lssopt lss; struct tc_cbq_wrropt wrr; struct tc_cbq_fopt fopt; struct tc_cbq_ovl ovl; __u32 rtab[256]; unsigned mpu=0; int cell_log=-1; int ewma_log=-1; unsigned bndw = 0; unsigned minburst=0, maxburst=0; unsigned short overhead=0; unsigned int linklayer = LINKLAYER_ETHERNET; /* Assume ethernet */ struct rtattr *tail; memset(&r, 0, sizeof(r)); memset(&lss, 0, sizeof(lss)); memset(&wrr, 0, sizeof(wrr)); memset(&fopt, 0, sizeof(fopt)); memset(&ovl, 0, sizeof(ovl)); while (argc > 0) { if (matches(*argv, "rate") == 0) { NEXT_ARG(); if (get_rate(&r.rate, *argv)) { explain1("rate"); return -1; } } else if (matches(*argv, "bandwidth") == 0) { NEXT_ARG(); if (get_rate(&bndw, *argv)) { explain1("bandwidth"); return -1; } } else if (matches(*argv, "minidle") == 0) { NEXT_ARG(); if (get_u32(&lss.minidle, *argv, 0)) { explain1("minidle"); return -1; } lss.change |= TCF_CBQ_LSS_MINIDLE; } else if (matches(*argv, "minburst") == 0) { NEXT_ARG(); if (get_u32(&minburst, *argv, 0)) { explain1("minburst"); return -1; } lss.change |= TCF_CBQ_LSS_OFFTIME; } else if (matches(*argv, "maxburst") == 0) { NEXT_ARG(); if (get_u32(&maxburst, *argv, 0)) { explain1("maxburst"); return -1; } lss.change |= TCF_CBQ_LSS_MAXIDLE; } else if (matches(*argv, "bounded") == 0) { lss.flags |= TCF_CBQ_LSS_BOUNDED; lss.change |= TCF_CBQ_LSS_FLAGS; } else if (matches(*argv, "borrow") == 0) { lss.flags &= ~TCF_CBQ_LSS_BOUNDED; lss.change |= TCF_CBQ_LSS_FLAGS; } else if (matches(*argv, "isolated") == 0) { lss.flags |= TCF_CBQ_LSS_ISOLATED; lss.change |= TCF_CBQ_LSS_FLAGS; } else if (matches(*argv, "sharing") == 0) { lss.flags &= ~TCF_CBQ_LSS_ISOLATED; lss.change |= TCF_CBQ_LSS_FLAGS; } else if (matches(*argv, "ewma") == 0) { NEXT_ARG(); if (get_integer(&ewma_log, *argv, 0)) { explain1("ewma"); return -1; } if (ewma_log > 31) { fprintf(stderr, "ewma_log must be < 32\n"); return -1; } lss.change |= TCF_CBQ_LSS_EWMA; } else if (matches(*argv, "cell") == 0) { unsigned cell; int i; NEXT_ARG(); if (get_size(&cell, *argv)) { explain1("cell"); return -1; } for (i=0; i<32; i++) if ((1<=32) { fprintf(stderr, "cell must be 2^n\n"); return -1; } cell_log = i; } else if (matches(*argv, "prio") == 0) { unsigned prio; NEXT_ARG(); if (get_u32(&prio, *argv, 0)) { explain1("prio"); return -1; } if (prio > TC_CBQ_MAXPRIO) { fprintf(stderr, "\"prio\" must be number in the range 1...%d\n", TC_CBQ_MAXPRIO); return -1; } wrr.priority = prio; wrr_ok++; } else if (matches(*argv, "allot") == 0) { NEXT_ARG(); if (get_size(&wrr.allot, *argv)) { explain1("allot"); return -1; } } else if (matches(*argv, "avpkt") == 0) { NEXT_ARG(); if (get_size(&lss.avpkt, *argv)) { explain1("avpkt"); return -1; } lss.change |= TCF_CBQ_LSS_AVPKT; } else if (matches(*argv, "mpu") == 0) { NEXT_ARG(); if (get_size(&mpu, *argv)) { explain1("mpu"); return -1; } } else if (matches(*argv, "weight") == 0) { NEXT_ARG(); if (get_size(&wrr.weight, *argv)) { explain1("weight"); return -1; } wrr_ok++; } else if (matches(*argv, "split") == 0) { NEXT_ARG(); if (get_tc_classid(&fopt.split, *argv)) { fprintf(stderr, "Invalid split node ID.\n"); usage(); } fopt_ok++; } else if (matches(*argv, "defmap") == 0) { int err; NEXT_ARG(); err = sscanf(*argv, "%08x/%08x", &fopt.defmap, &fopt.defchange); if (err < 1) { fprintf(stderr, "Invalid defmap, should be MASK32[/MASK]\n"); return -1; } if (err == 1) fopt.defchange = ~0; fopt_ok++; } else if (matches(*argv, "overhead") == 0) { NEXT_ARG(); if (get_u16(&overhead, *argv, 10)) { explain1("overhead"); return -1; } } else if (matches(*argv, "linklayer") == 0) { NEXT_ARG(); if (get_linklayer(&linklayer, *argv)) { explain1("linklayer"); return -1; } } else if (matches(*argv, "help") == 0) { explain_class(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain_class(); return -1; } argc--; argv++; } /* OK. All options are parsed. */ /* 1. Prepare link sharing scheduler parameters */ if (r.rate) { unsigned pktsize = wrr.allot; if (wrr.allot < (lss.avpkt*3)/2) wrr.allot = (lss.avpkt*3)/2; r.mpu = mpu; r.overhead = overhead; if (tc_calc_rtable(&r, rtab, cell_log, pktsize, linklayer) < 0) { fprintf(stderr, "CBQ: failed to calculate rate table.\n"); return -1; } } if (ewma_log < 0) ewma_log = TC_CBQ_DEF_EWMA; lss.ewma_log = ewma_log; if (lss.change&(TCF_CBQ_LSS_OFFTIME|TCF_CBQ_LSS_MAXIDLE)) { if (lss.avpkt == 0) { fprintf(stderr, "CBQ: avpkt is required for max/minburst.\n"); return -1; } if (bndw==0 || r.rate == 0) { fprintf(stderr, "CBQ: bandwidth&rate are required for max/minburst.\n"); return -1; } } if (wrr.priority == 0 && (n->nlmsg_flags&NLM_F_EXCL)) { wrr_ok = 1; wrr.priority = TC_CBQ_MAXPRIO; if (wrr.allot == 0) wrr.allot = (lss.avpkt*3)/2; } if (wrr_ok) { if (wrr.weight == 0) wrr.weight = (wrr.priority == TC_CBQ_MAXPRIO) ? 1 : r.rate; if (wrr.allot == 0) { fprintf(stderr, "CBQ: \"allot\" is required to set WRR parameters.\n"); return -1; } } if (lss.change&TCF_CBQ_LSS_MAXIDLE) { lss.maxidle = tc_cbq_calc_maxidle(bndw, r.rate, lss.avpkt, ewma_log, maxburst); lss.change |= TCF_CBQ_LSS_MAXIDLE; lss.change |= TCF_CBQ_LSS_EWMA|TCF_CBQ_LSS_AVPKT; } if (lss.change&TCF_CBQ_LSS_OFFTIME) { lss.offtime = tc_cbq_calc_offtime(bndw, r.rate, lss.avpkt, ewma_log, minburst); lss.change |= TCF_CBQ_LSS_OFFTIME; lss.change |= TCF_CBQ_LSS_EWMA|TCF_CBQ_LSS_AVPKT; } if (lss.change&TCF_CBQ_LSS_MINIDLE) { lss.minidle <<= lss.ewma_log; lss.change |= TCF_CBQ_LSS_EWMA; } tail = NLMSG_TAIL(n); addattr_l(n, 1024, TCA_OPTIONS, NULL, 0); if (lss.change) { lss.change |= TCF_CBQ_LSS_FLAGS; addattr_l(n, 1024, TCA_CBQ_LSSOPT, &lss, sizeof(lss)); } if (wrr_ok) addattr_l(n, 1024, TCA_CBQ_WRROPT, &wrr, sizeof(wrr)); if (fopt_ok) addattr_l(n, 1024, TCA_CBQ_FOPT, &fopt, sizeof(fopt)); if (r.rate) { addattr_l(n, 1024, TCA_CBQ_RATE, &r, sizeof(r)); addattr_l(n, 3024, TCA_CBQ_RTAB, rtab, 1024); if (show_raw) { int i; for (i=0; i<256; i++) printf("%u ", rtab[i]); printf("\n"); } } tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail; return 0; } static int cbq_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct rtattr *tb[TCA_CBQ_MAX+1]; struct tc_ratespec *r = NULL; struct tc_cbq_lssopt *lss = NULL; struct tc_cbq_wrropt *wrr = NULL; struct tc_cbq_fopt *fopt = NULL; struct tc_cbq_ovl *ovl = NULL; SPRINT_BUF(b1); if (opt == NULL) return 0; parse_rtattr_nested(tb, TCA_CBQ_MAX, opt); if (tb[TCA_CBQ_RATE]) { if (RTA_PAYLOAD(tb[TCA_CBQ_RATE]) < sizeof(*r)) fprintf(stderr, "CBQ: too short rate opt\n"); else r = RTA_DATA(tb[TCA_CBQ_RATE]); } if (tb[TCA_CBQ_LSSOPT]) { if (RTA_PAYLOAD(tb[TCA_CBQ_LSSOPT]) < sizeof(*lss)) fprintf(stderr, "CBQ: too short lss opt\n"); else lss = RTA_DATA(tb[TCA_CBQ_LSSOPT]); } if (tb[TCA_CBQ_WRROPT]) { if (RTA_PAYLOAD(tb[TCA_CBQ_WRROPT]) < sizeof(*wrr)) fprintf(stderr, "CBQ: too short wrr opt\n"); else wrr = RTA_DATA(tb[TCA_CBQ_WRROPT]); } if (tb[TCA_CBQ_FOPT]) { if (RTA_PAYLOAD(tb[TCA_CBQ_FOPT]) < sizeof(*fopt)) fprintf(stderr, "CBQ: too short fopt\n"); else fopt = RTA_DATA(tb[TCA_CBQ_FOPT]); } if (tb[TCA_CBQ_OVL_STRATEGY]) { if (RTA_PAYLOAD(tb[TCA_CBQ_OVL_STRATEGY]) < sizeof(*ovl)) fprintf(stderr, "CBQ: too short overlimit strategy %u/%u\n", (unsigned) RTA_PAYLOAD(tb[TCA_CBQ_OVL_STRATEGY]), (unsigned) sizeof(*ovl)); else ovl = RTA_DATA(tb[TCA_CBQ_OVL_STRATEGY]); } if (r) { char buf[64]; print_rate(buf, sizeof(buf), r->rate); fprintf(f, "rate %s ", buf); if (show_details) { fprintf(f, "cell %ub ", 1<cell_log); if (r->mpu) fprintf(f, "mpu %ub ", r->mpu); if (r->overhead) fprintf(f, "overhead %ub ", r->overhead); } } if (lss && lss->flags) { int comma=0; fprintf(f, "("); if (lss->flags&TCF_CBQ_LSS_BOUNDED) { fprintf(f, "bounded"); comma=1; } if (lss->flags&TCF_CBQ_LSS_ISOLATED) { if (comma) fprintf(f, ","); fprintf(f, "isolated"); } fprintf(f, ") "); } if (wrr) { if (wrr->priority != TC_CBQ_MAXPRIO) fprintf(f, "prio %u", wrr->priority); else fprintf(f, "prio no-transmit"); if (show_details) { char buf[64]; fprintf(f, "/%u ", wrr->cpriority); if (wrr->weight != 1) { print_rate(buf, sizeof(buf), wrr->weight); fprintf(f, "weight %s ", buf); } if (wrr->allot) fprintf(f, "allot %ub ", wrr->allot); } } if (lss && show_details) { fprintf(f, "\nlevel %u ewma %u avpkt %ub ", lss->level, lss->ewma_log, lss->avpkt); if (lss->maxidle) { fprintf(f, "maxidle %s ", sprint_ticks(lss->maxidle>>lss->ewma_log, b1)); if (show_raw) fprintf(f, "[%08x] ", lss->maxidle); } if (lss->minidle!=0x7fffffff) { fprintf(f, "minidle %s ", sprint_ticks(lss->minidle>>lss->ewma_log, b1)); if (show_raw) fprintf(f, "[%08x] ", lss->minidle); } if (lss->offtime) { fprintf(f, "offtime %s ", sprint_ticks(lss->offtime, b1)); if (show_raw) fprintf(f, "[%08x] ", lss->offtime); } } if (fopt && show_details) { char buf[64]; print_tc_classid(buf, sizeof(buf), fopt->split); fprintf(f, "\nsplit %s ", buf); if (fopt->defmap) { fprintf(f, "defmap %08x", fopt->defmap); } } return 0; } static int cbq_print_xstats(struct qdisc_util *qu, FILE *f, struct rtattr *xstats) { struct tc_cbq_xstats *st; if (xstats == NULL) return 0; if (RTA_PAYLOAD(xstats) < sizeof(*st)) return -1; st = RTA_DATA(xstats); fprintf(f, " borrowed %u overactions %u avgidle %g undertime %g", st->borrows, st->overactions, (double)st->avgidle, (double)st->undertime); return 0; } struct qdisc_util cbq_qdisc_util = { .id = "cbq", .parse_qopt = cbq_parse_opt, .print_qopt = cbq_print_opt, .print_xstats = cbq_print_xstats, .parse_copt = cbq_parse_class_opt, .print_copt = cbq_print_opt, };