// rmepsilon.h // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Author: allauzen@cs.nyu.edu (Cyril Allauzen) // // \file // Functions and classes that implemement epsilon-removal. #ifndef FST_LIB_RMEPSILON_H__ #define FST_LIB_RMEPSILON_H__ #include using __gnu_cxx::hash_map; #include using __gnu_cxx::slist; #include "fst/lib/arcfilter.h" #include "fst/lib/cache.h" #include "fst/lib/connect.h" #include "fst/lib/factor-weight.h" #include "fst/lib/invert.h" #include "fst/lib/map.h" #include "fst/lib/queue.h" #include "fst/lib/shortest-distance.h" #include "fst/lib/topsort.h" namespace fst { template struct RmEpsilonOptions : public ShortestDistanceOptions > { typedef typename Arc::StateId StateId; bool connect; // Connect output RmEpsilonOptions(Queue *q, float d = kDelta, bool c = true) : ShortestDistanceOptions >( q, EpsilonArcFilter(), kNoStateId, d), connect(c) {} }; // Computation state of the epsilon-removal algorithm. template class RmEpsilonState { public: typedef typename Arc::Label Label; typedef typename Arc::StateId StateId; typedef typename Arc::Weight Weight; RmEpsilonState(const Fst &fst, vector *distance, const RmEpsilonOptions &opts) : fst_(fst), distance_(distance), sd_state_(fst_, distance, opts, true) { } // Compute arcs and final weight for state 's' void Expand(StateId s); // Returns arcs of expanded state. vector &Arcs() { return arcs_; } // Returns final weight of expanded state. const Weight &Final() const { return final_; } private: struct Element { Label ilabel; Label olabel; StateId nextstate; Element() {} Element(Label i, Label o, StateId s) : ilabel(i), olabel(o), nextstate(s) {} }; class ElementKey { public: size_t operator()(const Element& e) const { return static_cast(e.nextstate); return static_cast(e.nextstate + e.ilabel * kPrime0 + e.olabel * kPrime1); } private: static const int kPrime0 = 7853; static const int kPrime1 = 7867; }; class ElementEqual { public: bool operator()(const Element &e1, const Element &e2) const { return (e1.ilabel == e2.ilabel) && (e1.olabel == e2.olabel) && (e1.nextstate == e2.nextstate); } }; private: typedef hash_map, ElementKey, ElementEqual> ElementMap; const Fst &fst_; // Distance from state being expanded in epsilon-closure. vector *distance_; // Shortest distance algorithm computation state. ShortestDistanceState > sd_state_; // Maps an element 'e' to a pair 'p' corresponding to a position // in the arcs vector of the state being expanded. 'e' corresponds // to the position 'p.second' in the 'arcs_' vector if 'p.first' is // equal to the state being expanded. ElementMap element_map_; EpsilonArcFilter eps_filter_; stack eps_queue_; // Queue used to visit the epsilon-closure vector visited_; // '[i] = true' if state 'i' has been visited slist visited_states_; // List of visited states vector arcs_; // Arcs of state being expanded Weight final_; // Final weight of state being expanded void operator=(const RmEpsilonState); // Disallow }; template void RmEpsilonState::Expand(typename Arc::StateId source) { sd_state_.ShortestDistance(source); eps_queue_.push(source); final_ = Weight::Zero(); arcs_.clear(); while (!eps_queue_.empty()) { StateId state = eps_queue_.top(); eps_queue_.pop(); while ((StateId)visited_.size() <= state) visited_.push_back(false); visited_[state] = true; visited_states_.push_front(state); for (ArcIterator< Fst > ait(fst_, state); !ait.Done(); ait.Next()) { Arc arc = ait.Value(); arc.weight = Times((*distance_)[state], arc.weight); if (eps_filter_(arc)) { while ((StateId)visited_.size() <= arc.nextstate) visited_.push_back(false); if (!visited_[arc.nextstate]) eps_queue_.push(arc.nextstate); } else { Element element(arc.ilabel, arc.olabel, arc.nextstate); typename ElementMap::iterator it = element_map_.find(element); if (it == element_map_.end()) { element_map_.insert( pair > (element, pair(source, arcs_.size()))); arcs_.push_back(arc); } else { if (((*it).second).first == source) { Weight &w = arcs_[((*it).second).second].weight; w = Plus(w, arc.weight); } else { ((*it).second).first = source; ((*it).second).second = arcs_.size(); arcs_.push_back(arc); } } } } final_ = Plus(final_, Times((*distance_)[state], fst_.Final(state))); } while (!visited_states_.empty()) { visited_[visited_states_.front()] = false; visited_states_.pop_front(); } } // Removes epsilon-transitions (when both the input and output label // are an epsilon) from a transducer. The result will be an equivalent // FST that has no such epsilon transitions. This version modifies // its input. It allows fine control via the options argument; see // below for a simpler interface. // // The vector 'distance' will be used to hold the shortest distances // during the epsilon-closure computation. The state queue discipline // and convergence delta are taken in the options argument. template void RmEpsilon(MutableFst *fst, vector *distance, const RmEpsilonOptions &opts) { typedef typename Arc::StateId StateId; typedef typename Arc::Weight Weight; typedef typename Arc::Label Label; // States sorted in topological order when (acyclic) or generic // topological order (cyclic). vector states; if (fst->Properties(kTopSorted, false) & kTopSorted) { for (StateId i = 0; i < (StateId)fst->NumStates(); i++) states.push_back(i); } else if (fst->Properties(kAcyclic, false) & kAcyclic) { vector order; bool acyclic; TopOrderVisitor top_order_visitor(&order, &acyclic); DfsVisit(*fst, &top_order_visitor, EpsilonArcFilter()); if (!acyclic) LOG(FATAL) << "RmEpsilon: not acyclic though property bit is set"; states.resize(order.size()); for (StateId i = 0; i < (StateId)order.size(); i++) states[order[i]] = i; } else { uint64 props; vector scc; SccVisitor scc_visitor(&scc, 0, 0, &props); DfsVisit(*fst, &scc_visitor, EpsilonArcFilter()); vector first(scc.size(), kNoStateId); vector next(scc.size(), kNoStateId); for (StateId i = 0; i < (StateId)scc.size(); i++) { if (first[scc[i]] != kNoStateId) next[i] = first[scc[i]]; first[scc[i]] = i; } for (StateId i = 0; i < (StateId)first.size(); i++) for (StateId j = first[i]; j != kNoStateId; j = next[j]) states.push_back(j); } RmEpsilonState rmeps_state(*fst, distance, opts); while (!states.empty()) { StateId state = states.back(); states.pop_back(); rmeps_state.Expand(state); fst->SetFinal(state, rmeps_state.Final()); fst->DeleteArcs(state); vector &arcs = rmeps_state.Arcs(); while (!arcs.empty()) { fst->AddArc(state, arcs.back()); arcs.pop_back(); } } fst->SetProperties(RmEpsilonProperties( fst->Properties(kFstProperties, false)), kFstProperties); if (opts.connect) Connect(fst); } // Removes epsilon-transitions (when both the input and output label // are an epsilon) from a transducer. The result will be an equivalent // FST that has no such epsilon transitions. This version modifies its // input. It has a simplified interface; see above for a version that // allows finer control. // // Complexity: // - Time: // - Unweighted: O(V2 + V E) // - Acyclic: O(V2 + V E) // - Tropical semiring: O(V2 log V + V E) // - General: exponential // - Space: O(V E) // where V = # of states visited, E = # of arcs. // // References: // - Mehryar Mohri. Generic Epsilon-Removal and Input // Epsilon-Normalization Algorithms for Weighted Transducers, // "International Journal of Computer Science", 13(1):129-143 (2002). template void RmEpsilon(MutableFst *fst, bool connect = true) { typedef typename Arc::StateId StateId; typedef typename Arc::Weight Weight; typedef typename Arc::Label Label; vector distance; AutoQueue state_queue(*fst, &distance, EpsilonArcFilter()); RmEpsilonOptions > opts(&state_queue, kDelta, connect); RmEpsilon(fst, &distance, opts); } struct RmEpsilonFstOptions : CacheOptions { float delta; RmEpsilonFstOptions(const CacheOptions &opts, float delta = kDelta) : CacheOptions(opts), delta(delta) {} explicit RmEpsilonFstOptions(float delta = kDelta) : delta(delta) {} }; // Implementation of delayed RmEpsilonFst. template class RmEpsilonFstImpl : public CacheImpl { public: using FstImpl::SetType; using FstImpl::SetProperties; using FstImpl::Properties; using FstImpl::SetInputSymbols; using FstImpl::SetOutputSymbols; using CacheBaseImpl< CacheState >::HasStart; using CacheBaseImpl< CacheState >::HasFinal; using CacheBaseImpl< CacheState >::HasArcs; typedef typename A::Label Label; typedef typename A::Weight Weight; typedef typename A::StateId StateId; typedef CacheState State; RmEpsilonFstImpl(const Fst& fst, const RmEpsilonFstOptions &opts) : CacheImpl(opts), fst_(fst.Copy()), rmeps_state_( *fst_, &distance_, RmEpsilonOptions >(&queue_, opts.delta, false) ) { SetType("rmepsilon"); uint64 props = fst.Properties(kFstProperties, false); SetProperties(RmEpsilonProperties(props, true), kCopyProperties); } ~RmEpsilonFstImpl() { delete fst_; } StateId Start() { if (!HasStart()) { SetStart(fst_->Start()); } return CacheImpl::Start(); } Weight Final(StateId s) { if (!HasFinal(s)) { Expand(s); } return CacheImpl::Final(s); } size_t NumArcs(StateId s) { if (!HasArcs(s)) Expand(s); return CacheImpl::NumArcs(s); } size_t NumInputEpsilons(StateId s) { if (!HasArcs(s)) Expand(s); return CacheImpl::NumInputEpsilons(s); } size_t NumOutputEpsilons(StateId s) { if (!HasArcs(s)) Expand(s); return CacheImpl::NumOutputEpsilons(s); } void InitArcIterator(StateId s, ArcIteratorData *data) { if (!HasArcs(s)) Expand(s); CacheImpl::InitArcIterator(s, data); } void Expand(StateId s) { rmeps_state_.Expand(s); SetFinal(s, rmeps_state_.Final()); vector &arcs = rmeps_state_.Arcs(); while (!arcs.empty()) { AddArc(s, arcs.back()); arcs.pop_back(); } SetArcs(s); } private: const Fst *fst_; vector distance_; FifoQueue queue_; RmEpsilonState > rmeps_state_; DISALLOW_EVIL_CONSTRUCTORS(RmEpsilonFstImpl); }; // Removes epsilon-transitions (when both the input and output label // are an epsilon) from a transducer. The result will be an equivalent // FST that has no such epsilon transitions. This version is a // delayed Fst. // // Complexity: // - Time: // - Unweighted: O(v^2 + v e) // - General: exponential // - Space: O(v e) // where v = # of states visited, e = # of arcs visited. Constant time // to visit an input state or arc is assumed and exclusive of caching. // // References: // - Mehryar Mohri. Generic Epsilon-Removal and Input // Epsilon-Normalization Algorithms for Weighted Transducers, // "International Journal of Computer Science", 13(1):129-143 (2002). template class RmEpsilonFst : public Fst { public: friend class ArcIterator< RmEpsilonFst >; friend class CacheStateIterator< RmEpsilonFst >; friend class CacheArcIterator< RmEpsilonFst >; typedef A Arc; typedef typename A::Weight Weight; typedef typename A::StateId StateId; typedef CacheState State; RmEpsilonFst(const Fst &fst) : impl_(new RmEpsilonFstImpl(fst, RmEpsilonFstOptions())) {} RmEpsilonFst(const Fst &fst, const RmEpsilonFstOptions &opts) : impl_(new RmEpsilonFstImpl(fst, opts)) {} explicit RmEpsilonFst(const RmEpsilonFst &fst) : impl_(fst.impl_) { impl_->IncrRefCount(); } virtual ~RmEpsilonFst() { if (!impl_->DecrRefCount()) delete impl_; } virtual StateId Start() const { return impl_->Start(); } virtual Weight Final(StateId s) const { return impl_->Final(s); } virtual size_t NumArcs(StateId s) const { return impl_->NumArcs(s); } virtual size_t NumInputEpsilons(StateId s) const { return impl_->NumInputEpsilons(s); } virtual size_t NumOutputEpsilons(StateId s) const { return impl_->NumOutputEpsilons(s); } virtual uint64 Properties(uint64 mask, bool test) const { if (test) { uint64 known, test = TestProperties(*this, mask, &known); impl_->SetProperties(test, known); return test & mask; } else { return impl_->Properties(mask); } } virtual const string& Type() const { return impl_->Type(); } virtual RmEpsilonFst *Copy() const { return new RmEpsilonFst(*this); } virtual const SymbolTable* InputSymbols() const { return impl_->InputSymbols(); } virtual const SymbolTable* OutputSymbols() const { return impl_->OutputSymbols(); } virtual inline void InitStateIterator(StateIteratorData *data) const; virtual void InitArcIterator(StateId s, ArcIteratorData *data) const { impl_->InitArcIterator(s, data); } protected: RmEpsilonFstImpl *Impl() { return impl_; } private: RmEpsilonFstImpl *impl_; void operator=(const RmEpsilonFst &fst); // disallow }; // Specialization for RmEpsilonFst. template class StateIterator< RmEpsilonFst > : public CacheStateIterator< RmEpsilonFst > { public: explicit StateIterator(const RmEpsilonFst &fst) : CacheStateIterator< RmEpsilonFst >(fst) {} }; // Specialization for RmEpsilonFst. template class ArcIterator< RmEpsilonFst > : public CacheArcIterator< RmEpsilonFst > { public: typedef typename A::StateId StateId; ArcIterator(const RmEpsilonFst &fst, StateId s) : CacheArcIterator< RmEpsilonFst >(fst, s) { if (!fst.impl_->HasArcs(s)) fst.impl_->Expand(s); } private: DISALLOW_EVIL_CONSTRUCTORS(ArcIterator); }; template inline void RmEpsilonFst::InitStateIterator(StateIteratorData *data) const { data->base = new StateIterator< RmEpsilonFst >(*this); } // Useful alias when using StdArc. typedef RmEpsilonFst StdRmEpsilonFst; } // namespace fst #endif // FST_LIB_RMEPSILON_H__