// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "frames-inl.h" #include "mark-compact.h" #include "scopeinfo.h" #include "string-stream.h" #include "top.h" #include "zone-inl.h" namespace v8 { namespace internal { // Iterator that supports traversing the stack handlers of a // particular frame. Needs to know the top of the handler chain. class StackHandlerIterator BASE_EMBEDDED { public: StackHandlerIterator(const StackFrame* frame, StackHandler* handler) : limit_(frame->fp()), handler_(handler) { // Make sure the handler has already been unwound to this frame. ASSERT(frame->sp() <= handler->address()); } StackHandler* handler() const { return handler_; } bool done() { return handler_ == NULL || handler_->address() > limit_; } void Advance() { ASSERT(!done()); handler_ = handler_->next(); } private: const Address limit_; StackHandler* handler_; }; // ------------------------------------------------------------------------- #define INITIALIZE_SINGLETON(type, field) field##_(this), StackFrameIterator::StackFrameIterator() : STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(NULL), handler_(NULL), thread_(Top::GetCurrentThread()), fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) { Reset(); } StackFrameIterator::StackFrameIterator(ThreadLocalTop* t) : STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(NULL), handler_(NULL), thread_(t), fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) { Reset(); } StackFrameIterator::StackFrameIterator(bool use_top, Address fp, Address sp) : STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(NULL), handler_(NULL), thread_(use_top ? Top::GetCurrentThread() : NULL), fp_(use_top ? NULL : fp), sp_(sp), advance_(use_top ? &StackFrameIterator::AdvanceWithHandler : &StackFrameIterator::AdvanceWithoutHandler) { if (use_top || fp != NULL) { Reset(); } JavaScriptFrame_.DisableHeapAccess(); } #undef INITIALIZE_SINGLETON void StackFrameIterator::AdvanceWithHandler() { ASSERT(!done()); // Compute the state of the calling frame before restoring // callee-saved registers and unwinding handlers. This allows the // frame code that computes the caller state to access the top // handler and the value of any callee-saved register if needed. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); // Unwind handlers corresponding to the current frame. StackHandlerIterator it(frame_, handler_); while (!it.done()) it.Advance(); handler_ = it.handler(); // Advance to the calling frame. frame_ = SingletonFor(type, &state); // When we're done iterating over the stack frames, the handler // chain must have been completely unwound. ASSERT(!done() || handler_ == NULL); } void StackFrameIterator::AdvanceWithoutHandler() { // A simpler version of Advance which doesn't care about handler. ASSERT(!done()); StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); frame_ = SingletonFor(type, &state); } void StackFrameIterator::Reset() { StackFrame::State state; StackFrame::Type type; if (thread_ != NULL) { type = ExitFrame::GetStateForFramePointer(Top::c_entry_fp(thread_), &state); handler_ = StackHandler::FromAddress(Top::handler(thread_)); } else { ASSERT(fp_ != NULL); state.fp = fp_; state.sp = sp_; state.pc_address = reinterpret_cast(StandardFrame::ComputePCAddress(fp_)); type = StackFrame::ComputeType(&state); if (SingletonFor(type) == NULL) return; } frame_ = SingletonFor(type, &state); } StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type, StackFrame::State* state) { if (type == StackFrame::NONE) return NULL; StackFrame* result = SingletonFor(type); ASSERT(result != NULL); result->state_ = *state; return result; } StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type) { #define FRAME_TYPE_CASE(type, field) \ case StackFrame::type: result = &field##_; break; StackFrame* result = NULL; switch (type) { case StackFrame::NONE: return NULL; STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE) default: break; } return result; #undef FRAME_TYPE_CASE } // ------------------------------------------------------------------------- StackTraceFrameIterator::StackTraceFrameIterator() { if (!done() && !IsValidFrame()) Advance(); } void StackTraceFrameIterator::Advance() { while (true) { JavaScriptFrameIterator::Advance(); if (done()) return; if (IsValidFrame()) return; } } bool StackTraceFrameIterator::IsValidFrame() { if (!frame()->function()->IsJSFunction()) return false; Object* script = JSFunction::cast(frame()->function())->shared()->script(); // Don't show functions from native scripts to user. return (script->IsScript() && Script::TYPE_NATIVE != Script::cast(script)->type()->value()); } // ------------------------------------------------------------------------- SafeStackFrameIterator::SafeStackFrameIterator( Address fp, Address sp, Address low_bound, Address high_bound) : low_bound_(low_bound), high_bound_(high_bound), is_valid_top_( IsWithinBounds(low_bound, high_bound, Top::c_entry_fp(Top::GetCurrentThread())) && Top::handler(Top::GetCurrentThread()) != NULL), is_valid_fp_(IsWithinBounds(low_bound, high_bound, fp)), is_working_iterator_(is_valid_top_ || is_valid_fp_), iteration_done_(!is_working_iterator_), iterator_(is_valid_top_, is_valid_fp_ ? fp : NULL, sp) { } void SafeStackFrameIterator::Advance() { ASSERT(is_working_iterator_); ASSERT(!done()); StackFrame* last_frame = iterator_.frame(); Address last_sp = last_frame->sp(), last_fp = last_frame->fp(); // Before advancing to the next stack frame, perform pointer validity tests iteration_done_ = !IsValidFrame(last_frame) || !CanIterateHandles(last_frame, iterator_.handler()) || !IsValidCaller(last_frame); if (iteration_done_) return; iterator_.Advance(); if (iterator_.done()) return; // Check that we have actually moved to the previous frame in the stack StackFrame* prev_frame = iterator_.frame(); iteration_done_ = prev_frame->sp() < last_sp || prev_frame->fp() < last_fp; } bool SafeStackFrameIterator::CanIterateHandles(StackFrame* frame, StackHandler* handler) { // If StackIterator iterates over StackHandles, verify that // StackHandlerIterator can be instantiated (see StackHandlerIterator // constructor.) return !is_valid_top_ || (frame->sp() <= handler->address()); } bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const { return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp()); } bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) { StackFrame::State state; if (frame->is_entry() || frame->is_entry_construct()) { // See EntryFrame::GetCallerState. It computes the caller FP address // and calls ExitFrame::GetStateForFramePointer on it. We need to be // sure that caller FP address is valid. Address caller_fp = Memory::Address_at( frame->fp() + EntryFrameConstants::kCallerFPOffset); if (!IsValidStackAddress(caller_fp)) { return false; } } else if (frame->is_arguments_adaptor()) { // See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that // the number of arguments is stored on stack as Smi. We need to check // that it really an Smi. Object* number_of_args = reinterpret_cast(frame)-> GetExpression(0); if (!number_of_args->IsSmi()) { return false; } } frame->ComputeCallerState(&state); return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) && iterator_.SingletonFor(frame->GetCallerState(&state)) != NULL; } void SafeStackFrameIterator::Reset() { if (is_working_iterator_) { iterator_.Reset(); iteration_done_ = false; } } // ------------------------------------------------------------------------- #ifdef ENABLE_LOGGING_AND_PROFILING SafeStackTraceFrameIterator::SafeStackTraceFrameIterator( Address fp, Address sp, Address low_bound, Address high_bound) : SafeJavaScriptFrameIterator(fp, sp, low_bound, high_bound) { if (!done() && !frame()->is_java_script()) Advance(); } void SafeStackTraceFrameIterator::Advance() { while (true) { SafeJavaScriptFrameIterator::Advance(); if (done()) return; if (frame()->is_java_script()) return; } } #endif // ------------------------------------------------------------------------- void StackHandler::Cook(Code* code) { ASSERT(MarkCompactCollector::IsCompacting()); ASSERT(code->contains(pc())); set_pc(AddressFrom
(pc() - code->instruction_start())); } void StackHandler::Uncook(Code* code) { ASSERT(MarkCompactCollector::HasCompacted()); set_pc(code->instruction_start() + OffsetFrom(pc())); ASSERT(code->contains(pc())); } // ------------------------------------------------------------------------- bool StackFrame::HasHandler() const { StackHandlerIterator it(this, top_handler()); return !it.done(); } void StackFrame::CookFramesForThread(ThreadLocalTop* thread) { // Only cooking frames when the collector is compacting and thus moving code // around. ASSERT(MarkCompactCollector::IsCompacting()); ASSERT(!thread->stack_is_cooked()); for (StackFrameIterator it(thread); !it.done(); it.Advance()) { it.frame()->Cook(); } thread->set_stack_is_cooked(true); } void StackFrame::UncookFramesForThread(ThreadLocalTop* thread) { // Only uncooking frames when the collector is compacting and thus moving code // around. ASSERT(MarkCompactCollector::HasCompacted()); ASSERT(thread->stack_is_cooked()); for (StackFrameIterator it(thread); !it.done(); it.Advance()) { it.frame()->Uncook(); } thread->set_stack_is_cooked(false); } void StackFrame::Cook() { Code* code = this->code(); ASSERT(code->IsCode()); for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) { it.handler()->Cook(code); } ASSERT(code->contains(pc())); set_pc(AddressFrom
(pc() - code->instruction_start())); } void StackFrame::Uncook() { Code* code = this->code(); ASSERT(code->IsCode()); for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) { it.handler()->Uncook(code); } set_pc(code->instruction_start() + OffsetFrom(pc())); ASSERT(code->contains(pc())); } StackFrame::Type StackFrame::GetCallerState(State* state) const { ComputeCallerState(state); return ComputeType(state); } Code* EntryFrame::code() const { return Heap::js_entry_code(); } void EntryFrame::ComputeCallerState(State* state) const { GetCallerState(state); } StackFrame::Type EntryFrame::GetCallerState(State* state) const { const int offset = EntryFrameConstants::kCallerFPOffset; Address fp = Memory::Address_at(this->fp() + offset); return ExitFrame::GetStateForFramePointer(fp, state); } Code* EntryConstructFrame::code() const { return Heap::js_construct_entry_code(); } Object*& ExitFrame::code_slot() const { const int offset = ExitFrameConstants::kCodeOffset; return Memory::Object_at(fp() + offset); } Code* ExitFrame::code() const { return Code::cast(code_slot()); } void ExitFrame::ComputeCallerState(State* state) const { // Setup the caller state. state->sp = caller_sp(); state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset); state->pc_address = reinterpret_cast(fp() + ExitFrameConstants::kCallerPCOffset); } Address ExitFrame::GetCallerStackPointer() const { return fp() + ExitFrameConstants::kCallerSPDisplacement; } Address StandardFrame::GetExpressionAddress(int n) const { const int offset = StandardFrameConstants::kExpressionsOffset; return fp() + offset - n * kPointerSize; } int StandardFrame::ComputeExpressionsCount() const { const int offset = StandardFrameConstants::kExpressionsOffset + kPointerSize; Address base = fp() + offset; Address limit = sp(); ASSERT(base >= limit); // stack grows downwards // Include register-allocated locals in number of expressions. return static_cast((base - limit) / kPointerSize); } void StandardFrame::ComputeCallerState(State* state) const { state->sp = caller_sp(); state->fp = caller_fp(); state->pc_address = reinterpret_cast(ComputePCAddress(fp())); } bool StandardFrame::IsExpressionInsideHandler(int n) const { Address address = GetExpressionAddress(n); for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) { if (it.handler()->includes(address)) return true; } return false; } Object* JavaScriptFrame::GetParameter(int index) const { ASSERT(index >= 0 && index < ComputeParametersCount()); const int offset = JavaScriptFrameConstants::kParam0Offset; return Memory::Object_at(caller_sp() + offset - (index * kPointerSize)); } int JavaScriptFrame::ComputeParametersCount() const { Address base = caller_sp() + JavaScriptFrameConstants::kReceiverOffset; Address limit = fp() + JavaScriptFrameConstants::kSavedRegistersOffset; return static_cast((base - limit) / kPointerSize); } bool JavaScriptFrame::IsConstructor() const { Address fp = caller_fp(); if (has_adapted_arguments()) { // Skip the arguments adaptor frame and look at the real caller. fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); } return IsConstructFrame(fp); } Code* JavaScriptFrame::code() const { JSFunction* function = JSFunction::cast(this->function()); return function->shared()->code(); } Code* ArgumentsAdaptorFrame::code() const { return Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline); } Code* InternalFrame::code() const { const int offset = InternalFrameConstants::kCodeOffset; Object* code = Memory::Object_at(fp() + offset); ASSERT(code != NULL); return Code::cast(code); } void StackFrame::PrintIndex(StringStream* accumulator, PrintMode mode, int index) { accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index); } void JavaScriptFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { HandleScope scope; Object* receiver = this->receiver(); Object* function = this->function(); accumulator->PrintSecurityTokenIfChanged(function); PrintIndex(accumulator, mode, index); Code* code = NULL; if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(function, receiver, &code); accumulator->Add("(this=%o", receiver); // Get scope information for nicer output, if possible. If code is // NULL, or doesn't contain scope info, info will return 0 for the // number of parameters, stack slots, or context slots. ScopeInfo info(code); // Print the parameters. int parameters_count = ComputeParametersCount(); for (int i = 0; i < parameters_count; i++) { accumulator->Add(","); // If we have a name for the parameter we print it. Nameless // parameters are either because we have more actual parameters // than formal parameters or because we have no scope information. if (i < info.number_of_parameters()) { accumulator->PrintName(*info.parameter_name(i)); accumulator->Add("="); } accumulator->Add("%o", GetParameter(i)); } accumulator->Add(")"); if (mode == OVERVIEW) { accumulator->Add("\n"); return; } accumulator->Add(" {\n"); // Compute the number of locals and expression stack elements. int stack_locals_count = info.number_of_stack_slots(); int heap_locals_count = info.number_of_context_slots(); int expressions_count = ComputeExpressionsCount(); // Print stack-allocated local variables. if (stack_locals_count > 0) { accumulator->Add(" // stack-allocated locals\n"); } for (int i = 0; i < stack_locals_count; i++) { accumulator->Add(" var "); accumulator->PrintName(*info.stack_slot_name(i)); accumulator->Add(" = "); if (i < expressions_count) { accumulator->Add("%o", GetExpression(i)); } else { accumulator->Add("// no expression found - inconsistent frame?"); } accumulator->Add("\n"); } // Try to get hold of the context of this frame. Context* context = NULL; if (this->context() != NULL && this->context()->IsContext()) { context = Context::cast(this->context()); } // Print heap-allocated local variables. if (heap_locals_count > Context::MIN_CONTEXT_SLOTS) { accumulator->Add(" // heap-allocated locals\n"); } for (int i = Context::MIN_CONTEXT_SLOTS; i < heap_locals_count; i++) { accumulator->Add(" var "); accumulator->PrintName(*info.context_slot_name(i)); accumulator->Add(" = "); if (context != NULL) { if (i < context->length()) { accumulator->Add("%o", context->get(i)); } else { accumulator->Add( "// warning: missing context slot - inconsistent frame?"); } } else { accumulator->Add("// warning: no context found - inconsistent frame?"); } accumulator->Add("\n"); } // Print the expression stack. int expressions_start = stack_locals_count; if (expressions_start < expressions_count) { accumulator->Add(" // expression stack (top to bottom)\n"); } for (int i = expressions_count - 1; i >= expressions_start; i--) { if (IsExpressionInsideHandler(i)) continue; accumulator->Add(" [%02d] : %o\n", i, GetExpression(i)); } // Print details about the function. if (FLAG_max_stack_trace_source_length != 0 && code != NULL) { SharedFunctionInfo* shared = JSFunction::cast(function)->shared(); accumulator->Add("--------- s o u r c e c o d e ---------\n"); shared->SourceCodePrint(accumulator, FLAG_max_stack_trace_source_length); accumulator->Add("\n-----------------------------------------\n"); } accumulator->Add("}\n\n"); } void ArgumentsAdaptorFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { int actual = ComputeParametersCount(); int expected = -1; Object* function = this->function(); if (function->IsJSFunction()) { expected = JSFunction::cast(function)->shared()->formal_parameter_count(); } PrintIndex(accumulator, mode, index); accumulator->Add("arguments adaptor frame: %d->%d", actual, expected); if (mode == OVERVIEW) { accumulator->Add("\n"); return; } accumulator->Add(" {\n"); // Print actual arguments. if (actual > 0) accumulator->Add(" // actual arguments\n"); for (int i = 0; i < actual; i++) { accumulator->Add(" [%02d] : %o", i, GetParameter(i)); if (expected != -1 && i >= expected) { accumulator->Add(" // not passed to callee"); } accumulator->Add("\n"); } accumulator->Add("}\n\n"); } void EntryFrame::Iterate(ObjectVisitor* v) const { StackHandlerIterator it(this, top_handler()); ASSERT(!it.done()); StackHandler* handler = it.handler(); ASSERT(handler->is_entry()); handler->Iterate(v); // Make sure that there's the entry frame does not contain more than // one stack handler. #ifdef DEBUG it.Advance(); ASSERT(it.done()); #endif } void StandardFrame::IterateExpressions(ObjectVisitor* v) const { const int offset = StandardFrameConstants::kContextOffset; Object** base = &Memory::Object_at(sp()); Object** limit = &Memory::Object_at(fp() + offset) + 1; for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) { StackHandler* handler = it.handler(); // Traverse pointers down to - but not including - the next // handler in the handler chain. Update the base to skip the // handler and allow the handler to traverse its own pointers. const Address address = handler->address(); v->VisitPointers(base, reinterpret_cast(address)); base = reinterpret_cast(address + StackHandlerConstants::kSize); // Traverse the pointers in the handler itself. handler->Iterate(v); } v->VisitPointers(base, limit); } void JavaScriptFrame::Iterate(ObjectVisitor* v) const { IterateExpressions(v); // Traverse callee-saved registers, receiver, and parameters. const int kBaseOffset = JavaScriptFrameConstants::kSavedRegistersOffset; const int kLimitOffset = JavaScriptFrameConstants::kReceiverOffset; Object** base = &Memory::Object_at(fp() + kBaseOffset); Object** limit = &Memory::Object_at(caller_sp() + kLimitOffset) + 1; v->VisitPointers(base, limit); } void InternalFrame::Iterate(ObjectVisitor* v) const { // Internal frames only have object pointers on the expression stack // as they never have any arguments. IterateExpressions(v); } // ------------------------------------------------------------------------- JavaScriptFrame* StackFrameLocator::FindJavaScriptFrame(int n) { ASSERT(n >= 0); for (int i = 0; i <= n; i++) { while (!iterator_.frame()->is_java_script()) iterator_.Advance(); if (i == n) return JavaScriptFrame::cast(iterator_.frame()); iterator_.Advance(); } UNREACHABLE(); return NULL; } // ------------------------------------------------------------------------- int NumRegs(RegList reglist) { int n = 0; while (reglist != 0) { n++; reglist &= reglist - 1; // clear one bit } return n; } int JSCallerSavedCode(int n) { static int reg_code[kNumJSCallerSaved]; static bool initialized = false; if (!initialized) { initialized = true; int i = 0; for (int r = 0; r < kNumRegs; r++) if ((kJSCallerSaved & (1 << r)) != 0) reg_code[i++] = r; ASSERT(i == kNumJSCallerSaved); } ASSERT(0 <= n && n < kNumJSCallerSaved); return reg_code[n]; } } } // namespace v8::internal