// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "ast.h" #include "scopes.h" #include "usage-analyzer.h" namespace v8 { namespace internal { // Weight boundaries static const int MinWeight = 1; static const int MaxWeight = 1000000; static const int InitialWeight = 100; class UsageComputer: public AstVisitor { public: static bool Traverse(AstNode* node); // AST node visit functions. #define DECLARE_VISIT(type) void Visit##type(type* node); AST_NODE_LIST(DECLARE_VISIT) #undef DECLARE_VISIT void VisitVariable(Variable* var); private: int weight_; bool is_write_; UsageComputer(int weight, bool is_write); virtual ~UsageComputer(); // Helper functions void RecordUses(UseCount* uses); void Read(Expression* x); void Write(Expression* x); void ReadList(ZoneList* list); void ReadList(ZoneList* list); friend class WeightScaler; }; class WeightScaler BASE_EMBEDDED { public: WeightScaler(UsageComputer* uc, float scale); ~WeightScaler(); private: UsageComputer* uc_; int old_weight_; }; // ---------------------------------------------------------------------------- // Implementation of UsageComputer bool UsageComputer::Traverse(AstNode* node) { UsageComputer uc(InitialWeight, false); uc.Visit(node); return !uc.HasStackOverflow(); } void UsageComputer::VisitBlock(Block* node) { VisitStatements(node->statements()); } void UsageComputer::VisitDeclaration(Declaration* node) { Write(node->proxy()); if (node->fun() != NULL) VisitFunctionLiteral(node->fun()); } void UsageComputer::VisitExpressionStatement(ExpressionStatement* node) { Visit(node->expression()); } void UsageComputer::VisitEmptyStatement(EmptyStatement* node) { // nothing to do } void UsageComputer::VisitIfStatement(IfStatement* node) { Read(node->condition()); { WeightScaler ws(this, 0.5); // executed 50% of the time Visit(node->then_statement()); Visit(node->else_statement()); } } void UsageComputer::VisitContinueStatement(ContinueStatement* node) { // nothing to do } void UsageComputer::VisitBreakStatement(BreakStatement* node) { // nothing to do } void UsageComputer::VisitReturnStatement(ReturnStatement* node) { Read(node->expression()); } void UsageComputer::VisitWithEnterStatement(WithEnterStatement* node) { Read(node->expression()); } void UsageComputer::VisitWithExitStatement(WithExitStatement* node) { // nothing to do } void UsageComputer::VisitSwitchStatement(SwitchStatement* node) { Read(node->tag()); ZoneList* cases = node->cases(); for (int i = cases->length(); i-- > 0;) { WeightScaler ws(this, static_cast(1.0 / cases->length())); CaseClause* clause = cases->at(i); if (!clause->is_default()) Read(clause->label()); VisitStatements(clause->statements()); } } void UsageComputer::VisitDoWhileStatement(DoWhileStatement* node) { WeightScaler ws(this, 10.0); Read(node->cond()); Visit(node->body()); } void UsageComputer::VisitWhileStatement(WhileStatement* node) { WeightScaler ws(this, 10.0); Read(node->cond()); Visit(node->body()); } void UsageComputer::VisitForStatement(ForStatement* node) { if (node->init() != NULL) Visit(node->init()); { WeightScaler ws(this, 10.0); // executed in each iteration if (node->cond() != NULL) Read(node->cond()); if (node->next() != NULL) Visit(node->next()); Visit(node->body()); } } void UsageComputer::VisitForInStatement(ForInStatement* node) { WeightScaler ws(this, 10.0); Write(node->each()); Read(node->enumerable()); Visit(node->body()); } void UsageComputer::VisitTryCatchStatement(TryCatchStatement* node) { Visit(node->try_block()); { WeightScaler ws(this, 0.25); Write(node->catch_var()); Visit(node->catch_block()); } } void UsageComputer::VisitTryFinallyStatement(TryFinallyStatement* node) { Visit(node->try_block()); Visit(node->finally_block()); } void UsageComputer::VisitDebuggerStatement(DebuggerStatement* node) { } void UsageComputer::VisitFunctionLiteral(FunctionLiteral* node) { ZoneList* decls = node->scope()->declarations(); for (int i = 0; i < decls->length(); i++) VisitDeclaration(decls->at(i)); VisitStatements(node->body()); } void UsageComputer::VisitFunctionBoilerplateLiteral( FunctionBoilerplateLiteral* node) { // Do nothing. } void UsageComputer::VisitConditional(Conditional* node) { Read(node->condition()); { WeightScaler ws(this, 0.5); Read(node->then_expression()); Read(node->else_expression()); } } void UsageComputer::VisitSlot(Slot* node) { UNREACHABLE(); } void UsageComputer::VisitVariable(Variable* node) { RecordUses(node->var_uses()); } void UsageComputer::VisitVariableProxy(VariableProxy* node) { // The proxy may refer to a variable in which case it was bound via // VariableProxy::BindTo. RecordUses(node->var_uses()); } void UsageComputer::VisitLiteral(Literal* node) { // nothing to do } void UsageComputer::VisitRegExpLiteral(RegExpLiteral* node) { // nothing to do } void UsageComputer::VisitObjectLiteral(ObjectLiteral* node) { ReadList(node->properties()); } void UsageComputer::VisitArrayLiteral(ArrayLiteral* node) { ReadList(node->values()); } void UsageComputer::VisitCatchExtensionObject(CatchExtensionObject* node) { Read(node->value()); } void UsageComputer::VisitAssignment(Assignment* node) { if (node->op() != Token::ASSIGN) Read(node->target()); Write(node->target()); Read(node->value()); } void UsageComputer::VisitThrow(Throw* node) { Read(node->exception()); } void UsageComputer::VisitProperty(Property* node) { // In any case (read or write) we read both the // node's object and the key. Read(node->obj()); Read(node->key()); // If the node's object is a variable proxy, // we have a 'simple' object property access. We count // the access via the variable or proxy's object uses. VariableProxy* proxy = node->obj()->AsVariableProxy(); if (proxy != NULL) { RecordUses(proxy->obj_uses()); } } void UsageComputer::VisitCall(Call* node) { Read(node->expression()); ReadList(node->arguments()); } void UsageComputer::VisitCallNew(CallNew* node) { Read(node->expression()); ReadList(node->arguments()); } void UsageComputer::VisitCallRuntime(CallRuntime* node) { ReadList(node->arguments()); } void UsageComputer::VisitUnaryOperation(UnaryOperation* node) { Read(node->expression()); } void UsageComputer::VisitCountOperation(CountOperation* node) { Read(node->expression()); Write(node->expression()); } void UsageComputer::VisitBinaryOperation(BinaryOperation* node) { Read(node->left()); Read(node->right()); } void UsageComputer::VisitCompareOperation(CompareOperation* node) { Read(node->left()); Read(node->right()); } void UsageComputer::VisitThisFunction(ThisFunction* node) { } UsageComputer::UsageComputer(int weight, bool is_write) { weight_ = weight; is_write_ = is_write; } UsageComputer::~UsageComputer() { // nothing to do } void UsageComputer::RecordUses(UseCount* uses) { if (is_write_) uses->RecordWrite(weight_); else uses->RecordRead(weight_); } void UsageComputer::Read(Expression* x) { if (is_write_) { UsageComputer uc(weight_, false); uc.Visit(x); } else { Visit(x); } } void UsageComputer::Write(Expression* x) { if (!is_write_) { UsageComputer uc(weight_, true); uc.Visit(x); } else { Visit(x); } } void UsageComputer::ReadList(ZoneList* list) { for (int i = list->length(); i-- > 0; ) Read(list->at(i)); } void UsageComputer::ReadList(ZoneList* list) { for (int i = list->length(); i-- > 0; ) Read(list->at(i)->value()); } // ---------------------------------------------------------------------------- // Implementation of WeightScaler WeightScaler::WeightScaler(UsageComputer* uc, float scale) { uc_ = uc; old_weight_ = uc->weight_; int new_weight = static_cast(uc->weight_ * scale); if (new_weight <= 0) new_weight = MinWeight; else if (new_weight > MaxWeight) new_weight = MaxWeight; uc->weight_ = new_weight; } WeightScaler::~WeightScaler() { uc_->weight_ = old_weight_; } // ---------------------------------------------------------------------------- // Interface to variable usage analysis bool AnalyzeVariableUsage(FunctionLiteral* lit) { if (!FLAG_usage_computation) return true; HistogramTimerScope timer(&Counters::usage_analysis); return UsageComputer::Traverse(lit); } } } // namespace v8::internal