• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_HEAP_INL_H_
29 #define V8_HEAP_INL_H_
30 
31 #include "log.h"
32 #include "v8-counters.h"
33 
34 namespace v8 {
35 namespace internal {
36 
MaxObjectSizeInPagedSpace()37 int Heap::MaxObjectSizeInPagedSpace() {
38   return Page::kMaxHeapObjectSize;
39 }
40 
41 
AllocateSymbol(Vector<const char> str,int chars,uint32_t hash_field)42 Object* Heap::AllocateSymbol(Vector<const char> str,
43                              int chars,
44                              uint32_t hash_field) {
45   unibrow::Utf8InputBuffer<> buffer(str.start(),
46                                     static_cast<unsigned>(str.length()));
47   return AllocateInternalSymbol(&buffer, chars, hash_field);
48 }
49 
50 
AllocateRaw(int size_in_bytes,AllocationSpace space,AllocationSpace retry_space)51 Object* Heap::AllocateRaw(int size_in_bytes,
52                           AllocationSpace space,
53                           AllocationSpace retry_space) {
54   ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
55   ASSERT(space != NEW_SPACE ||
56          retry_space == OLD_POINTER_SPACE ||
57          retry_space == OLD_DATA_SPACE ||
58          retry_space == LO_SPACE);
59 #ifdef DEBUG
60   if (FLAG_gc_interval >= 0 &&
61       !disallow_allocation_failure_ &&
62       Heap::allocation_timeout_-- <= 0) {
63     return Failure::RetryAfterGC(size_in_bytes, space);
64   }
65   Counters::objs_since_last_full.Increment();
66   Counters::objs_since_last_young.Increment();
67 #endif
68   Object* result;
69   if (NEW_SPACE == space) {
70     result = new_space_.AllocateRaw(size_in_bytes);
71     if (always_allocate() && result->IsFailure()) {
72       space = retry_space;
73     } else {
74       return result;
75     }
76   }
77 
78   if (OLD_POINTER_SPACE == space) {
79     result = old_pointer_space_->AllocateRaw(size_in_bytes);
80   } else if (OLD_DATA_SPACE == space) {
81     result = old_data_space_->AllocateRaw(size_in_bytes);
82   } else if (CODE_SPACE == space) {
83     result = code_space_->AllocateRaw(size_in_bytes);
84   } else if (LO_SPACE == space) {
85     result = lo_space_->AllocateRaw(size_in_bytes);
86   } else if (CELL_SPACE == space) {
87     result = cell_space_->AllocateRaw(size_in_bytes);
88   } else {
89     ASSERT(MAP_SPACE == space);
90     result = map_space_->AllocateRaw(size_in_bytes);
91   }
92   if (result->IsFailure()) old_gen_exhausted_ = true;
93   return result;
94 }
95 
96 
NumberFromInt32(int32_t value)97 Object* Heap::NumberFromInt32(int32_t value) {
98   if (Smi::IsValid(value)) return Smi::FromInt(value);
99   // Bypass NumberFromDouble to avoid various redundant checks.
100   return AllocateHeapNumber(FastI2D(value));
101 }
102 
103 
NumberFromUint32(uint32_t value)104 Object* Heap::NumberFromUint32(uint32_t value) {
105   if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) {
106     return Smi::FromInt((int32_t)value);
107   }
108   // Bypass NumberFromDouble to avoid various redundant checks.
109   return AllocateHeapNumber(FastUI2D(value));
110 }
111 
112 
FinalizeExternalString(String * string)113 void Heap::FinalizeExternalString(String* string) {
114   ASSERT(string->IsExternalString());
115   v8::String::ExternalStringResourceBase** resource_addr =
116       reinterpret_cast<v8::String::ExternalStringResourceBase**>(
117           reinterpret_cast<byte*>(string) +
118           ExternalString::kResourceOffset -
119           kHeapObjectTag);
120   delete *resource_addr;
121   // Clear the resource pointer in the string.
122   *resource_addr = NULL;
123 }
124 
125 
AllocateRawMap()126 Object* Heap::AllocateRawMap() {
127 #ifdef DEBUG
128   Counters::objs_since_last_full.Increment();
129   Counters::objs_since_last_young.Increment();
130 #endif
131   Object* result = map_space_->AllocateRaw(Map::kSize);
132   if (result->IsFailure()) old_gen_exhausted_ = true;
133 #ifdef DEBUG
134   if (!result->IsFailure()) {
135     // Maps have their own alignment.
136     CHECK((OffsetFrom(result) & kMapAlignmentMask) == kHeapObjectTag);
137   }
138 #endif
139   return result;
140 }
141 
142 
AllocateRawCell()143 Object* Heap::AllocateRawCell() {
144 #ifdef DEBUG
145   Counters::objs_since_last_full.Increment();
146   Counters::objs_since_last_young.Increment();
147 #endif
148   Object* result = cell_space_->AllocateRaw(JSGlobalPropertyCell::kSize);
149   if (result->IsFailure()) old_gen_exhausted_ = true;
150   return result;
151 }
152 
153 
InNewSpace(Object * object)154 bool Heap::InNewSpace(Object* object) {
155   bool result = new_space_.Contains(object);
156   ASSERT(!result ||                  // Either not in new space
157          gc_state_ != NOT_IN_GC ||   // ... or in the middle of GC
158          InToSpace(object));         // ... or in to-space (where we allocate).
159   return result;
160 }
161 
162 
InFromSpace(Object * object)163 bool Heap::InFromSpace(Object* object) {
164   return new_space_.FromSpaceContains(object);
165 }
166 
167 
InToSpace(Object * object)168 bool Heap::InToSpace(Object* object) {
169   return new_space_.ToSpaceContains(object);
170 }
171 
172 
ShouldBePromoted(Address old_address,int object_size)173 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
174   // An object should be promoted if:
175   // - the object has survived a scavenge operation or
176   // - to space is already 25% full.
177   return old_address < new_space_.age_mark()
178       || (new_space_.Size() + object_size) >= (new_space_.Capacity() >> 2);
179 }
180 
181 
RecordWrite(Address address,int offset)182 void Heap::RecordWrite(Address address, int offset) {
183   if (new_space_.Contains(address)) return;
184   ASSERT(!new_space_.FromSpaceContains(address));
185   SLOW_ASSERT(Contains(address + offset));
186   Page::SetRSet(address, offset);
187 }
188 
189 
TargetSpace(HeapObject * object)190 OldSpace* Heap::TargetSpace(HeapObject* object) {
191   InstanceType type = object->map()->instance_type();
192   AllocationSpace space = TargetSpaceId(type);
193   return (space == OLD_POINTER_SPACE)
194       ? old_pointer_space_
195       : old_data_space_;
196 }
197 
198 
TargetSpaceId(InstanceType type)199 AllocationSpace Heap::TargetSpaceId(InstanceType type) {
200   // Heap numbers and sequential strings are promoted to old data space, all
201   // other object types are promoted to old pointer space.  We do not use
202   // object->IsHeapNumber() and object->IsSeqString() because we already
203   // know that object has the heap object tag.
204 
205   // These objects are never allocated in new space.
206   ASSERT(type != MAP_TYPE);
207   ASSERT(type != CODE_TYPE);
208   ASSERT(type != ODDBALL_TYPE);
209   ASSERT(type != JS_GLOBAL_PROPERTY_CELL_TYPE);
210 
211   if (type < FIRST_NONSTRING_TYPE) {
212     // There are three string representations: sequential strings, cons
213     // strings, and external strings.  Only cons strings contain
214     // non-map-word pointers to heap objects.
215     return ((type & kStringRepresentationMask) == kConsStringTag)
216         ? OLD_POINTER_SPACE
217         : OLD_DATA_SPACE;
218   } else {
219     return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
220   }
221 }
222 
223 
CopyBlock(Object ** dst,Object ** src,int byte_size)224 void Heap::CopyBlock(Object** dst, Object** src, int byte_size) {
225   ASSERT(IsAligned(byte_size, kPointerSize));
226 
227   // Use block copying memcpy if the segment we're copying is
228   // enough to justify the extra call/setup overhead.
229   static const int kBlockCopyLimit = 16 * kPointerSize;
230 
231   if (byte_size >= kBlockCopyLimit) {
232     memcpy(dst, src, byte_size);
233   } else {
234     int remaining = byte_size / kPointerSize;
235     do {
236       remaining--;
237       *dst++ = *src++;
238     } while (remaining > 0);
239   }
240 }
241 
242 
ScavengeObject(HeapObject ** p,HeapObject * object)243 void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
244   ASSERT(InFromSpace(object));
245 
246   // We use the first word (where the map pointer usually is) of a heap
247   // object to record the forwarding pointer.  A forwarding pointer can
248   // point to an old space, the code space, or the to space of the new
249   // generation.
250   MapWord first_word = object->map_word();
251 
252   // If the first word is a forwarding address, the object has already been
253   // copied.
254   if (first_word.IsForwardingAddress()) {
255     *p = first_word.ToForwardingAddress();
256     return;
257   }
258 
259   // Call the slow part of scavenge object.
260   return ScavengeObjectSlow(p, object);
261 }
262 
263 
AdjustAmountOfExternalAllocatedMemory(int change_in_bytes)264 int Heap::AdjustAmountOfExternalAllocatedMemory(int change_in_bytes) {
265   ASSERT(HasBeenSetup());
266   int amount = amount_of_external_allocated_memory_ + change_in_bytes;
267   if (change_in_bytes >= 0) {
268     // Avoid overflow.
269     if (amount > amount_of_external_allocated_memory_) {
270       amount_of_external_allocated_memory_ = amount;
271     }
272     int amount_since_last_global_gc =
273         amount_of_external_allocated_memory_ -
274         amount_of_external_allocated_memory_at_last_global_gc_;
275     if (amount_since_last_global_gc > external_allocation_limit_) {
276       CollectAllGarbage(false);
277     }
278   } else {
279     // Avoid underflow.
280     if (amount >= 0) {
281       amount_of_external_allocated_memory_ = amount;
282     }
283   }
284   ASSERT(amount_of_external_allocated_memory_ >= 0);
285   return amount_of_external_allocated_memory_;
286 }
287 
288 
SetLastScriptId(Object * last_script_id)289 void Heap::SetLastScriptId(Object* last_script_id) {
290   roots_[kLastScriptIdRootIndex] = last_script_id;
291 }
292 
293 
294 #define GC_GREEDY_CHECK() \
295   ASSERT(!FLAG_gc_greedy || v8::internal::Heap::GarbageCollectionGreedyCheck())
296 
297 
298 // Calls the FUNCTION_CALL function and retries it up to three times
299 // to guarantee that any allocations performed during the call will
300 // succeed if there's enough memory.
301 
302 // Warning: Do not use the identifiers __object__ or __scope__ in a
303 // call to this macro.
304 
305 #define CALL_AND_RETRY(FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)         \
306   do {                                                                    \
307     GC_GREEDY_CHECK();                                                    \
308     Object* __object__ = FUNCTION_CALL;                                   \
309     if (!__object__->IsFailure()) RETURN_VALUE;                           \
310     if (__object__->IsOutOfMemoryFailure()) {                             \
311       v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_0");      \
312     }                                                                     \
313     if (!__object__->IsRetryAfterGC()) RETURN_EMPTY;                      \
314     Heap::CollectGarbage(Failure::cast(__object__)->requested(),          \
315                          Failure::cast(__object__)->allocation_space());  \
316     __object__ = FUNCTION_CALL;                                           \
317     if (!__object__->IsFailure()) RETURN_VALUE;                           \
318     if (__object__->IsOutOfMemoryFailure()) {                             \
319       v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_1");      \
320     }                                                                     \
321     if (!__object__->IsRetryAfterGC()) RETURN_EMPTY;                      \
322     Counters::gc_last_resort_from_handles.Increment();                    \
323     Heap::CollectAllGarbage(false);                                       \
324     {                                                                     \
325       AlwaysAllocateScope __scope__;                                      \
326       __object__ = FUNCTION_CALL;                                         \
327     }                                                                     \
328     if (!__object__->IsFailure()) RETURN_VALUE;                           \
329     if (__object__->IsOutOfMemoryFailure() ||                             \
330         __object__->IsRetryAfterGC()) {                                   \
331       /* TODO(1181417): Fix this. */                                      \
332       v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_2");      \
333     }                                                                     \
334     RETURN_EMPTY;                                                         \
335   } while (false)
336 
337 
338 #define CALL_HEAP_FUNCTION(FUNCTION_CALL, TYPE)                \
339   CALL_AND_RETRY(FUNCTION_CALL,                                \
340                  return Handle<TYPE>(TYPE::cast(__object__)),  \
341                  return Handle<TYPE>())
342 
343 
344 #define CALL_HEAP_FUNCTION_VOID(FUNCTION_CALL) \
345   CALL_AND_RETRY(FUNCTION_CALL, return, return)
346 
347 
348 #ifdef DEBUG
349 
allow_allocation(bool new_state)350 inline bool Heap::allow_allocation(bool new_state) {
351   bool old = allocation_allowed_;
352   allocation_allowed_ = new_state;
353   return old;
354 }
355 
356 #endif
357 
358 
AddString(String * string)359 void ExternalStringTable::AddString(String* string) {
360   ASSERT(string->IsExternalString());
361   if (Heap::InNewSpace(string)) {
362     new_space_strings_.Add(string);
363   } else {
364     old_space_strings_.Add(string);
365   }
366 }
367 
368 
Iterate(ObjectVisitor * v)369 void ExternalStringTable::Iterate(ObjectVisitor* v) {
370   if (!new_space_strings_.is_empty()) {
371     Object** start = &new_space_strings_[0];
372     v->VisitPointers(start, start + new_space_strings_.length());
373   }
374   if (!old_space_strings_.is_empty()) {
375     Object** start = &old_space_strings_[0];
376     v->VisitPointers(start, start + old_space_strings_.length());
377   }
378 }
379 
380 
381 // Verify() is inline to avoid ifdef-s around its calls in release
382 // mode.
Verify()383 void ExternalStringTable::Verify() {
384 #ifdef DEBUG
385   for (int i = 0; i < new_space_strings_.length(); ++i) {
386     ASSERT(Heap::InNewSpace(new_space_strings_[i]));
387     ASSERT(new_space_strings_[i] != Heap::raw_unchecked_null_value());
388   }
389   for (int i = 0; i < old_space_strings_.length(); ++i) {
390     ASSERT(!Heap::InNewSpace(old_space_strings_[i]));
391     ASSERT(old_space_strings_[i] != Heap::raw_unchecked_null_value());
392   }
393 #endif
394 }
395 
396 
AddOldString(String * string)397 void ExternalStringTable::AddOldString(String* string) {
398   ASSERT(string->IsExternalString());
399   ASSERT(!Heap::InNewSpace(string));
400   old_space_strings_.Add(string);
401 }
402 
403 
ShrinkNewStrings(int position)404 void ExternalStringTable::ShrinkNewStrings(int position) {
405   new_space_strings_.Rewind(position);
406   Verify();
407 }
408 
409 } }  // namespace v8::internal
410 
411 #endif  // V8_HEAP_INL_H_
412