1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "prettyprinter.h"
31 #include "scopeinfo.h"
32 #include "scopes.h"
33
34 namespace v8 {
35 namespace internal {
36
37 // ----------------------------------------------------------------------------
38 // A Zone allocator for use with LocalsMap.
39
40 class ZoneAllocator: public Allocator {
41 public:
42 /* nothing to do */
~ZoneAllocator()43 virtual ~ZoneAllocator() {}
44
New(size_t size)45 virtual void* New(size_t size) { return Zone::New(static_cast<int>(size)); }
46
47 /* ignored - Zone is freed in one fell swoop */
Delete(void * p)48 virtual void Delete(void* p) {}
49 };
50
51
52 static ZoneAllocator LocalsMapAllocator;
53
54
55 // ----------------------------------------------------------------------------
56 // Implementation of LocalsMap
57 //
58 // Note: We are storing the handle locations as key values in the hash map.
59 // When inserting a new variable via Declare(), we rely on the fact that
60 // the handle location remains alive for the duration of that variable
61 // use. Because a Variable holding a handle with the same location exists
62 // this is ensured.
63
Match(void * key1,void * key2)64 static bool Match(void* key1, void* key2) {
65 String* name1 = *reinterpret_cast<String**>(key1);
66 String* name2 = *reinterpret_cast<String**>(key2);
67 ASSERT(name1->IsSymbol());
68 ASSERT(name2->IsSymbol());
69 return name1 == name2;
70 }
71
72
73 // Dummy constructor
VariableMap(bool gotta_love_static_overloading)74 VariableMap::VariableMap(bool gotta_love_static_overloading) : HashMap() {}
75
VariableMap()76 VariableMap::VariableMap() : HashMap(Match, &LocalsMapAllocator, 8) {}
~VariableMap()77 VariableMap::~VariableMap() {}
78
79
Declare(Scope * scope,Handle<String> name,Variable::Mode mode,bool is_valid_lhs,Variable::Kind kind)80 Variable* VariableMap::Declare(Scope* scope,
81 Handle<String> name,
82 Variable::Mode mode,
83 bool is_valid_lhs,
84 Variable::Kind kind) {
85 HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), true);
86 if (p->value == NULL) {
87 // The variable has not been declared yet -> insert it.
88 ASSERT(p->key == name.location());
89 p->value = new Variable(scope, name, mode, is_valid_lhs, kind);
90 }
91 return reinterpret_cast<Variable*>(p->value);
92 }
93
94
Lookup(Handle<String> name)95 Variable* VariableMap::Lookup(Handle<String> name) {
96 HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), false);
97 if (p != NULL) {
98 ASSERT(*reinterpret_cast<String**>(p->key) == *name);
99 ASSERT(p->value != NULL);
100 return reinterpret_cast<Variable*>(p->value);
101 }
102 return NULL;
103 }
104
105
106 // ----------------------------------------------------------------------------
107 // Implementation of Scope
108
109
110 // Dummy constructor
Scope(Type type)111 Scope::Scope(Type type)
112 : outer_scope_(NULL),
113 inner_scopes_(0),
114 type_(type),
115 scope_name_(Factory::empty_symbol()),
116 variables_(false),
117 temps_(0),
118 params_(0),
119 dynamics_(NULL),
120 unresolved_(0),
121 decls_(0),
122 receiver_(NULL),
123 function_(NULL),
124 arguments_(NULL),
125 arguments_shadow_(NULL),
126 illegal_redecl_(NULL),
127 scope_inside_with_(false),
128 scope_contains_with_(false),
129 scope_calls_eval_(false),
130 outer_scope_calls_eval_(false),
131 inner_scope_calls_eval_(false),
132 outer_scope_is_eval_scope_(false),
133 force_eager_compilation_(false),
134 num_stack_slots_(0),
135 num_heap_slots_(0) {
136 }
137
138
Scope(Scope * outer_scope,Type type)139 Scope::Scope(Scope* outer_scope, Type type)
140 : outer_scope_(outer_scope),
141 inner_scopes_(4),
142 type_(type),
143 scope_name_(Factory::empty_symbol()),
144 temps_(4),
145 params_(4),
146 dynamics_(NULL),
147 unresolved_(16),
148 decls_(4),
149 receiver_(NULL),
150 function_(NULL),
151 arguments_(NULL),
152 arguments_shadow_(NULL),
153 illegal_redecl_(NULL),
154 scope_inside_with_(false),
155 scope_contains_with_(false),
156 scope_calls_eval_(false),
157 outer_scope_calls_eval_(false),
158 inner_scope_calls_eval_(false),
159 outer_scope_is_eval_scope_(false),
160 force_eager_compilation_(false),
161 num_stack_slots_(0),
162 num_heap_slots_(0) {
163 // At some point we might want to provide outer scopes to
164 // eval scopes (by walking the stack and reading the scope info).
165 // In that case, the ASSERT below needs to be adjusted.
166 ASSERT((type == GLOBAL_SCOPE || type == EVAL_SCOPE) == (outer_scope == NULL));
167 ASSERT(!HasIllegalRedeclaration());
168 }
169
170
Initialize(bool inside_with)171 void Scope::Initialize(bool inside_with) {
172 // Add this scope as a new inner scope of the outer scope.
173 if (outer_scope_ != NULL) {
174 outer_scope_->inner_scopes_.Add(this);
175 scope_inside_with_ = outer_scope_->scope_inside_with_ || inside_with;
176 } else {
177 scope_inside_with_ = inside_with;
178 }
179
180 // Declare convenience variables.
181 // Declare and allocate receiver (even for the global scope, and even
182 // if naccesses_ == 0).
183 // NOTE: When loading parameters in the global scope, we must take
184 // care not to access them as properties of the global object, but
185 // instead load them directly from the stack. Currently, the only
186 // such parameter is 'this' which is passed on the stack when
187 // invoking scripts
188 Variable* var =
189 variables_.Declare(this, Factory::this_symbol(), Variable::VAR,
190 false, Variable::THIS);
191 var->rewrite_ = new Slot(var, Slot::PARAMETER, -1);
192 receiver_ = var;
193
194 if (is_function_scope()) {
195 // Declare 'arguments' variable which exists in all functions.
196 // Note that it might never be accessed, in which case it won't be
197 // allocated during variable allocation.
198 variables_.Declare(this, Factory::arguments_symbol(), Variable::VAR,
199 true, Variable::ARGUMENTS);
200 }
201 }
202
203
204
LocalLookup(Handle<String> name)205 Variable* Scope::LocalLookup(Handle<String> name) {
206 return variables_.Lookup(name);
207 }
208
209
Lookup(Handle<String> name)210 Variable* Scope::Lookup(Handle<String> name) {
211 for (Scope* scope = this;
212 scope != NULL;
213 scope = scope->outer_scope()) {
214 Variable* var = scope->LocalLookup(name);
215 if (var != NULL) return var;
216 }
217 return NULL;
218 }
219
220
DeclareFunctionVar(Handle<String> name)221 Variable* Scope::DeclareFunctionVar(Handle<String> name) {
222 ASSERT(is_function_scope() && function_ == NULL);
223 function_ = new Variable(this, name, Variable::CONST, true, Variable::NORMAL);
224 return function_;
225 }
226
227
DeclareLocal(Handle<String> name,Variable::Mode mode)228 Variable* Scope::DeclareLocal(Handle<String> name, Variable::Mode mode) {
229 // DYNAMIC variables are introduces during variable allocation,
230 // INTERNAL variables are allocated explicitly, and TEMPORARY
231 // variables are allocated via NewTemporary().
232 ASSERT(mode == Variable::VAR || mode == Variable::CONST);
233 return variables_.Declare(this, name, mode, true, Variable::NORMAL);
234 }
235
236
DeclareGlobal(Handle<String> name)237 Variable* Scope::DeclareGlobal(Handle<String> name) {
238 ASSERT(is_global_scope());
239 return variables_.Declare(this, name, Variable::DYNAMIC_GLOBAL, true,
240 Variable::NORMAL);
241 }
242
243
AddParameter(Variable * var)244 void Scope::AddParameter(Variable* var) {
245 ASSERT(is_function_scope());
246 ASSERT(LocalLookup(var->name()) == var);
247 params_.Add(var);
248 }
249
250
NewUnresolved(Handle<String> name,bool inside_with)251 VariableProxy* Scope::NewUnresolved(Handle<String> name, bool inside_with) {
252 // Note that we must not share the unresolved variables with
253 // the same name because they may be removed selectively via
254 // RemoveUnresolved().
255 VariableProxy* proxy = new VariableProxy(name, false, inside_with);
256 unresolved_.Add(proxy);
257 return proxy;
258 }
259
260
RemoveUnresolved(VariableProxy * var)261 void Scope::RemoveUnresolved(VariableProxy* var) {
262 // Most likely (always?) any variable we want to remove
263 // was just added before, so we search backwards.
264 for (int i = unresolved_.length(); i-- > 0;) {
265 if (unresolved_[i] == var) {
266 unresolved_.Remove(i);
267 return;
268 }
269 }
270 }
271
272
NewTemporary(Handle<String> name)273 VariableProxy* Scope::NewTemporary(Handle<String> name) {
274 Variable* var = new Variable(this, name, Variable::TEMPORARY, true,
275 Variable::NORMAL);
276 VariableProxy* tmp = new VariableProxy(name, false, false);
277 tmp->BindTo(var);
278 temps_.Add(var);
279 return tmp;
280 }
281
282
AddDeclaration(Declaration * declaration)283 void Scope::AddDeclaration(Declaration* declaration) {
284 decls_.Add(declaration);
285 }
286
287
SetIllegalRedeclaration(Expression * expression)288 void Scope::SetIllegalRedeclaration(Expression* expression) {
289 // Only set the illegal redeclaration expression the
290 // first time the function is called.
291 if (!HasIllegalRedeclaration()) {
292 illegal_redecl_ = expression;
293 }
294 ASSERT(HasIllegalRedeclaration());
295 }
296
297
VisitIllegalRedeclaration(AstVisitor * visitor)298 void Scope::VisitIllegalRedeclaration(AstVisitor* visitor) {
299 ASSERT(HasIllegalRedeclaration());
300 illegal_redecl_->Accept(visitor);
301 }
302
303
304 template<class Allocator>
CollectUsedVariables(List<Variable *,Allocator> * locals)305 void Scope::CollectUsedVariables(List<Variable*, Allocator>* locals) {
306 // Collect variables in this scope.
307 // Note that the function_ variable - if present - is not
308 // collected here but handled separately in ScopeInfo
309 // which is the current user of this function).
310 for (int i = 0; i < temps_.length(); i++) {
311 Variable* var = temps_[i];
312 if (var->var_uses()->is_used()) {
313 locals->Add(var);
314 }
315 }
316 for (VariableMap::Entry* p = variables_.Start();
317 p != NULL;
318 p = variables_.Next(p)) {
319 Variable* var = reinterpret_cast<Variable*>(p->value);
320 if (var->var_uses()->is_used()) {
321 locals->Add(var);
322 }
323 }
324 }
325
326
327 // Make sure the method gets instantiated by the template system.
328 template void Scope::CollectUsedVariables(
329 List<Variable*, FreeStoreAllocationPolicy>* locals);
330 template void Scope::CollectUsedVariables(
331 List<Variable*, PreallocatedStorage>* locals);
332 template void Scope::CollectUsedVariables(
333 List<Variable*, ZoneListAllocationPolicy>* locals);
334
335
AllocateVariables(Handle<Context> context)336 void Scope::AllocateVariables(Handle<Context> context) {
337 ASSERT(outer_scope_ == NULL); // eval or global scopes only
338
339 // 1) Propagate scope information.
340 // If we are in an eval scope, we may have other outer scopes about
341 // which we don't know anything at this point. Thus we must be conservative
342 // and assume they may invoke eval themselves. Eventually we could capture
343 // this information in the ScopeInfo and then use it here (by traversing
344 // the call chain stack, at compile time).
345 bool eval_scope = is_eval_scope();
346 PropagateScopeInfo(eval_scope, eval_scope);
347
348 // 2) Resolve variables.
349 Scope* global_scope = NULL;
350 if (is_global_scope()) global_scope = this;
351 ResolveVariablesRecursively(global_scope, context);
352
353 // 3) Allocate variables.
354 AllocateVariablesRecursively();
355 }
356
357
AllowsLazyCompilation() const358 bool Scope::AllowsLazyCompilation() const {
359 return !force_eager_compilation_ && HasTrivialOuterContext();
360 }
361
362
HasTrivialContext() const363 bool Scope::HasTrivialContext() const {
364 // A function scope has a trivial context if it always is the global
365 // context. We iteratively scan out the context chain to see if
366 // there is anything that makes this scope non-trivial; otherwise we
367 // return true.
368 for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
369 if (scope->is_eval_scope()) return false;
370 if (scope->scope_inside_with_) return false;
371 if (scope->num_heap_slots_ > 0) return false;
372 }
373 return true;
374 }
375
376
HasTrivialOuterContext() const377 bool Scope::HasTrivialOuterContext() const {
378 Scope* outer = outer_scope_;
379 if (outer == NULL) return true;
380 // Note that the outer context may be trivial in general, but the current
381 // scope may be inside a 'with' statement in which case the outer context
382 // for this scope is not trivial.
383 return !scope_inside_with_ && outer->HasTrivialContext();
384 }
385
386
ContextChainLength(Scope * scope)387 int Scope::ContextChainLength(Scope* scope) {
388 int n = 0;
389 for (Scope* s = this; s != scope; s = s->outer_scope_) {
390 ASSERT(s != NULL); // scope must be in the scope chain
391 if (s->num_heap_slots() > 0) n++;
392 }
393 return n;
394 }
395
396
397 #ifdef DEBUG
Header(Scope::Type type)398 static const char* Header(Scope::Type type) {
399 switch (type) {
400 case Scope::EVAL_SCOPE: return "eval";
401 case Scope::FUNCTION_SCOPE: return "function";
402 case Scope::GLOBAL_SCOPE: return "global";
403 }
404 UNREACHABLE();
405 return NULL;
406 }
407
408
Indent(int n,const char * str)409 static void Indent(int n, const char* str) {
410 PrintF("%*s%s", n, "", str);
411 }
412
413
PrintName(Handle<String> name)414 static void PrintName(Handle<String> name) {
415 SmartPointer<char> s = name->ToCString(DISALLOW_NULLS);
416 PrintF("%s", *s);
417 }
418
419
PrintVar(PrettyPrinter * printer,int indent,Variable * var)420 static void PrintVar(PrettyPrinter* printer, int indent, Variable* var) {
421 if (var->var_uses()->is_used() || var->rewrite() != NULL) {
422 Indent(indent, Variable::Mode2String(var->mode()));
423 PrintF(" ");
424 PrintName(var->name());
425 PrintF("; // ");
426 if (var->rewrite() != NULL) PrintF("%s, ", printer->Print(var->rewrite()));
427 if (var->is_accessed_from_inner_scope()) PrintF("inner scope access, ");
428 PrintF("var ");
429 var->var_uses()->Print();
430 PrintF(", obj ");
431 var->obj_uses()->Print();
432 PrintF("\n");
433 }
434 }
435
436
PrintMap(PrettyPrinter * printer,int indent,VariableMap * map)437 static void PrintMap(PrettyPrinter* printer, int indent, VariableMap* map) {
438 for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
439 Variable* var = reinterpret_cast<Variable*>(p->value);
440 PrintVar(printer, indent, var);
441 }
442 }
443
444
Print(int n)445 void Scope::Print(int n) {
446 int n0 = (n > 0 ? n : 0);
447 int n1 = n0 + 2; // indentation
448
449 // Print header.
450 Indent(n0, Header(type_));
451 if (scope_name_->length() > 0) {
452 PrintF(" ");
453 PrintName(scope_name_);
454 }
455
456 // Print parameters, if any.
457 if (is_function_scope()) {
458 PrintF(" (");
459 for (int i = 0; i < params_.length(); i++) {
460 if (i > 0) PrintF(", ");
461 PrintName(params_[i]->name());
462 }
463 PrintF(")");
464 }
465
466 PrintF(" {\n");
467
468 // Function name, if any (named function literals, only).
469 if (function_ != NULL) {
470 Indent(n1, "// (local) function name: ");
471 PrintName(function_->name());
472 PrintF("\n");
473 }
474
475 // Scope info.
476 if (HasTrivialOuterContext()) {
477 Indent(n1, "// scope has trivial outer context\n");
478 }
479 if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
480 if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n");
481 if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
482 if (outer_scope_calls_eval_) Indent(n1, "// outer scope calls 'eval'\n");
483 if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
484 if (outer_scope_is_eval_scope_) {
485 Indent(n1, "// outer scope is 'eval' scope\n");
486 }
487 if (num_stack_slots_ > 0) { Indent(n1, "// ");
488 PrintF("%d stack slots\n", num_stack_slots_); }
489 if (num_heap_slots_ > 0) { Indent(n1, "// ");
490 PrintF("%d heap slots\n", num_heap_slots_); }
491
492 // Print locals.
493 PrettyPrinter printer;
494 Indent(n1, "// function var\n");
495 if (function_ != NULL) {
496 PrintVar(&printer, n1, function_);
497 }
498
499 Indent(n1, "// temporary vars\n");
500 for (int i = 0; i < temps_.length(); i++) {
501 PrintVar(&printer, n1, temps_[i]);
502 }
503
504 Indent(n1, "// local vars\n");
505 PrintMap(&printer, n1, &variables_);
506
507 Indent(n1, "// dynamic vars\n");
508 if (dynamics_ != NULL) {
509 PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC));
510 PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC_LOCAL));
511 PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC_GLOBAL));
512 }
513
514 // Print inner scopes (disable by providing negative n).
515 if (n >= 0) {
516 for (int i = 0; i < inner_scopes_.length(); i++) {
517 PrintF("\n");
518 inner_scopes_[i]->Print(n1);
519 }
520 }
521
522 Indent(n0, "}\n");
523 }
524 #endif // DEBUG
525
526
NonLocal(Handle<String> name,Variable::Mode mode)527 Variable* Scope::NonLocal(Handle<String> name, Variable::Mode mode) {
528 if (dynamics_ == NULL) dynamics_ = new DynamicScopePart();
529 VariableMap* map = dynamics_->GetMap(mode);
530 Variable* var = map->Lookup(name);
531 if (var == NULL) {
532 // Declare a new non-local.
533 var = map->Declare(NULL, name, mode, true, Variable::NORMAL);
534 // Allocate it by giving it a dynamic lookup.
535 var->rewrite_ = new Slot(var, Slot::LOOKUP, -1);
536 }
537 return var;
538 }
539
540
541 // Lookup a variable starting with this scope. The result is either
542 // the statically resolved variable belonging to an outer scope, or
543 // NULL. It may be NULL because a) we couldn't find a variable, or b)
544 // because the variable is just a guess (and may be shadowed by
545 // another variable that is introduced dynamically via an 'eval' call
546 // or a 'with' statement).
LookupRecursive(Handle<String> name,bool inner_lookup,Variable ** invalidated_local)547 Variable* Scope::LookupRecursive(Handle<String> name,
548 bool inner_lookup,
549 Variable** invalidated_local) {
550 // If we find a variable, but the current scope calls 'eval', the found
551 // variable may not be the correct one (the 'eval' may introduce a
552 // property with the same name). In that case, remember that the variable
553 // found is just a guess.
554 bool guess = scope_calls_eval_;
555
556 // Try to find the variable in this scope.
557 Variable* var = LocalLookup(name);
558
559 if (var != NULL) {
560 // We found a variable. If this is not an inner lookup, we are done.
561 // (Even if there is an 'eval' in this scope which introduces the
562 // same variable again, the resulting variable remains the same.
563 // Note that enclosing 'with' statements are handled at the call site.)
564 if (!inner_lookup)
565 return var;
566
567 } else {
568 // We did not find a variable locally. Check against the function variable,
569 // if any. We can do this for all scopes, since the function variable is
570 // only present - if at all - for function scopes.
571 //
572 // This lookup corresponds to a lookup in the "intermediate" scope sitting
573 // between this scope and the outer scope. (ECMA-262, 3rd., requires that
574 // the name of named function literal is kept in an intermediate scope
575 // in between this scope and the next outer scope.)
576 if (function_ != NULL && function_->name().is_identical_to(name)) {
577 var = function_;
578
579 } else if (outer_scope_ != NULL) {
580 var = outer_scope_->LookupRecursive(name, true, invalidated_local);
581 // We may have found a variable in an outer scope. However, if
582 // the current scope is inside a 'with', the actual variable may
583 // be a property introduced via the 'with' statement. Then, the
584 // variable we may have found is just a guess.
585 if (scope_inside_with_)
586 guess = true;
587 }
588
589 // If we did not find a variable, we are done.
590 if (var == NULL)
591 return NULL;
592 }
593
594 ASSERT(var != NULL);
595
596 // If this is a lookup from an inner scope, mark the variable.
597 if (inner_lookup)
598 var->is_accessed_from_inner_scope_ = true;
599
600 // If the variable we have found is just a guess, invalidate the
601 // result. If the found variable is local, record that fact so we
602 // can generate fast code to get it if it is not shadowed by eval.
603 if (guess) {
604 if (!var->is_global()) *invalidated_local = var;
605 var = NULL;
606 }
607
608 return var;
609 }
610
611
ResolveVariable(Scope * global_scope,Handle<Context> context,VariableProxy * proxy)612 void Scope::ResolveVariable(Scope* global_scope,
613 Handle<Context> context,
614 VariableProxy* proxy) {
615 ASSERT(global_scope == NULL || global_scope->is_global_scope());
616
617 // If the proxy is already resolved there's nothing to do
618 // (functions and consts may be resolved by the parser).
619 if (proxy->var() != NULL) return;
620
621 // Otherwise, try to resolve the variable.
622 Variable* invalidated_local = NULL;
623 Variable* var = LookupRecursive(proxy->name(), false, &invalidated_local);
624
625 if (proxy->inside_with()) {
626 // If we are inside a local 'with' statement, all bets are off
627 // and we cannot resolve the proxy to a local variable even if
628 // we found an outer matching variable.
629 // Note that we must do a lookup anyway, because if we find one,
630 // we must mark that variable as potentially accessed from this
631 // inner scope (the property may not be in the 'with' object).
632 var = NonLocal(proxy->name(), Variable::DYNAMIC);
633
634 } else {
635 // We are not inside a local 'with' statement.
636
637 if (var == NULL) {
638 // We did not find the variable. We have a global variable
639 // if we are in the global scope (we know already that we
640 // are outside a 'with' statement) or if there is no way
641 // that the variable might be introduced dynamically (through
642 // a local or outer eval() call, or an outer 'with' statement),
643 // or we don't know about the outer scope (because we are
644 // in an eval scope).
645 if (is_global_scope() ||
646 !(scope_inside_with_ || outer_scope_is_eval_scope_ ||
647 scope_calls_eval_ || outer_scope_calls_eval_)) {
648 // We must have a global variable.
649 ASSERT(global_scope != NULL);
650 var = global_scope->DeclareGlobal(proxy->name());
651
652 } else if (scope_inside_with_) {
653 // If we are inside a with statement we give up and look up
654 // the variable at runtime.
655 var = NonLocal(proxy->name(), Variable::DYNAMIC);
656
657 } else if (invalidated_local != NULL) {
658 // No with statements are involved and we found a local
659 // variable that might be shadowed by eval introduced
660 // variables.
661 var = NonLocal(proxy->name(), Variable::DYNAMIC_LOCAL);
662 var->set_local_if_not_shadowed(invalidated_local);
663
664 } else if (outer_scope_is_eval_scope_) {
665 // No with statements and we did not find a local and the code
666 // is executed with a call to eval. The context contains
667 // scope information that we can use to determine if the
668 // variable is global if it is not shadowed by eval-introduced
669 // variables.
670 if (context->GlobalIfNotShadowedByEval(proxy->name())) {
671 var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL);
672
673 } else {
674 var = NonLocal(proxy->name(), Variable::DYNAMIC);
675 }
676
677 } else {
678 // No with statements and we did not find a local and the code
679 // is not executed with a call to eval. We know that this
680 // variable is global unless it is shadowed by eval-introduced
681 // variables.
682 var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL);
683 }
684 }
685 }
686
687 proxy->BindTo(var);
688 }
689
690
ResolveVariablesRecursively(Scope * global_scope,Handle<Context> context)691 void Scope::ResolveVariablesRecursively(Scope* global_scope,
692 Handle<Context> context) {
693 ASSERT(global_scope == NULL || global_scope->is_global_scope());
694
695 // Resolve unresolved variables for this scope.
696 for (int i = 0; i < unresolved_.length(); i++) {
697 ResolveVariable(global_scope, context, unresolved_[i]);
698 }
699
700 // Resolve unresolved variables for inner scopes.
701 for (int i = 0; i < inner_scopes_.length(); i++) {
702 inner_scopes_[i]->ResolveVariablesRecursively(global_scope, context);
703 }
704 }
705
706
PropagateScopeInfo(bool outer_scope_calls_eval,bool outer_scope_is_eval_scope)707 bool Scope::PropagateScopeInfo(bool outer_scope_calls_eval,
708 bool outer_scope_is_eval_scope) {
709 if (outer_scope_calls_eval) {
710 outer_scope_calls_eval_ = true;
711 }
712
713 if (outer_scope_is_eval_scope) {
714 outer_scope_is_eval_scope_ = true;
715 }
716
717 bool calls_eval = scope_calls_eval_ || outer_scope_calls_eval_;
718 bool is_eval = is_eval_scope() || outer_scope_is_eval_scope_;
719 for (int i = 0; i < inner_scopes_.length(); i++) {
720 Scope* inner_scope = inner_scopes_[i];
721 if (inner_scope->PropagateScopeInfo(calls_eval, is_eval)) {
722 inner_scope_calls_eval_ = true;
723 }
724 if (inner_scope->force_eager_compilation_) {
725 force_eager_compilation_ = true;
726 }
727 }
728
729 return scope_calls_eval_ || inner_scope_calls_eval_;
730 }
731
732
MustAllocate(Variable * var)733 bool Scope::MustAllocate(Variable* var) {
734 // Give var a read/write use if there is a chance it might be accessed
735 // via an eval() call. This is only possible if the variable has a
736 // visible name.
737 if ((var->is_this() || var->name()->length() > 0) &&
738 (var->is_accessed_from_inner_scope_ ||
739 scope_calls_eval_ || inner_scope_calls_eval_ ||
740 scope_contains_with_)) {
741 var->var_uses()->RecordAccess(1);
742 }
743 // Global variables do not need to be allocated.
744 return !var->is_global() && var->var_uses()->is_used();
745 }
746
747
MustAllocateInContext(Variable * var)748 bool Scope::MustAllocateInContext(Variable* var) {
749 // If var is accessed from an inner scope, or if there is a
750 // possibility that it might be accessed from the current or an inner
751 // scope (through an eval() call), it must be allocated in the
752 // context. Exception: temporary variables are not allocated in the
753 // context.
754 return
755 var->mode() != Variable::TEMPORARY &&
756 (var->is_accessed_from_inner_scope_ ||
757 scope_calls_eval_ || inner_scope_calls_eval_ ||
758 scope_contains_with_ || var->is_global());
759 }
760
761
HasArgumentsParameter()762 bool Scope::HasArgumentsParameter() {
763 for (int i = 0; i < params_.length(); i++) {
764 if (params_[i]->name().is_identical_to(Factory::arguments_symbol()))
765 return true;
766 }
767 return false;
768 }
769
770
AllocateStackSlot(Variable * var)771 void Scope::AllocateStackSlot(Variable* var) {
772 var->rewrite_ = new Slot(var, Slot::LOCAL, num_stack_slots_++);
773 }
774
775
AllocateHeapSlot(Variable * var)776 void Scope::AllocateHeapSlot(Variable* var) {
777 var->rewrite_ = new Slot(var, Slot::CONTEXT, num_heap_slots_++);
778 }
779
780
AllocateParameterLocals()781 void Scope::AllocateParameterLocals() {
782 ASSERT(is_function_scope());
783 Variable* arguments = LocalLookup(Factory::arguments_symbol());
784 ASSERT(arguments != NULL); // functions have 'arguments' declared implicitly
785 if (MustAllocate(arguments) && !HasArgumentsParameter()) {
786 // 'arguments' is used. Unless there is also a parameter called
787 // 'arguments', we must be conservative and access all parameters via
788 // the arguments object: The i'th parameter is rewritten into
789 // '.arguments[i]' (*). If we have a parameter named 'arguments', a
790 // (new) value is always assigned to it via the function
791 // invocation. Then 'arguments' denotes that specific parameter value
792 // and cannot be used to access the parameters, which is why we don't
793 // need to rewrite in that case.
794 //
795 // (*) Instead of having a parameter called 'arguments', we may have an
796 // assignment to 'arguments' in the function body, at some arbitrary
797 // point in time (possibly through an 'eval()' call!). After that
798 // assignment any re-write of parameters would be invalid (was bug
799 // 881452). Thus, we introduce a shadow '.arguments'
800 // variable which also points to the arguments object. For rewrites we
801 // use '.arguments' which remains valid even if we assign to
802 // 'arguments'. To summarize: If we need to rewrite, we allocate an
803 // 'arguments' object dynamically upon function invocation. The compiler
804 // introduces 2 local variables 'arguments' and '.arguments', both of
805 // which originally point to the arguments object that was
806 // allocated. All parameters are rewritten into property accesses via
807 // the '.arguments' variable. Thus, any changes to properties of
808 // 'arguments' are reflected in the variables and vice versa. If the
809 // 'arguments' variable is changed, '.arguments' still points to the
810 // correct arguments object and the rewrites still work.
811
812 // We are using 'arguments'. Tell the code generator that is needs to
813 // allocate the arguments object by setting 'arguments_'.
814 arguments_ = new VariableProxy(Factory::arguments_symbol(), false, false);
815 arguments_->BindTo(arguments);
816
817 // We also need the '.arguments' shadow variable. Declare it and create
818 // and bind the corresponding proxy. It's ok to declare it only now
819 // because it's a local variable that is allocated after the parameters
820 // have been allocated.
821 //
822 // Note: This is "almost" at temporary variable but we cannot use
823 // NewTemporary() because the mode needs to be INTERNAL since this
824 // variable may be allocated in the heap-allocated context (temporaries
825 // are never allocated in the context).
826 Variable* arguments_shadow =
827 new Variable(this, Factory::arguments_shadow_symbol(),
828 Variable::INTERNAL, true, Variable::ARGUMENTS);
829 arguments_shadow_ =
830 new VariableProxy(Factory::arguments_shadow_symbol(), false, false);
831 arguments_shadow_->BindTo(arguments_shadow);
832 temps_.Add(arguments_shadow);
833
834 // Allocate the parameters by rewriting them into '.arguments[i]' accesses.
835 for (int i = 0; i < params_.length(); i++) {
836 Variable* var = params_[i];
837 ASSERT(var->scope() == this);
838 if (MustAllocate(var)) {
839 if (MustAllocateInContext(var)) {
840 // It is ok to set this only now, because arguments is a local
841 // variable that is allocated after the parameters have been
842 // allocated.
843 arguments_shadow->is_accessed_from_inner_scope_ = true;
844 }
845 var->rewrite_ =
846 new Property(arguments_shadow_,
847 new Literal(Handle<Object>(Smi::FromInt(i))),
848 RelocInfo::kNoPosition,
849 Property::SYNTHETIC);
850 arguments_shadow->var_uses()->RecordUses(var->var_uses());
851 }
852 }
853
854 } else {
855 // The arguments object is not used, so we can access parameters directly.
856 // The same parameter may occur multiple times in the parameters_ list.
857 // If it does, and if it is not copied into the context object, it must
858 // receive the highest parameter index for that parameter; thus iteration
859 // order is relevant!
860 for (int i = 0; i < params_.length(); i++) {
861 Variable* var = params_[i];
862 ASSERT(var->scope() == this);
863 if (MustAllocate(var)) {
864 if (MustAllocateInContext(var)) {
865 ASSERT(var->rewrite_ == NULL ||
866 (var->slot() != NULL && var->slot()->type() == Slot::CONTEXT));
867 if (var->rewrite_ == NULL) {
868 // Only set the heap allocation if the parameter has not
869 // been allocated yet.
870 AllocateHeapSlot(var);
871 }
872 } else {
873 ASSERT(var->rewrite_ == NULL ||
874 (var->slot() != NULL &&
875 var->slot()->type() == Slot::PARAMETER));
876 // Set the parameter index always, even if the parameter
877 // was seen before! (We need to access the actual parameter
878 // supplied for the last occurrence of a multiply declared
879 // parameter.)
880 var->rewrite_ = new Slot(var, Slot::PARAMETER, i);
881 }
882 }
883 }
884 }
885 }
886
887
AllocateNonParameterLocal(Variable * var)888 void Scope::AllocateNonParameterLocal(Variable* var) {
889 ASSERT(var->scope() == this);
890 ASSERT(var->rewrite_ == NULL ||
891 (!var->IsVariable(Factory::result_symbol())) ||
892 (var->slot() == NULL || var->slot()->type() != Slot::LOCAL));
893 if (var->rewrite_ == NULL && MustAllocate(var)) {
894 if (MustAllocateInContext(var)) {
895 AllocateHeapSlot(var);
896 } else {
897 AllocateStackSlot(var);
898 }
899 }
900 }
901
902
AllocateNonParameterLocals()903 void Scope::AllocateNonParameterLocals() {
904 // All variables that have no rewrite yet are non-parameter locals.
905 for (int i = 0; i < temps_.length(); i++) {
906 AllocateNonParameterLocal(temps_[i]);
907 }
908
909 for (VariableMap::Entry* p = variables_.Start();
910 p != NULL;
911 p = variables_.Next(p)) {
912 Variable* var = reinterpret_cast<Variable*>(p->value);
913 AllocateNonParameterLocal(var);
914 }
915
916 // For now, function_ must be allocated at the very end. If it gets
917 // allocated in the context, it must be the last slot in the context,
918 // because of the current ScopeInfo implementation (see
919 // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
920 if (function_ != NULL) {
921 AllocateNonParameterLocal(function_);
922 }
923 }
924
925
AllocateVariablesRecursively()926 void Scope::AllocateVariablesRecursively() {
927 // The number of slots required for variables.
928 num_stack_slots_ = 0;
929 num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
930
931 // Allocate variables for inner scopes.
932 for (int i = 0; i < inner_scopes_.length(); i++) {
933 inner_scopes_[i]->AllocateVariablesRecursively();
934 }
935
936 // Allocate variables for this scope.
937 // Parameters must be allocated first, if any.
938 if (is_function_scope()) AllocateParameterLocals();
939 AllocateNonParameterLocals();
940
941 // Allocate context if necessary.
942 bool must_have_local_context = false;
943 if (scope_calls_eval_ || scope_contains_with_) {
944 // The context for the eval() call or 'with' statement in this scope.
945 // Unless we are in the global or an eval scope, we need a local
946 // context even if we didn't statically allocate any locals in it,
947 // and the compiler will access the context variable. If we are
948 // not in an inner scope, the scope is provided from the outside.
949 must_have_local_context = is_function_scope();
950 }
951
952 // If we didn't allocate any locals in the local context, then we only
953 // need the minimal number of slots if we must have a local context.
954 if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS &&
955 !must_have_local_context) {
956 num_heap_slots_ = 0;
957 }
958
959 // Allocation done.
960 ASSERT(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
961 }
962
963 } } // namespace v8::internal
964