• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "prettyprinter.h"
31 #include "scopeinfo.h"
32 #include "scopes.h"
33 
34 namespace v8 {
35 namespace internal {
36 
37 // ----------------------------------------------------------------------------
38 // A Zone allocator for use with LocalsMap.
39 
40 class ZoneAllocator: public Allocator {
41  public:
42   /* nothing to do */
~ZoneAllocator()43   virtual ~ZoneAllocator()  {}
44 
New(size_t size)45   virtual void* New(size_t size)  { return Zone::New(static_cast<int>(size)); }
46 
47   /* ignored - Zone is freed in one fell swoop */
Delete(void * p)48   virtual void Delete(void* p)  {}
49 };
50 
51 
52 static ZoneAllocator LocalsMapAllocator;
53 
54 
55 // ----------------------------------------------------------------------------
56 // Implementation of LocalsMap
57 //
58 // Note: We are storing the handle locations as key values in the hash map.
59 //       When inserting a new variable via Declare(), we rely on the fact that
60 //       the handle location remains alive for the duration of that variable
61 //       use. Because a Variable holding a handle with the same location exists
62 //       this is ensured.
63 
Match(void * key1,void * key2)64 static bool Match(void* key1, void* key2) {
65   String* name1 = *reinterpret_cast<String**>(key1);
66   String* name2 = *reinterpret_cast<String**>(key2);
67   ASSERT(name1->IsSymbol());
68   ASSERT(name2->IsSymbol());
69   return name1 == name2;
70 }
71 
72 
73 // Dummy constructor
VariableMap(bool gotta_love_static_overloading)74 VariableMap::VariableMap(bool gotta_love_static_overloading) : HashMap() {}
75 
VariableMap()76 VariableMap::VariableMap() : HashMap(Match, &LocalsMapAllocator, 8) {}
~VariableMap()77 VariableMap::~VariableMap() {}
78 
79 
Declare(Scope * scope,Handle<String> name,Variable::Mode mode,bool is_valid_lhs,Variable::Kind kind)80 Variable* VariableMap::Declare(Scope* scope,
81                                Handle<String> name,
82                                Variable::Mode mode,
83                                bool is_valid_lhs,
84                                Variable::Kind kind) {
85   HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), true);
86   if (p->value == NULL) {
87     // The variable has not been declared yet -> insert it.
88     ASSERT(p->key == name.location());
89     p->value = new Variable(scope, name, mode, is_valid_lhs, kind);
90   }
91   return reinterpret_cast<Variable*>(p->value);
92 }
93 
94 
Lookup(Handle<String> name)95 Variable* VariableMap::Lookup(Handle<String> name) {
96   HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), false);
97   if (p != NULL) {
98     ASSERT(*reinterpret_cast<String**>(p->key) == *name);
99     ASSERT(p->value != NULL);
100     return reinterpret_cast<Variable*>(p->value);
101   }
102   return NULL;
103 }
104 
105 
106 // ----------------------------------------------------------------------------
107 // Implementation of Scope
108 
109 
110 // Dummy constructor
Scope(Type type)111 Scope::Scope(Type type)
112   : outer_scope_(NULL),
113     inner_scopes_(0),
114     type_(type),
115     scope_name_(Factory::empty_symbol()),
116     variables_(false),
117     temps_(0),
118     params_(0),
119     dynamics_(NULL),
120     unresolved_(0),
121     decls_(0),
122     receiver_(NULL),
123     function_(NULL),
124     arguments_(NULL),
125     arguments_shadow_(NULL),
126     illegal_redecl_(NULL),
127     scope_inside_with_(false),
128     scope_contains_with_(false),
129     scope_calls_eval_(false),
130     outer_scope_calls_eval_(false),
131     inner_scope_calls_eval_(false),
132     outer_scope_is_eval_scope_(false),
133     force_eager_compilation_(false),
134     num_stack_slots_(0),
135     num_heap_slots_(0) {
136 }
137 
138 
Scope(Scope * outer_scope,Type type)139 Scope::Scope(Scope* outer_scope, Type type)
140   : outer_scope_(outer_scope),
141     inner_scopes_(4),
142     type_(type),
143     scope_name_(Factory::empty_symbol()),
144     temps_(4),
145     params_(4),
146     dynamics_(NULL),
147     unresolved_(16),
148     decls_(4),
149     receiver_(NULL),
150     function_(NULL),
151     arguments_(NULL),
152     arguments_shadow_(NULL),
153     illegal_redecl_(NULL),
154     scope_inside_with_(false),
155     scope_contains_with_(false),
156     scope_calls_eval_(false),
157     outer_scope_calls_eval_(false),
158     inner_scope_calls_eval_(false),
159     outer_scope_is_eval_scope_(false),
160     force_eager_compilation_(false),
161     num_stack_slots_(0),
162     num_heap_slots_(0) {
163   // At some point we might want to provide outer scopes to
164   // eval scopes (by walking the stack and reading the scope info).
165   // In that case, the ASSERT below needs to be adjusted.
166   ASSERT((type == GLOBAL_SCOPE || type == EVAL_SCOPE) == (outer_scope == NULL));
167   ASSERT(!HasIllegalRedeclaration());
168 }
169 
170 
Initialize(bool inside_with)171 void Scope::Initialize(bool inside_with) {
172   // Add this scope as a new inner scope of the outer scope.
173   if (outer_scope_ != NULL) {
174     outer_scope_->inner_scopes_.Add(this);
175     scope_inside_with_ = outer_scope_->scope_inside_with_ || inside_with;
176   } else {
177     scope_inside_with_ = inside_with;
178   }
179 
180   // Declare convenience variables.
181   // Declare and allocate receiver (even for the global scope, and even
182   // if naccesses_ == 0).
183   // NOTE: When loading parameters in the global scope, we must take
184   // care not to access them as properties of the global object, but
185   // instead load them directly from the stack. Currently, the only
186   // such parameter is 'this' which is passed on the stack when
187   // invoking scripts
188   Variable* var =
189       variables_.Declare(this, Factory::this_symbol(), Variable::VAR,
190                          false, Variable::THIS);
191   var->rewrite_ = new Slot(var, Slot::PARAMETER, -1);
192   receiver_ = var;
193 
194   if (is_function_scope()) {
195     // Declare 'arguments' variable which exists in all functions.
196     // Note that it might never be accessed, in which case it won't be
197     // allocated during variable allocation.
198     variables_.Declare(this, Factory::arguments_symbol(), Variable::VAR,
199                        true, Variable::ARGUMENTS);
200   }
201 }
202 
203 
204 
LocalLookup(Handle<String> name)205 Variable* Scope::LocalLookup(Handle<String> name) {
206   return variables_.Lookup(name);
207 }
208 
209 
Lookup(Handle<String> name)210 Variable* Scope::Lookup(Handle<String> name) {
211   for (Scope* scope = this;
212        scope != NULL;
213        scope = scope->outer_scope()) {
214     Variable* var = scope->LocalLookup(name);
215     if (var != NULL) return var;
216   }
217   return NULL;
218 }
219 
220 
DeclareFunctionVar(Handle<String> name)221 Variable* Scope::DeclareFunctionVar(Handle<String> name) {
222   ASSERT(is_function_scope() && function_ == NULL);
223   function_ = new Variable(this, name, Variable::CONST, true, Variable::NORMAL);
224   return function_;
225 }
226 
227 
DeclareLocal(Handle<String> name,Variable::Mode mode)228 Variable* Scope::DeclareLocal(Handle<String> name, Variable::Mode mode) {
229   // DYNAMIC variables are introduces during variable allocation,
230   // INTERNAL variables are allocated explicitly, and TEMPORARY
231   // variables are allocated via NewTemporary().
232   ASSERT(mode == Variable::VAR || mode == Variable::CONST);
233   return variables_.Declare(this, name, mode, true, Variable::NORMAL);
234 }
235 
236 
DeclareGlobal(Handle<String> name)237 Variable* Scope::DeclareGlobal(Handle<String> name) {
238   ASSERT(is_global_scope());
239   return variables_.Declare(this, name, Variable::DYNAMIC_GLOBAL, true,
240                             Variable::NORMAL);
241 }
242 
243 
AddParameter(Variable * var)244 void Scope::AddParameter(Variable* var) {
245   ASSERT(is_function_scope());
246   ASSERT(LocalLookup(var->name()) == var);
247   params_.Add(var);
248 }
249 
250 
NewUnresolved(Handle<String> name,bool inside_with)251 VariableProxy* Scope::NewUnresolved(Handle<String> name, bool inside_with) {
252   // Note that we must not share the unresolved variables with
253   // the same name because they may be removed selectively via
254   // RemoveUnresolved().
255   VariableProxy* proxy = new VariableProxy(name, false, inside_with);
256   unresolved_.Add(proxy);
257   return proxy;
258 }
259 
260 
RemoveUnresolved(VariableProxy * var)261 void Scope::RemoveUnresolved(VariableProxy* var) {
262   // Most likely (always?) any variable we want to remove
263   // was just added before, so we search backwards.
264   for (int i = unresolved_.length(); i-- > 0;) {
265     if (unresolved_[i] == var) {
266       unresolved_.Remove(i);
267       return;
268     }
269   }
270 }
271 
272 
NewTemporary(Handle<String> name)273 VariableProxy* Scope::NewTemporary(Handle<String> name) {
274   Variable* var = new Variable(this, name, Variable::TEMPORARY, true,
275                                Variable::NORMAL);
276   VariableProxy* tmp = new VariableProxy(name, false, false);
277   tmp->BindTo(var);
278   temps_.Add(var);
279   return tmp;
280 }
281 
282 
AddDeclaration(Declaration * declaration)283 void Scope::AddDeclaration(Declaration* declaration) {
284   decls_.Add(declaration);
285 }
286 
287 
SetIllegalRedeclaration(Expression * expression)288 void Scope::SetIllegalRedeclaration(Expression* expression) {
289   // Only set the illegal redeclaration expression the
290   // first time the function is called.
291   if (!HasIllegalRedeclaration()) {
292     illegal_redecl_ = expression;
293   }
294   ASSERT(HasIllegalRedeclaration());
295 }
296 
297 
VisitIllegalRedeclaration(AstVisitor * visitor)298 void Scope::VisitIllegalRedeclaration(AstVisitor* visitor) {
299   ASSERT(HasIllegalRedeclaration());
300   illegal_redecl_->Accept(visitor);
301 }
302 
303 
304 template<class Allocator>
CollectUsedVariables(List<Variable *,Allocator> * locals)305 void Scope::CollectUsedVariables(List<Variable*, Allocator>* locals) {
306   // Collect variables in this scope.
307   // Note that the function_ variable - if present - is not
308   // collected here but handled separately in ScopeInfo
309   // which is the current user of this function).
310   for (int i = 0; i < temps_.length(); i++) {
311     Variable* var = temps_[i];
312     if (var->var_uses()->is_used()) {
313       locals->Add(var);
314     }
315   }
316   for (VariableMap::Entry* p = variables_.Start();
317        p != NULL;
318        p = variables_.Next(p)) {
319     Variable* var = reinterpret_cast<Variable*>(p->value);
320     if (var->var_uses()->is_used()) {
321       locals->Add(var);
322     }
323   }
324 }
325 
326 
327 // Make sure the method gets instantiated by the template system.
328 template void Scope::CollectUsedVariables(
329     List<Variable*, FreeStoreAllocationPolicy>* locals);
330 template void Scope::CollectUsedVariables(
331     List<Variable*, PreallocatedStorage>* locals);
332 template void Scope::CollectUsedVariables(
333     List<Variable*, ZoneListAllocationPolicy>* locals);
334 
335 
AllocateVariables(Handle<Context> context)336 void Scope::AllocateVariables(Handle<Context> context) {
337   ASSERT(outer_scope_ == NULL);  // eval or global scopes only
338 
339   // 1) Propagate scope information.
340   // If we are in an eval scope, we may have other outer scopes about
341   // which we don't know anything at this point. Thus we must be conservative
342   // and assume they may invoke eval themselves. Eventually we could capture
343   // this information in the ScopeInfo and then use it here (by traversing
344   // the call chain stack, at compile time).
345   bool eval_scope = is_eval_scope();
346   PropagateScopeInfo(eval_scope, eval_scope);
347 
348   // 2) Resolve variables.
349   Scope* global_scope = NULL;
350   if (is_global_scope()) global_scope = this;
351   ResolveVariablesRecursively(global_scope, context);
352 
353   // 3) Allocate variables.
354   AllocateVariablesRecursively();
355 }
356 
357 
AllowsLazyCompilation() const358 bool Scope::AllowsLazyCompilation() const {
359   return !force_eager_compilation_ && HasTrivialOuterContext();
360 }
361 
362 
HasTrivialContext() const363 bool Scope::HasTrivialContext() const {
364   // A function scope has a trivial context if it always is the global
365   // context. We iteratively scan out the context chain to see if
366   // there is anything that makes this scope non-trivial; otherwise we
367   // return true.
368   for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
369     if (scope->is_eval_scope()) return false;
370     if (scope->scope_inside_with_) return false;
371     if (scope->num_heap_slots_ > 0) return false;
372   }
373   return true;
374 }
375 
376 
HasTrivialOuterContext() const377 bool Scope::HasTrivialOuterContext() const {
378   Scope* outer = outer_scope_;
379   if (outer == NULL) return true;
380   // Note that the outer context may be trivial in general, but the current
381   // scope may be inside a 'with' statement in which case the outer context
382   // for this scope is not trivial.
383   return !scope_inside_with_ && outer->HasTrivialContext();
384 }
385 
386 
ContextChainLength(Scope * scope)387 int Scope::ContextChainLength(Scope* scope) {
388   int n = 0;
389   for (Scope* s = this; s != scope; s = s->outer_scope_) {
390     ASSERT(s != NULL);  // scope must be in the scope chain
391     if (s->num_heap_slots() > 0) n++;
392   }
393   return n;
394 }
395 
396 
397 #ifdef DEBUG
Header(Scope::Type type)398 static const char* Header(Scope::Type type) {
399   switch (type) {
400     case Scope::EVAL_SCOPE: return "eval";
401     case Scope::FUNCTION_SCOPE: return "function";
402     case Scope::GLOBAL_SCOPE: return "global";
403   }
404   UNREACHABLE();
405   return NULL;
406 }
407 
408 
Indent(int n,const char * str)409 static void Indent(int n, const char* str) {
410   PrintF("%*s%s", n, "", str);
411 }
412 
413 
PrintName(Handle<String> name)414 static void PrintName(Handle<String> name) {
415   SmartPointer<char> s = name->ToCString(DISALLOW_NULLS);
416   PrintF("%s", *s);
417 }
418 
419 
PrintVar(PrettyPrinter * printer,int indent,Variable * var)420 static void PrintVar(PrettyPrinter* printer, int indent, Variable* var) {
421   if (var->var_uses()->is_used() || var->rewrite() != NULL) {
422     Indent(indent, Variable::Mode2String(var->mode()));
423     PrintF(" ");
424     PrintName(var->name());
425     PrintF(";  // ");
426     if (var->rewrite() != NULL) PrintF("%s, ", printer->Print(var->rewrite()));
427     if (var->is_accessed_from_inner_scope()) PrintF("inner scope access, ");
428     PrintF("var ");
429     var->var_uses()->Print();
430     PrintF(", obj ");
431     var->obj_uses()->Print();
432     PrintF("\n");
433   }
434 }
435 
436 
PrintMap(PrettyPrinter * printer,int indent,VariableMap * map)437 static void PrintMap(PrettyPrinter* printer, int indent, VariableMap* map) {
438   for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
439     Variable* var = reinterpret_cast<Variable*>(p->value);
440     PrintVar(printer, indent, var);
441   }
442 }
443 
444 
Print(int n)445 void Scope::Print(int n) {
446   int n0 = (n > 0 ? n : 0);
447   int n1 = n0 + 2;  // indentation
448 
449   // Print header.
450   Indent(n0, Header(type_));
451   if (scope_name_->length() > 0) {
452     PrintF(" ");
453     PrintName(scope_name_);
454   }
455 
456   // Print parameters, if any.
457   if (is_function_scope()) {
458     PrintF(" (");
459     for (int i = 0; i < params_.length(); i++) {
460       if (i > 0) PrintF(", ");
461       PrintName(params_[i]->name());
462     }
463     PrintF(")");
464   }
465 
466   PrintF(" {\n");
467 
468   // Function name, if any (named function literals, only).
469   if (function_ != NULL) {
470     Indent(n1, "// (local) function name: ");
471     PrintName(function_->name());
472     PrintF("\n");
473   }
474 
475   // Scope info.
476   if (HasTrivialOuterContext()) {
477     Indent(n1, "// scope has trivial outer context\n");
478   }
479   if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
480   if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n");
481   if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
482   if (outer_scope_calls_eval_) Indent(n1, "// outer scope calls 'eval'\n");
483   if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
484   if (outer_scope_is_eval_scope_) {
485     Indent(n1, "// outer scope is 'eval' scope\n");
486   }
487   if (num_stack_slots_ > 0) { Indent(n1, "// ");
488   PrintF("%d stack slots\n", num_stack_slots_); }
489   if (num_heap_slots_ > 0) { Indent(n1, "// ");
490   PrintF("%d heap slots\n", num_heap_slots_); }
491 
492   // Print locals.
493   PrettyPrinter printer;
494   Indent(n1, "// function var\n");
495   if (function_ != NULL) {
496     PrintVar(&printer, n1, function_);
497   }
498 
499   Indent(n1, "// temporary vars\n");
500   for (int i = 0; i < temps_.length(); i++) {
501     PrintVar(&printer, n1, temps_[i]);
502   }
503 
504   Indent(n1, "// local vars\n");
505   PrintMap(&printer, n1, &variables_);
506 
507   Indent(n1, "// dynamic vars\n");
508   if (dynamics_ != NULL) {
509     PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC));
510     PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC_LOCAL));
511     PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC_GLOBAL));
512   }
513 
514   // Print inner scopes (disable by providing negative n).
515   if (n >= 0) {
516     for (int i = 0; i < inner_scopes_.length(); i++) {
517       PrintF("\n");
518       inner_scopes_[i]->Print(n1);
519     }
520   }
521 
522   Indent(n0, "}\n");
523 }
524 #endif  // DEBUG
525 
526 
NonLocal(Handle<String> name,Variable::Mode mode)527 Variable* Scope::NonLocal(Handle<String> name, Variable::Mode mode) {
528   if (dynamics_ == NULL) dynamics_ = new DynamicScopePart();
529   VariableMap* map = dynamics_->GetMap(mode);
530   Variable* var = map->Lookup(name);
531   if (var == NULL) {
532     // Declare a new non-local.
533     var = map->Declare(NULL, name, mode, true, Variable::NORMAL);
534     // Allocate it by giving it a dynamic lookup.
535     var->rewrite_ = new Slot(var, Slot::LOOKUP, -1);
536   }
537   return var;
538 }
539 
540 
541 // Lookup a variable starting with this scope. The result is either
542 // the statically resolved variable belonging to an outer scope, or
543 // NULL. It may be NULL because a) we couldn't find a variable, or b)
544 // because the variable is just a guess (and may be shadowed by
545 // another variable that is introduced dynamically via an 'eval' call
546 // or a 'with' statement).
LookupRecursive(Handle<String> name,bool inner_lookup,Variable ** invalidated_local)547 Variable* Scope::LookupRecursive(Handle<String> name,
548                                  bool inner_lookup,
549                                  Variable** invalidated_local) {
550   // If we find a variable, but the current scope calls 'eval', the found
551   // variable may not be the correct one (the 'eval' may introduce a
552   // property with the same name). In that case, remember that the variable
553   // found is just a guess.
554   bool guess = scope_calls_eval_;
555 
556   // Try to find the variable in this scope.
557   Variable* var = LocalLookup(name);
558 
559   if (var != NULL) {
560     // We found a variable. If this is not an inner lookup, we are done.
561     // (Even if there is an 'eval' in this scope which introduces the
562     // same variable again, the resulting variable remains the same.
563     // Note that enclosing 'with' statements are handled at the call site.)
564     if (!inner_lookup)
565       return var;
566 
567   } else {
568     // We did not find a variable locally. Check against the function variable,
569     // if any. We can do this for all scopes, since the function variable is
570     // only present - if at all - for function scopes.
571     //
572     // This lookup corresponds to a lookup in the "intermediate" scope sitting
573     // between this scope and the outer scope. (ECMA-262, 3rd., requires that
574     // the name of named function literal is kept in an intermediate scope
575     // in between this scope and the next outer scope.)
576     if (function_ != NULL && function_->name().is_identical_to(name)) {
577       var = function_;
578 
579     } else if (outer_scope_ != NULL) {
580       var = outer_scope_->LookupRecursive(name, true, invalidated_local);
581       // We may have found a variable in an outer scope. However, if
582       // the current scope is inside a 'with', the actual variable may
583       // be a property introduced via the 'with' statement. Then, the
584       // variable we may have found is just a guess.
585       if (scope_inside_with_)
586         guess = true;
587     }
588 
589     // If we did not find a variable, we are done.
590     if (var == NULL)
591       return NULL;
592   }
593 
594   ASSERT(var != NULL);
595 
596   // If this is a lookup from an inner scope, mark the variable.
597   if (inner_lookup)
598     var->is_accessed_from_inner_scope_ = true;
599 
600   // If the variable we have found is just a guess, invalidate the
601   // result. If the found variable is local, record that fact so we
602   // can generate fast code to get it if it is not shadowed by eval.
603   if (guess) {
604     if (!var->is_global()) *invalidated_local = var;
605     var = NULL;
606   }
607 
608   return var;
609 }
610 
611 
ResolveVariable(Scope * global_scope,Handle<Context> context,VariableProxy * proxy)612 void Scope::ResolveVariable(Scope* global_scope,
613                             Handle<Context> context,
614                             VariableProxy* proxy) {
615   ASSERT(global_scope == NULL || global_scope->is_global_scope());
616 
617   // If the proxy is already resolved there's nothing to do
618   // (functions and consts may be resolved by the parser).
619   if (proxy->var() != NULL) return;
620 
621   // Otherwise, try to resolve the variable.
622   Variable* invalidated_local = NULL;
623   Variable* var = LookupRecursive(proxy->name(), false, &invalidated_local);
624 
625   if (proxy->inside_with()) {
626     // If we are inside a local 'with' statement, all bets are off
627     // and we cannot resolve the proxy to a local variable even if
628     // we found an outer matching variable.
629     // Note that we must do a lookup anyway, because if we find one,
630     // we must mark that variable as potentially accessed from this
631     // inner scope (the property may not be in the 'with' object).
632     var = NonLocal(proxy->name(), Variable::DYNAMIC);
633 
634   } else {
635     // We are not inside a local 'with' statement.
636 
637     if (var == NULL) {
638       // We did not find the variable. We have a global variable
639       // if we are in the global scope (we know already that we
640       // are outside a 'with' statement) or if there is no way
641       // that the variable might be introduced dynamically (through
642       // a local or outer eval() call, or an outer 'with' statement),
643       // or we don't know about the outer scope (because we are
644       // in an eval scope).
645       if (is_global_scope() ||
646           !(scope_inside_with_ || outer_scope_is_eval_scope_ ||
647             scope_calls_eval_ || outer_scope_calls_eval_)) {
648         // We must have a global variable.
649         ASSERT(global_scope != NULL);
650         var = global_scope->DeclareGlobal(proxy->name());
651 
652       } else if (scope_inside_with_) {
653         // If we are inside a with statement we give up and look up
654         // the variable at runtime.
655         var = NonLocal(proxy->name(), Variable::DYNAMIC);
656 
657       } else if (invalidated_local != NULL) {
658         // No with statements are involved and we found a local
659         // variable that might be shadowed by eval introduced
660         // variables.
661         var = NonLocal(proxy->name(), Variable::DYNAMIC_LOCAL);
662         var->set_local_if_not_shadowed(invalidated_local);
663 
664       } else if (outer_scope_is_eval_scope_) {
665         // No with statements and we did not find a local and the code
666         // is executed with a call to eval.  The context contains
667         // scope information that we can use to determine if the
668         // variable is global if it is not shadowed by eval-introduced
669         // variables.
670         if (context->GlobalIfNotShadowedByEval(proxy->name())) {
671           var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL);
672 
673         } else {
674           var = NonLocal(proxy->name(), Variable::DYNAMIC);
675         }
676 
677       } else {
678         // No with statements and we did not find a local and the code
679         // is not executed with a call to eval.  We know that this
680         // variable is global unless it is shadowed by eval-introduced
681         // variables.
682         var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL);
683       }
684     }
685   }
686 
687   proxy->BindTo(var);
688 }
689 
690 
ResolveVariablesRecursively(Scope * global_scope,Handle<Context> context)691 void Scope::ResolveVariablesRecursively(Scope* global_scope,
692                                         Handle<Context> context) {
693   ASSERT(global_scope == NULL || global_scope->is_global_scope());
694 
695   // Resolve unresolved variables for this scope.
696   for (int i = 0; i < unresolved_.length(); i++) {
697     ResolveVariable(global_scope, context, unresolved_[i]);
698   }
699 
700   // Resolve unresolved variables for inner scopes.
701   for (int i = 0; i < inner_scopes_.length(); i++) {
702     inner_scopes_[i]->ResolveVariablesRecursively(global_scope, context);
703   }
704 }
705 
706 
PropagateScopeInfo(bool outer_scope_calls_eval,bool outer_scope_is_eval_scope)707 bool Scope::PropagateScopeInfo(bool outer_scope_calls_eval,
708                                bool outer_scope_is_eval_scope) {
709   if (outer_scope_calls_eval) {
710     outer_scope_calls_eval_ = true;
711   }
712 
713   if (outer_scope_is_eval_scope) {
714     outer_scope_is_eval_scope_ = true;
715   }
716 
717   bool calls_eval = scope_calls_eval_ || outer_scope_calls_eval_;
718   bool is_eval = is_eval_scope() || outer_scope_is_eval_scope_;
719   for (int i = 0; i < inner_scopes_.length(); i++) {
720     Scope* inner_scope = inner_scopes_[i];
721     if (inner_scope->PropagateScopeInfo(calls_eval, is_eval)) {
722       inner_scope_calls_eval_ = true;
723     }
724     if (inner_scope->force_eager_compilation_) {
725       force_eager_compilation_ = true;
726     }
727   }
728 
729   return scope_calls_eval_ || inner_scope_calls_eval_;
730 }
731 
732 
MustAllocate(Variable * var)733 bool Scope::MustAllocate(Variable* var) {
734   // Give var a read/write use if there is a chance it might be accessed
735   // via an eval() call.  This is only possible if the variable has a
736   // visible name.
737   if ((var->is_this() || var->name()->length() > 0) &&
738       (var->is_accessed_from_inner_scope_ ||
739        scope_calls_eval_ || inner_scope_calls_eval_ ||
740        scope_contains_with_)) {
741     var->var_uses()->RecordAccess(1);
742   }
743   // Global variables do not need to be allocated.
744   return !var->is_global() && var->var_uses()->is_used();
745 }
746 
747 
MustAllocateInContext(Variable * var)748 bool Scope::MustAllocateInContext(Variable* var) {
749   // If var is accessed from an inner scope, or if there is a
750   // possibility that it might be accessed from the current or an inner
751   // scope (through an eval() call), it must be allocated in the
752   // context.  Exception: temporary variables are not allocated in the
753   // context.
754   return
755     var->mode() != Variable::TEMPORARY &&
756     (var->is_accessed_from_inner_scope_ ||
757      scope_calls_eval_ || inner_scope_calls_eval_ ||
758      scope_contains_with_ || var->is_global());
759 }
760 
761 
HasArgumentsParameter()762 bool Scope::HasArgumentsParameter() {
763   for (int i = 0; i < params_.length(); i++) {
764     if (params_[i]->name().is_identical_to(Factory::arguments_symbol()))
765       return true;
766   }
767   return false;
768 }
769 
770 
AllocateStackSlot(Variable * var)771 void Scope::AllocateStackSlot(Variable* var) {
772   var->rewrite_ = new Slot(var, Slot::LOCAL, num_stack_slots_++);
773 }
774 
775 
AllocateHeapSlot(Variable * var)776 void Scope::AllocateHeapSlot(Variable* var) {
777   var->rewrite_ = new Slot(var, Slot::CONTEXT, num_heap_slots_++);
778 }
779 
780 
AllocateParameterLocals()781 void Scope::AllocateParameterLocals() {
782   ASSERT(is_function_scope());
783   Variable* arguments = LocalLookup(Factory::arguments_symbol());
784   ASSERT(arguments != NULL);  // functions have 'arguments' declared implicitly
785   if (MustAllocate(arguments) && !HasArgumentsParameter()) {
786     // 'arguments' is used. Unless there is also a parameter called
787     // 'arguments', we must be conservative and access all parameters via
788     // the arguments object: The i'th parameter is rewritten into
789     // '.arguments[i]' (*). If we have a parameter named 'arguments', a
790     // (new) value is always assigned to it via the function
791     // invocation. Then 'arguments' denotes that specific parameter value
792     // and cannot be used to access the parameters, which is why we don't
793     // need to rewrite in that case.
794     //
795     // (*) Instead of having a parameter called 'arguments', we may have an
796     // assignment to 'arguments' in the function body, at some arbitrary
797     // point in time (possibly through an 'eval()' call!). After that
798     // assignment any re-write of parameters would be invalid (was bug
799     // 881452). Thus, we introduce a shadow '.arguments'
800     // variable which also points to the arguments object. For rewrites we
801     // use '.arguments' which remains valid even if we assign to
802     // 'arguments'. To summarize: If we need to rewrite, we allocate an
803     // 'arguments' object dynamically upon function invocation. The compiler
804     // introduces 2 local variables 'arguments' and '.arguments', both of
805     // which originally point to the arguments object that was
806     // allocated. All parameters are rewritten into property accesses via
807     // the '.arguments' variable. Thus, any changes to properties of
808     // 'arguments' are reflected in the variables and vice versa. If the
809     // 'arguments' variable is changed, '.arguments' still points to the
810     // correct arguments object and the rewrites still work.
811 
812     // We are using 'arguments'. Tell the code generator that is needs to
813     // allocate the arguments object by setting 'arguments_'.
814     arguments_ = new VariableProxy(Factory::arguments_symbol(), false, false);
815     arguments_->BindTo(arguments);
816 
817     // We also need the '.arguments' shadow variable. Declare it and create
818     // and bind the corresponding proxy. It's ok to declare it only now
819     // because it's a local variable that is allocated after the parameters
820     // have been allocated.
821     //
822     // Note: This is "almost" at temporary variable but we cannot use
823     // NewTemporary() because the mode needs to be INTERNAL since this
824     // variable may be allocated in the heap-allocated context (temporaries
825     // are never allocated in the context).
826     Variable* arguments_shadow =
827         new Variable(this, Factory::arguments_shadow_symbol(),
828                      Variable::INTERNAL, true, Variable::ARGUMENTS);
829     arguments_shadow_ =
830         new VariableProxy(Factory::arguments_shadow_symbol(), false, false);
831     arguments_shadow_->BindTo(arguments_shadow);
832     temps_.Add(arguments_shadow);
833 
834     // Allocate the parameters by rewriting them into '.arguments[i]' accesses.
835     for (int i = 0; i < params_.length(); i++) {
836       Variable* var = params_[i];
837       ASSERT(var->scope() == this);
838       if (MustAllocate(var)) {
839         if (MustAllocateInContext(var)) {
840           // It is ok to set this only now, because arguments is a local
841           // variable that is allocated after the parameters have been
842           // allocated.
843           arguments_shadow->is_accessed_from_inner_scope_ = true;
844         }
845         var->rewrite_ =
846           new Property(arguments_shadow_,
847                        new Literal(Handle<Object>(Smi::FromInt(i))),
848                        RelocInfo::kNoPosition,
849                        Property::SYNTHETIC);
850         arguments_shadow->var_uses()->RecordUses(var->var_uses());
851       }
852     }
853 
854   } else {
855     // The arguments object is not used, so we can access parameters directly.
856     // The same parameter may occur multiple times in the parameters_ list.
857     // If it does, and if it is not copied into the context object, it must
858     // receive the highest parameter index for that parameter; thus iteration
859     // order is relevant!
860     for (int i = 0; i < params_.length(); i++) {
861       Variable* var = params_[i];
862       ASSERT(var->scope() == this);
863       if (MustAllocate(var)) {
864         if (MustAllocateInContext(var)) {
865           ASSERT(var->rewrite_ == NULL ||
866                  (var->slot() != NULL && var->slot()->type() == Slot::CONTEXT));
867           if (var->rewrite_ == NULL) {
868             // Only set the heap allocation if the parameter has not
869             // been allocated yet.
870             AllocateHeapSlot(var);
871           }
872         } else {
873           ASSERT(var->rewrite_ == NULL ||
874                  (var->slot() != NULL &&
875                   var->slot()->type() == Slot::PARAMETER));
876           // Set the parameter index always, even if the parameter
877           // was seen before! (We need to access the actual parameter
878           // supplied for the last occurrence of a multiply declared
879           // parameter.)
880           var->rewrite_ = new Slot(var, Slot::PARAMETER, i);
881         }
882       }
883     }
884   }
885 }
886 
887 
AllocateNonParameterLocal(Variable * var)888 void Scope::AllocateNonParameterLocal(Variable* var) {
889   ASSERT(var->scope() == this);
890   ASSERT(var->rewrite_ == NULL ||
891          (!var->IsVariable(Factory::result_symbol())) ||
892          (var->slot() == NULL || var->slot()->type() != Slot::LOCAL));
893   if (var->rewrite_ == NULL && MustAllocate(var)) {
894     if (MustAllocateInContext(var)) {
895       AllocateHeapSlot(var);
896     } else {
897       AllocateStackSlot(var);
898     }
899   }
900 }
901 
902 
AllocateNonParameterLocals()903 void Scope::AllocateNonParameterLocals() {
904   // All variables that have no rewrite yet are non-parameter locals.
905   for (int i = 0; i < temps_.length(); i++) {
906     AllocateNonParameterLocal(temps_[i]);
907   }
908 
909   for (VariableMap::Entry* p = variables_.Start();
910        p != NULL;
911        p = variables_.Next(p)) {
912     Variable* var = reinterpret_cast<Variable*>(p->value);
913     AllocateNonParameterLocal(var);
914   }
915 
916   // For now, function_ must be allocated at the very end.  If it gets
917   // allocated in the context, it must be the last slot in the context,
918   // because of the current ScopeInfo implementation (see
919   // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
920   if (function_ != NULL) {
921     AllocateNonParameterLocal(function_);
922   }
923 }
924 
925 
AllocateVariablesRecursively()926 void Scope::AllocateVariablesRecursively() {
927   // The number of slots required for variables.
928   num_stack_slots_ = 0;
929   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
930 
931   // Allocate variables for inner scopes.
932   for (int i = 0; i < inner_scopes_.length(); i++) {
933     inner_scopes_[i]->AllocateVariablesRecursively();
934   }
935 
936   // Allocate variables for this scope.
937   // Parameters must be allocated first, if any.
938   if (is_function_scope()) AllocateParameterLocals();
939   AllocateNonParameterLocals();
940 
941   // Allocate context if necessary.
942   bool must_have_local_context = false;
943   if (scope_calls_eval_ || scope_contains_with_) {
944     // The context for the eval() call or 'with' statement in this scope.
945     // Unless we are in the global or an eval scope, we need a local
946     // context even if we didn't statically allocate any locals in it,
947     // and the compiler will access the context variable. If we are
948     // not in an inner scope, the scope is provided from the outside.
949     must_have_local_context = is_function_scope();
950   }
951 
952   // If we didn't allocate any locals in the local context, then we only
953   // need the minimal number of slots if we must have a local context.
954   if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS &&
955       !must_have_local_context) {
956     num_heap_slots_ = 0;
957   }
958 
959   // Allocation done.
960   ASSERT(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
961 }
962 
963 } }  // namespace v8::internal
964