• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Histogram is an object that aggregates statistics, and can summarize them in
6 // various forms, including ASCII graphical, HTML, and numerically (as a
7 // vector of numbers corresponding to each of the aggregating buckets).
8 // See header file for details and examples.
9 
10 #include "base/histogram.h"
11 
12 #include <math.h>
13 #include <string>
14 
15 #include "base/logging.h"
16 #include "base/pickle.h"
17 #include "base/string_util.h"
18 
19 using base::TimeDelta;
20 
21 typedef Histogram::Count Count;
22 
FactoryGet(const std::string & name,Sample minimum,Sample maximum,size_t bucket_count,Flags flags)23 scoped_refptr<Histogram> Histogram::FactoryGet(const std::string& name,
24     Sample minimum, Sample maximum, size_t bucket_count, Flags flags) {
25   scoped_refptr<Histogram> histogram(NULL);
26 
27   // Defensive code.
28   if (minimum <= 0)
29     minimum = 1;
30   if (maximum >= kSampleType_MAX)
31     maximum = kSampleType_MAX - 1;
32 
33   if (StatisticsRecorder::FindHistogram(name, &histogram)) {
34     DCHECK(histogram.get() != NULL);
35   } else {
36     histogram = new Histogram(name, minimum, maximum, bucket_count);
37     scoped_refptr<Histogram> registered_histogram(NULL);
38     StatisticsRecorder::FindHistogram(name, &registered_histogram);
39     // Allow a NULL return to mean that the StatisticsRecorder was not started.
40     if (registered_histogram.get() != NULL &&
41         registered_histogram.get() != histogram.get())
42       histogram = registered_histogram;
43   }
44 
45   DCHECK(HISTOGRAM == histogram->histogram_type());
46   DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count));
47   histogram->SetFlags(flags);
48   return histogram;
49 }
50 
FactoryGet(const std::string & name,base::TimeDelta minimum,base::TimeDelta maximum,size_t bucket_count,Flags flags)51 scoped_refptr<Histogram> Histogram::FactoryGet(const std::string& name,
52     base::TimeDelta minimum, base::TimeDelta maximum, size_t bucket_count,
53     Flags flags) {
54   return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(),
55                     bucket_count, flags);
56 }
57 
Histogram(const std::string & name,Sample minimum,Sample maximum,size_t bucket_count)58 Histogram::Histogram(const std::string& name, Sample minimum,
59                      Sample maximum, size_t bucket_count)
60   : histogram_name_(name),
61     declared_min_(minimum),
62     declared_max_(maximum),
63     bucket_count_(bucket_count),
64     flags_(kNoFlags),
65     ranges_(bucket_count + 1, 0),
66     sample_() {
67   Initialize();
68 }
69 
Histogram(const std::string & name,TimeDelta minimum,TimeDelta maximum,size_t bucket_count)70 Histogram::Histogram(const std::string& name, TimeDelta minimum,
71                      TimeDelta maximum, size_t bucket_count)
72   : histogram_name_(name),
73     declared_min_(static_cast<int> (minimum.InMilliseconds())),
74     declared_max_(static_cast<int> (maximum.InMilliseconds())),
75     bucket_count_(bucket_count),
76     flags_(kNoFlags),
77     ranges_(bucket_count + 1, 0),
78     sample_() {
79   Initialize();
80 }
81 
~Histogram()82 Histogram::~Histogram() {
83   if (StatisticsRecorder::dump_on_exit()) {
84     std::string output;
85     WriteAscii(true, "\n", &output);
86     LOG(INFO) << output;
87   }
88 
89   // Just to make sure most derived class did this properly...
90   DCHECK(ValidateBucketRanges());
91 }
92 
Add(int value)93 void Histogram::Add(int value) {
94   if (value >= kSampleType_MAX)
95     value = kSampleType_MAX - 1;
96   if (value < 0)
97     value = 0;
98   size_t index = BucketIndex(value);
99   DCHECK(value >= ranges(index));
100   DCHECK(value < ranges(index + 1));
101   Accumulate(value, 1, index);
102 }
103 
AddSampleSet(const SampleSet & sample)104 void Histogram::AddSampleSet(const SampleSet& sample) {
105   sample_.Add(sample);
106 }
107 
108 // The following methods provide a graphical histogram display.
WriteHTMLGraph(std::string * output) const109 void Histogram::WriteHTMLGraph(std::string* output) const {
110   // TBD(jar) Write a nice HTML bar chart, with divs an mouse-overs etc.
111   output->append("<PRE>");
112   WriteAscii(true, "<br>", output);
113   output->append("</PRE>");
114 }
115 
WriteAscii(bool graph_it,const std::string & newline,std::string * output) const116 void Histogram::WriteAscii(bool graph_it, const std::string& newline,
117                            std::string* output) const {
118   // Get local (stack) copies of all effectively volatile class data so that we
119   // are consistent across our output activities.
120   SampleSet snapshot;
121   SnapshotSample(&snapshot);
122   Count sample_count = snapshot.TotalCount();
123 
124   WriteAsciiHeader(snapshot, sample_count, output);
125   output->append(newline);
126 
127   // Prepare to normalize graphical rendering of bucket contents.
128   double max_size = 0;
129   if (graph_it)
130     max_size = GetPeakBucketSize(snapshot);
131 
132   // Calculate space needed to print bucket range numbers.  Leave room to print
133   // nearly the largest bucket range without sliding over the histogram.
134   size_t largest_non_empty_bucket = bucket_count() - 1;
135   while (0 == snapshot.counts(largest_non_empty_bucket)) {
136     if (0 == largest_non_empty_bucket)
137       break;  // All buckets are empty.
138     --largest_non_empty_bucket;
139   }
140 
141   // Calculate largest print width needed for any of our bucket range displays.
142   size_t print_width = 1;
143   for (size_t i = 0; i < bucket_count(); ++i) {
144     if (snapshot.counts(i)) {
145       size_t width = GetAsciiBucketRange(i).size() + 1;
146       if (width > print_width)
147         print_width = width;
148     }
149   }
150 
151   int64 remaining = sample_count;
152   int64 past = 0;
153   // Output the actual histogram graph.
154   for (size_t i = 0; i < bucket_count(); ++i) {
155     Count current = snapshot.counts(i);
156     if (!current && !PrintEmptyBucket(i))
157       continue;
158     remaining -= current;
159     std::string range = GetAsciiBucketRange(i);
160     output->append(range);
161     for (size_t j = 0; range.size() + j < print_width + 1; ++j)
162       output->push_back(' ');
163     if (0 == current && i < bucket_count() - 1 && 0 == snapshot.counts(i + 1)) {
164       while (i < bucket_count() - 1 && 0 == snapshot.counts(i + 1))
165         ++i;
166       output->append("... ");
167       output->append(newline);
168       continue;  // No reason to plot emptiness.
169     }
170     double current_size = GetBucketSize(current, i);
171     if (graph_it)
172       WriteAsciiBucketGraph(current_size, max_size, output);
173     WriteAsciiBucketContext(past, current, remaining, i, output);
174     output->append(newline);
175     past += current;
176   }
177   DCHECK(past == sample_count);
178 }
179 
ValidateBucketRanges() const180 bool Histogram::ValidateBucketRanges() const {
181   // Standard assertions that all bucket ranges should satisfy.
182   DCHECK(ranges_.size() == bucket_count_ + 1);
183   DCHECK_EQ(0, ranges_[0]);
184   DCHECK(declared_min() == ranges_[1]);
185   DCHECK(declared_max() == ranges_[bucket_count_ - 1]);
186   DCHECK(kSampleType_MAX == ranges_[bucket_count_]);
187   return true;
188 }
189 
Initialize()190 void Histogram::Initialize() {
191   sample_.Resize(*this);
192   if (declared_min_ <= 0)
193     declared_min_ = 1;
194   if (declared_max_ >= kSampleType_MAX)
195     declared_max_ = kSampleType_MAX - 1;
196   DCHECK(declared_min_ <= declared_max_);
197   DCHECK_LT(1u, bucket_count_);
198   size_t maximal_bucket_count = declared_max_ - declared_min_ + 2;
199   DCHECK(bucket_count_ <= maximal_bucket_count);
200   DCHECK_EQ(0, ranges_[0]);
201   ranges_[bucket_count_] = kSampleType_MAX;
202   InitializeBucketRange();
203   DCHECK(ValidateBucketRanges());
204   StatisticsRecorder::Register(this);
205 }
206 
207 // Calculate what range of values are held in each bucket.
208 // We have to be careful that we don't pick a ratio between starting points in
209 // consecutive buckets that is sooo small, that the integer bounds are the same
210 // (effectively making one bucket get no values).  We need to avoid:
211 // (ranges_[i] == ranges_[i + 1]
212 // To avoid that, we just do a fine-grained bucket width as far as we need to
213 // until we get a ratio that moves us along at least 2 units at a time.  From
214 // that bucket onward we do use the exponential growth of buckets.
InitializeBucketRange()215 void Histogram::InitializeBucketRange() {
216   double log_max = log(static_cast<double>(declared_max()));
217   double log_ratio;
218   double log_next;
219   size_t bucket_index = 1;
220   Sample current = declared_min();
221   SetBucketRange(bucket_index, current);
222   while (bucket_count() > ++bucket_index) {
223     double log_current;
224     log_current = log(static_cast<double>(current));
225     // Calculate the count'th root of the range.
226     log_ratio = (log_max - log_current) / (bucket_count() - bucket_index);
227     // See where the next bucket would start.
228     log_next = log_current + log_ratio;
229     int next;
230     next = static_cast<int>(floor(exp(log_next) + 0.5));
231     if (next > current)
232       current = next;
233     else
234       ++current;  // Just do a narrow bucket, and keep trying.
235     SetBucketRange(bucket_index, current);
236   }
237 
238   DCHECK(bucket_count() == bucket_index);
239 }
240 
BucketIndex(Sample value) const241 size_t Histogram::BucketIndex(Sample value) const {
242   // Use simple binary search.  This is very general, but there are better
243   // approaches if we knew that the buckets were linearly distributed.
244   DCHECK(ranges(0) <= value);
245   DCHECK(ranges(bucket_count()) > value);
246   size_t under = 0;
247   size_t over = bucket_count();
248   size_t mid;
249 
250   do {
251     DCHECK(over >= under);
252     mid = (over + under)/2;
253     if (mid == under)
254       break;
255     if (ranges(mid) <= value)
256       under = mid;
257     else
258       over = mid;
259   } while (true);
260 
261   DCHECK(ranges(mid) <= value && ranges(mid+1) > value);
262   return mid;
263 }
264 
265 // Use the actual bucket widths (like a linear histogram) until the widths get
266 // over some transition value, and then use that transition width.  Exponentials
267 // get so big so fast (and we don't expect to see a lot of entries in the large
268 // buckets), so we need this to make it possible to see what is going on and
269 // not have 0-graphical-height buckets.
GetBucketSize(Count current,size_t i) const270 double Histogram::GetBucketSize(Count current, size_t i) const {
271   DCHECK(ranges(i + 1) > ranges(i));
272   static const double kTransitionWidth = 5;
273   double denominator = ranges(i + 1) - ranges(i);
274   if (denominator > kTransitionWidth)
275     denominator = kTransitionWidth;  // Stop trying to normalize.
276   return current/denominator;
277 }
278 
279 //------------------------------------------------------------------------------
280 // The following two methods can be overridden to provide a thread safe
281 // version of this class.  The cost of locking is low... but an error in each
282 // of these methods has minimal impact.  For now, I'll leave this unlocked,
283 // and I don't believe I can loose more than a count or two.
284 // The vectors are NOT reallocated, so there is no risk of them moving around.
285 
286 // Update histogram data with new sample.
Accumulate(Sample value,Count count,size_t index)287 void Histogram::Accumulate(Sample value, Count count, size_t index) {
288   // Note locking not done in this version!!!
289   sample_.Accumulate(value, count, index);
290 }
291 
292 // Do a safe atomic snapshot of sample data.
293 // This implementation assumes we are on a safe single thread.
SnapshotSample(SampleSet * sample) const294 void Histogram::SnapshotSample(SampleSet* sample) const {
295   // Note locking not done in this version!!!
296   *sample = sample_;
297 }
298 
299 //------------------------------------------------------------------------------
300 // Accessor methods
301 
SetBucketRange(size_t i,Sample value)302 void Histogram::SetBucketRange(size_t i, Sample value) {
303   DCHECK(bucket_count_ > i);
304   ranges_[i] = value;
305 }
306 
307 //------------------------------------------------------------------------------
308 // Private methods
309 
GetPeakBucketSize(const SampleSet & snapshot) const310 double Histogram::GetPeakBucketSize(const SampleSet& snapshot) const {
311   double max = 0;
312   for (size_t i = 0; i < bucket_count() ; ++i) {
313     double current_size = GetBucketSize(snapshot.counts(i), i);
314     if (current_size > max)
315       max = current_size;
316   }
317   return max;
318 }
319 
WriteAsciiHeader(const SampleSet & snapshot,Count sample_count,std::string * output) const320 void Histogram::WriteAsciiHeader(const SampleSet& snapshot,
321                                  Count sample_count,
322                                  std::string* output) const {
323   StringAppendF(output,
324                 "Histogram: %s recorded %d samples",
325                 histogram_name().c_str(),
326                 sample_count);
327   if (0 == sample_count) {
328     DCHECK_EQ(0, snapshot.sum());
329   } else {
330     double average = static_cast<float>(snapshot.sum()) / sample_count;
331     double variance = static_cast<float>(snapshot.square_sum())/sample_count
332                       - average * average;
333     double standard_deviation = sqrt(variance);
334 
335     StringAppendF(output,
336                   ", average = %.1f, standard deviation = %.1f",
337                   average, standard_deviation);
338   }
339   if (flags_ & ~kHexRangePrintingFlag )
340     StringAppendF(output, " (flags = 0x%x)", flags_ & ~kHexRangePrintingFlag);
341 }
342 
WriteAsciiBucketContext(const int64 past,const Count current,const int64 remaining,const size_t i,std::string * output) const343 void Histogram::WriteAsciiBucketContext(const int64 past,
344                                         const Count current,
345                                         const int64 remaining,
346                                         const size_t i,
347                                         std::string* output) const {
348   double scaled_sum = (past + current + remaining) / 100.0;
349   WriteAsciiBucketValue(current, scaled_sum, output);
350   if (0 < i) {
351     double percentage = past / scaled_sum;
352     StringAppendF(output, " {%3.1f%%}", percentage);
353   }
354 }
355 
GetAsciiBucketRange(size_t i) const356 const std::string Histogram::GetAsciiBucketRange(size_t i) const {
357   std::string result;
358   if (kHexRangePrintingFlag & flags_)
359     StringAppendF(&result, "%#x", ranges(i));
360   else
361     StringAppendF(&result, "%d", ranges(i));
362   return result;
363 }
364 
WriteAsciiBucketValue(Count current,double scaled_sum,std::string * output) const365 void Histogram::WriteAsciiBucketValue(Count current, double scaled_sum,
366                                       std::string* output) const {
367   StringAppendF(output, " (%d = %3.1f%%)", current, current/scaled_sum);
368 }
369 
WriteAsciiBucketGraph(double current_size,double max_size,std::string * output) const370 void Histogram::WriteAsciiBucketGraph(double current_size, double max_size,
371                                       std::string* output) const {
372   const int k_line_length = 72;  // Maximal horizontal width of graph.
373   int x_count = static_cast<int>(k_line_length * (current_size / max_size)
374                                  + 0.5);
375   int x_remainder = k_line_length - x_count;
376 
377   while (0 < x_count--)
378     output->append("-");
379   output->append("O");
380   while (0 < x_remainder--)
381     output->append(" ");
382 }
383 
384 // static
SerializeHistogramInfo(const Histogram & histogram,const SampleSet & snapshot)385 std::string Histogram::SerializeHistogramInfo(const Histogram& histogram,
386                                               const SampleSet& snapshot) {
387   DCHECK(histogram.histogram_type() != NOT_VALID_IN_RENDERER);
388 
389   Pickle pickle;
390   pickle.WriteString(histogram.histogram_name());
391   pickle.WriteInt(histogram.declared_min());
392   pickle.WriteInt(histogram.declared_max());
393   pickle.WriteSize(histogram.bucket_count());
394   pickle.WriteInt(histogram.histogram_type());
395   pickle.WriteInt(histogram.flags());
396 
397   snapshot.Serialize(&pickle);
398   return std::string(static_cast<const char*>(pickle.data()), pickle.size());
399 }
400 
401 // static
DeserializeHistogramInfo(const std::string & histogram_info)402 bool Histogram::DeserializeHistogramInfo(const std::string& histogram_info) {
403   if (histogram_info.empty()) {
404       return false;
405   }
406 
407   Pickle pickle(histogram_info.data(),
408                 static_cast<int>(histogram_info.size()));
409   void* iter = NULL;
410   size_t bucket_count;
411   int declared_min;
412   int declared_max;
413   int histogram_type;
414   int pickle_flags;
415   std::string histogram_name;
416   SampleSet sample;
417 
418   if (!pickle.ReadString(&iter, &histogram_name) ||
419       !pickle.ReadInt(&iter, &declared_min) ||
420       !pickle.ReadInt(&iter, &declared_max) ||
421       !pickle.ReadSize(&iter, &bucket_count) ||
422       !pickle.ReadInt(&iter, &histogram_type) ||
423       !pickle.ReadInt(&iter, &pickle_flags) ||
424       !sample.Histogram::SampleSet::Deserialize(&iter, pickle)) {
425     LOG(ERROR) << "Pickle error decoding Histogram: " << histogram_name;
426     return false;
427   }
428   DCHECK(pickle_flags & kIPCSerializationSourceFlag);
429   // Since these fields may have come from an untrusted renderer, do additional
430   // checks above and beyond those in Histogram::Initialize()
431   if (declared_max <= 0 || declared_min <= 0 || declared_max < declared_min ||
432       INT_MAX / sizeof(Count) <= bucket_count || bucket_count < 2) {
433     LOG(ERROR) << "Values error decoding Histogram: " << histogram_name;
434     return false;
435   }
436 
437   Flags flags = static_cast<Flags>(pickle_flags & ~kIPCSerializationSourceFlag);
438 
439   DCHECK(histogram_type != NOT_VALID_IN_RENDERER);
440 
441   scoped_refptr<Histogram> render_histogram(NULL);
442 
443   if (histogram_type ==  HISTOGRAM) {
444     render_histogram = Histogram::FactoryGet(
445         histogram_name, declared_min, declared_max, bucket_count, flags);
446   } else if (histogram_type == LINEAR_HISTOGRAM) {
447     render_histogram = LinearHistogram::FactoryGet(
448         histogram_name, declared_min, declared_max, bucket_count, flags);
449   } else if (histogram_type == BOOLEAN_HISTOGRAM) {
450     render_histogram = BooleanHistogram::FactoryGet(histogram_name, flags);
451   } else {
452     LOG(ERROR) << "Error Deserializing Histogram Unknown histogram_type: " <<
453         histogram_type;
454     return false;
455   }
456 
457   DCHECK(declared_min == render_histogram->declared_min());
458   DCHECK(declared_max == render_histogram->declared_max());
459   DCHECK(bucket_count == render_histogram->bucket_count());
460   DCHECK(histogram_type == render_histogram->histogram_type());
461 
462   if (render_histogram->flags() & kIPCSerializationSourceFlag) {
463     DLOG(INFO) << "Single process mode, histogram observed and not copied: " <<
464         histogram_name;
465   } else {
466     DCHECK(flags == (flags & render_histogram->flags()));
467     render_histogram->AddSampleSet(sample);
468   }
469 
470   return true;
471 }
472 
473 //------------------------------------------------------------------------------
474 // Methods for the Histogram::SampleSet class
475 //------------------------------------------------------------------------------
476 
SampleSet()477 Histogram::SampleSet::SampleSet()
478     : counts_(),
479       sum_(0),
480       square_sum_(0) {
481 }
482 
Resize(const Histogram & histogram)483 void Histogram::SampleSet::Resize(const Histogram& histogram) {
484   counts_.resize(histogram.bucket_count(), 0);
485 }
486 
CheckSize(const Histogram & histogram) const487 void Histogram::SampleSet::CheckSize(const Histogram& histogram) const {
488   DCHECK(counts_.size() == histogram.bucket_count());
489 }
490 
491 
Accumulate(Sample value,Count count,size_t index)492 void Histogram::SampleSet::Accumulate(Sample value,  Count count,
493                                       size_t index) {
494   DCHECK(count == 1 || count == -1);
495   counts_[index] += count;
496   sum_ += count * value;
497   square_sum_ += (count * value) * static_cast<int64>(value);
498   DCHECK_GE(counts_[index], 0);
499   DCHECK_GE(sum_, 0);
500   DCHECK_GE(square_sum_, 0);
501 }
502 
TotalCount() const503 Count Histogram::SampleSet::TotalCount() const {
504   Count total = 0;
505   for (Counts::const_iterator it = counts_.begin();
506        it != counts_.end();
507        ++it) {
508     total += *it;
509   }
510   return total;
511 }
512 
Add(const SampleSet & other)513 void Histogram::SampleSet::Add(const SampleSet& other) {
514   DCHECK(counts_.size() == other.counts_.size());
515   sum_ += other.sum_;
516   square_sum_ += other.square_sum_;
517   for (size_t index = 0; index < counts_.size(); ++index)
518     counts_[index] += other.counts_[index];
519 }
520 
Subtract(const SampleSet & other)521 void Histogram::SampleSet::Subtract(const SampleSet& other) {
522   DCHECK(counts_.size() == other.counts_.size());
523   // Note: Race conditions in snapshotting a sum or square_sum may lead to
524   // (temporary) negative values when snapshots are later combined (and deltas
525   // calculated).  As a result, we don't currently CHCEK() for positive values.
526   sum_ -= other.sum_;
527   square_sum_ -= other.square_sum_;
528   for (size_t index = 0; index < counts_.size(); ++index) {
529     counts_[index] -= other.counts_[index];
530     DCHECK_GE(counts_[index], 0);
531   }
532 }
533 
Serialize(Pickle * pickle) const534 bool Histogram::SampleSet::Serialize(Pickle* pickle) const {
535   pickle->WriteInt64(sum_);
536   pickle->WriteInt64(square_sum_);
537   pickle->WriteSize(counts_.size());
538 
539   for (size_t index = 0; index < counts_.size(); ++index) {
540     pickle->WriteInt(counts_[index]);
541   }
542 
543   return true;
544 }
545 
Deserialize(void ** iter,const Pickle & pickle)546 bool Histogram::SampleSet::Deserialize(void** iter, const Pickle& pickle) {
547   DCHECK_EQ(counts_.size(), 0u);
548   DCHECK_EQ(sum_, 0);
549   DCHECK_EQ(square_sum_, 0);
550 
551   size_t counts_size;
552 
553   if (!pickle.ReadInt64(iter, &sum_) ||
554       !pickle.ReadInt64(iter, &square_sum_) ||
555       !pickle.ReadSize(iter, &counts_size)) {
556     return false;
557   }
558 
559   if (counts_size == 0)
560     return false;
561 
562   for (size_t index = 0; index < counts_size; ++index) {
563     int i;
564     if (!pickle.ReadInt(iter, &i))
565       return false;
566     counts_.push_back(i);
567   }
568 
569   return true;
570 }
571 
572 //------------------------------------------------------------------------------
573 // LinearHistogram: This histogram uses a traditional set of evenly spaced
574 // buckets.
575 //------------------------------------------------------------------------------
576 
FactoryGet(const std::string & name,Sample minimum,Sample maximum,size_t bucket_count,Flags flags)577 scoped_refptr<Histogram> LinearHistogram::FactoryGet(
578     const std::string& name, Sample minimum, Sample maximum,
579     size_t bucket_count, Flags flags) {
580   scoped_refptr<Histogram> histogram(NULL);
581 
582   if (minimum <= 0)
583     minimum = 1;
584   if (maximum >= kSampleType_MAX)
585     maximum = kSampleType_MAX - 1;
586 
587   if (StatisticsRecorder::FindHistogram(name, &histogram)) {
588     DCHECK(histogram.get() != NULL);
589   } else {
590     histogram = new LinearHistogram(name, minimum, maximum, bucket_count);
591     scoped_refptr<Histogram> registered_histogram(NULL);
592     StatisticsRecorder::FindHistogram(name, &registered_histogram);
593     if (registered_histogram.get() != NULL &&
594         registered_histogram.get() != histogram.get())
595       histogram = registered_histogram;
596   }
597 
598   DCHECK(LINEAR_HISTOGRAM == histogram->histogram_type());
599   DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count));
600   histogram->SetFlags(flags);
601   return histogram;
602 }
603 
FactoryGet(const std::string & name,base::TimeDelta minimum,base::TimeDelta maximum,size_t bucket_count,Flags flags)604 scoped_refptr<Histogram> LinearHistogram::FactoryGet(const std::string& name,
605     base::TimeDelta minimum, base::TimeDelta maximum, size_t bucket_count,
606     Flags flags) {
607   return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(),
608                     bucket_count, flags);
609 }
610 
LinearHistogram(const std::string & name,Sample minimum,Sample maximum,size_t bucket_count)611 LinearHistogram::LinearHistogram(const std::string& name, Sample minimum,
612     Sample maximum, size_t bucket_count)
613     : Histogram(name, minimum >= 1 ? minimum : 1, maximum, bucket_count) {
614   InitializeBucketRange();
615   DCHECK(ValidateBucketRanges());
616 }
617 
LinearHistogram(const std::string & name,TimeDelta minimum,TimeDelta maximum,size_t bucket_count)618 LinearHistogram::LinearHistogram(const std::string& name,
619     TimeDelta minimum, TimeDelta maximum, size_t bucket_count)
620     : Histogram(name, minimum >= TimeDelta::FromMilliseconds(1) ?
621                                  minimum : TimeDelta::FromMilliseconds(1),
622                 maximum, bucket_count) {
623   // Do a "better" (different) job at init than a base classes did...
624   InitializeBucketRange();
625   DCHECK(ValidateBucketRanges());
626 }
627 
SetRangeDescriptions(const DescriptionPair descriptions[])628 void LinearHistogram::SetRangeDescriptions(
629     const DescriptionPair descriptions[]) {
630   for (int i =0; descriptions[i].description; ++i) {
631     bucket_description_[descriptions[i].sample] = descriptions[i].description;
632   }
633 }
634 
GetAsciiBucketRange(size_t i) const635 const std::string LinearHistogram::GetAsciiBucketRange(size_t i) const {
636   int range = ranges(i);
637   BucketDescriptionMap::const_iterator it = bucket_description_.find(range);
638   if (it == bucket_description_.end())
639     return Histogram::GetAsciiBucketRange(i);
640   return it->second;
641 }
642 
PrintEmptyBucket(size_t index) const643 bool LinearHistogram::PrintEmptyBucket(size_t index) const {
644   return bucket_description_.find(ranges(index)) == bucket_description_.end();
645 }
646 
647 
InitializeBucketRange()648 void LinearHistogram::InitializeBucketRange() {
649   DCHECK_LT(0, declared_min());  // 0 is the underflow bucket here.
650   double min = declared_min();
651   double max = declared_max();
652   size_t i;
653   for (i = 1; i < bucket_count(); ++i) {
654     double linear_range = (min * (bucket_count() -1 - i) + max * (i - 1)) /
655                           (bucket_count() - 2);
656     SetBucketRange(i, static_cast<int> (linear_range + 0.5));
657   }
658 }
659 
GetBucketSize(Count current,size_t i) const660 double LinearHistogram::GetBucketSize(Count current, size_t i) const {
661   DCHECK(ranges(i + 1) > ranges(i));
662   // Adjacent buckets with different widths would have "surprisingly" many (few)
663   // samples in a histogram if we didn't normalize this way.
664   double denominator = ranges(i + 1) - ranges(i);
665   return current/denominator;
666 }
667 
668 //------------------------------------------------------------------------------
669 // This section provides implementation for BooleanHistogram.
670 //------------------------------------------------------------------------------
671 
FactoryGet(const std::string & name,Flags flags)672 scoped_refptr<Histogram> BooleanHistogram::FactoryGet(const std::string& name,
673                                                       Flags flags) {
674   scoped_refptr<Histogram> histogram(NULL);
675 
676   if (StatisticsRecorder::FindHistogram(name, &histogram)) {
677     DCHECK(histogram.get() != NULL);
678   } else {
679     histogram = new BooleanHistogram(name);
680     scoped_refptr<Histogram> registered_histogram(NULL);
681     StatisticsRecorder::FindHistogram(name, &registered_histogram);
682     if (registered_histogram.get() != NULL &&
683         registered_histogram.get() != histogram.get())
684       histogram = registered_histogram;
685   }
686 
687   DCHECK(BOOLEAN_HISTOGRAM == histogram->histogram_type());
688   histogram->SetFlags(flags);
689   return histogram;
690 }
691 
692 
693 //------------------------------------------------------------------------------
694 // The next section handles global (central) support for all histograms, as well
695 // as startup/teardown of this service.
696 //------------------------------------------------------------------------------
697 
698 // This singleton instance should be started during the single threaded portion
699 // of main(), and hence it is not thread safe.  It initializes globals to
700 // provide support for all future calls.
StatisticsRecorder()701 StatisticsRecorder::StatisticsRecorder() {
702   DCHECK(!histograms_);
703   lock_ = new Lock;
704   histograms_ = new HistogramMap;
705 }
706 
~StatisticsRecorder()707 StatisticsRecorder::~StatisticsRecorder() {
708   DCHECK(histograms_);
709 
710   if (dump_on_exit_) {
711     std::string output;
712     WriteGraph("", &output);
713     LOG(INFO) << output;
714   }
715 
716   // Clean up.
717   delete histograms_;
718   histograms_ = NULL;
719   delete lock_;
720   lock_ = NULL;
721 }
722 
723 // static
WasStarted()724 bool StatisticsRecorder::WasStarted() {
725   return NULL != histograms_;
726 }
727 
728 // Note: We can't accept a ref_ptr to |histogram| because we *might* not keep a
729 // reference, and we are called while in the Histogram constructor. In that
730 // scenario, a ref_ptr would have incremented the ref count when the histogram
731 // was passed to us, decremented it when we returned, and the instance would be
732 // destroyed before assignment (when value was returned by new).
733 // static
Register(Histogram * histogram)734 void StatisticsRecorder::Register(Histogram* histogram) {
735   if (!histograms_)
736     return;
737   const std::string name = histogram->histogram_name();
738   AutoLock auto_lock(*lock_);
739 
740   DCHECK(histograms_->end() == histograms_->find(name));
741 
742   (*histograms_)[name] = histogram;
743   return;
744 }
745 
746 // static
WriteHTMLGraph(const std::string & query,std::string * output)747 void StatisticsRecorder::WriteHTMLGraph(const std::string& query,
748                                         std::string* output) {
749   if (!histograms_)
750     return;
751   output->append("<html><head><title>About Histograms");
752   if (!query.empty())
753     output->append(" - " + query);
754   output->append("</title>"
755                  // We'd like the following no-cache... but it doesn't work.
756                  // "<META HTTP-EQUIV=\"Pragma\" CONTENT=\"no-cache\">"
757                  "</head><body>");
758 
759   Histograms snapshot;
760   GetSnapshot(query, &snapshot);
761   for (Histograms::iterator it = snapshot.begin();
762        it != snapshot.end();
763        ++it) {
764     (*it)->WriteHTMLGraph(output);
765     output->append("<br><hr><br>");
766   }
767   output->append("</body></html>");
768 }
769 
770 // static
WriteGraph(const std::string & query,std::string * output)771 void StatisticsRecorder::WriteGraph(const std::string& query,
772                                     std::string* output) {
773   if (!histograms_)
774     return;
775   if (query.length())
776     StringAppendF(output, "Collections of histograms for %s\n", query.c_str());
777   else
778     output->append("Collections of all histograms\n");
779 
780   Histograms snapshot;
781   GetSnapshot(query, &snapshot);
782   for (Histograms::iterator it = snapshot.begin();
783        it != snapshot.end();
784        ++it) {
785     (*it)->WriteAscii(true, "\n", output);
786     output->append("\n");
787   }
788 }
789 
790 // static
GetHistograms(Histograms * output)791 void StatisticsRecorder::GetHistograms(Histograms* output) {
792   if (!histograms_)
793     return;
794   AutoLock auto_lock(*lock_);
795   for (HistogramMap::iterator it = histograms_->begin();
796        histograms_->end() != it;
797        ++it) {
798     output->push_back(it->second);
799   }
800 }
801 
FindHistogram(const std::string & name,scoped_refptr<Histogram> * histogram)802 bool StatisticsRecorder::FindHistogram(const std::string& name,
803                                        scoped_refptr<Histogram>* histogram) {
804   if (!histograms_)
805     return false;
806   AutoLock auto_lock(*lock_);
807   HistogramMap::iterator it = histograms_->find(name);
808   if (histograms_->end() == it)
809     return false;
810   *histogram = it->second;
811   return true;
812 }
813 
814 // private static
GetSnapshot(const std::string & query,Histograms * snapshot)815 void StatisticsRecorder::GetSnapshot(const std::string& query,
816                                      Histograms* snapshot) {
817   AutoLock auto_lock(*lock_);
818   for (HistogramMap::iterator it = histograms_->begin();
819        histograms_->end() != it;
820        ++it) {
821     if (it->first.find(query) != std::string::npos)
822       snapshot->push_back(it->second);
823   }
824 }
825 
826 // static
827 StatisticsRecorder::HistogramMap* StatisticsRecorder::histograms_ = NULL;
828 // static
829 Lock* StatisticsRecorder::lock_ = NULL;
830 // static
831 bool StatisticsRecorder::dump_on_exit_ = false;
832