1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2006-2008 the V8 project authors. All rights reserved.
34
35 // A light-weight IA32 Assembler.
36
37 #ifndef V8_IA32_ASSEMBLER_IA32_H_
38 #define V8_IA32_ASSEMBLER_IA32_H_
39
40 #include "serialize.h"
41
42 namespace v8 {
43 namespace internal {
44
45 // CPU Registers.
46 //
47 // 1) We would prefer to use an enum, but enum values are assignment-
48 // compatible with int, which has caused code-generation bugs.
49 //
50 // 2) We would prefer to use a class instead of a struct but we don't like
51 // the register initialization to depend on the particular initialization
52 // order (which appears to be different on OS X, Linux, and Windows for the
53 // installed versions of C++ we tried). Using a struct permits C-style
54 // "initialization". Also, the Register objects cannot be const as this
55 // forces initialization stubs in MSVC, making us dependent on initialization
56 // order.
57 //
58 // 3) By not using an enum, we are possibly preventing the compiler from
59 // doing certain constant folds, which may significantly reduce the
60 // code generated for some assembly instructions (because they boil down
61 // to a few constants). If this is a problem, we could change the code
62 // such that we use an enum in optimized mode, and the struct in debug
63 // mode. This way we get the compile-time error checking in debug mode
64 // and best performance in optimized code.
65 //
66 struct Register {
is_validRegister67 bool is_valid() const { return 0 <= code_ && code_ < 8; }
isRegister68 bool is(Register reg) const { return code_ == reg.code_; }
69 // eax, ebx, ecx and edx are byte registers, the rest are not.
is_byte_registerRegister70 bool is_byte_register() const { return code_ <= 3; }
codeRegister71 int code() const {
72 ASSERT(is_valid());
73 return code_;
74 }
bitRegister75 int bit() const {
76 ASSERT(is_valid());
77 return 1 << code_;
78 }
79
80 // Unfortunately we can't make this private in a struct.
81 int code_;
82 };
83
84 const Register eax = { 0 };
85 const Register ecx = { 1 };
86 const Register edx = { 2 };
87 const Register ebx = { 3 };
88 const Register esp = { 4 };
89 const Register ebp = { 5 };
90 const Register esi = { 6 };
91 const Register edi = { 7 };
92 const Register no_reg = { -1 };
93
94
95 struct XMMRegister {
is_validXMMRegister96 bool is_valid() const { return 0 <= code_ && code_ < 2; } // currently
codeXMMRegister97 int code() const {
98 ASSERT(is_valid());
99 return code_;
100 }
101
102 int code_;
103 };
104
105 const XMMRegister xmm0 = { 0 };
106 const XMMRegister xmm1 = { 1 };
107 const XMMRegister xmm2 = { 2 };
108 const XMMRegister xmm3 = { 3 };
109 const XMMRegister xmm4 = { 4 };
110 const XMMRegister xmm5 = { 5 };
111 const XMMRegister xmm6 = { 6 };
112 const XMMRegister xmm7 = { 7 };
113
114 enum Condition {
115 // any value < 0 is considered no_condition
116 no_condition = -1,
117
118 overflow = 0,
119 no_overflow = 1,
120 below = 2,
121 above_equal = 3,
122 equal = 4,
123 not_equal = 5,
124 below_equal = 6,
125 above = 7,
126 negative = 8,
127 positive = 9,
128 parity_even = 10,
129 parity_odd = 11,
130 less = 12,
131 greater_equal = 13,
132 less_equal = 14,
133 greater = 15,
134
135 // aliases
136 carry = below,
137 not_carry = above_equal,
138 zero = equal,
139 not_zero = not_equal,
140 sign = negative,
141 not_sign = positive
142 };
143
144
145 // Returns the equivalent of !cc.
146 // Negation of the default no_condition (-1) results in a non-default
147 // no_condition value (-2). As long as tests for no_condition check
148 // for condition < 0, this will work as expected.
149 inline Condition NegateCondition(Condition cc);
150
151 // Corresponds to transposing the operands of a comparison.
ReverseCondition(Condition cc)152 inline Condition ReverseCondition(Condition cc) {
153 switch (cc) {
154 case below:
155 return above;
156 case above:
157 return below;
158 case above_equal:
159 return below_equal;
160 case below_equal:
161 return above_equal;
162 case less:
163 return greater;
164 case greater:
165 return less;
166 case greater_equal:
167 return less_equal;
168 case less_equal:
169 return greater_equal;
170 default:
171 return cc;
172 };
173 }
174
175 enum Hint {
176 no_hint = 0,
177 not_taken = 0x2e,
178 taken = 0x3e
179 };
180
181 // The result of negating a hint is as if the corresponding condition
182 // were negated by NegateCondition. That is, no_hint is mapped to
183 // itself and not_taken and taken are mapped to each other.
NegateHint(Hint hint)184 inline Hint NegateHint(Hint hint) {
185 return (hint == no_hint)
186 ? no_hint
187 : ((hint == not_taken) ? taken : not_taken);
188 }
189
190
191 // -----------------------------------------------------------------------------
192 // Machine instruction Immediates
193
194 class Immediate BASE_EMBEDDED {
195 public:
196 inline explicit Immediate(int x);
197 inline explicit Immediate(const char* s);
198 inline explicit Immediate(const ExternalReference& ext);
199 inline explicit Immediate(Handle<Object> handle);
200 inline explicit Immediate(Smi* value);
201
CodeRelativeOffset(Label * label)202 static Immediate CodeRelativeOffset(Label* label) {
203 return Immediate(label);
204 }
205
is_zero()206 bool is_zero() const { return x_ == 0 && rmode_ == RelocInfo::NONE; }
is_int8()207 bool is_int8() const {
208 return -128 <= x_ && x_ < 128 && rmode_ == RelocInfo::NONE;
209 }
is_int16()210 bool is_int16() const {
211 return -32768 <= x_ && x_ < 32768 && rmode_ == RelocInfo::NONE;
212 }
213
214 private:
215 inline explicit Immediate(Label* value);
216
217 int x_;
218 RelocInfo::Mode rmode_;
219
220 friend class Assembler;
221 };
222
223
224 // -----------------------------------------------------------------------------
225 // Machine instruction Operands
226
227 enum ScaleFactor {
228 times_1 = 0,
229 times_2 = 1,
230 times_4 = 2,
231 times_8 = 3,
232 times_int_size = times_4,
233 times_half_pointer_size = times_2,
234 times_pointer_size = times_4,
235 times_twice_pointer_size = times_8
236 };
237
238
239 class Operand BASE_EMBEDDED {
240 public:
241 // reg
242 INLINE(explicit Operand(Register reg));
243
244 // [disp/r]
245 INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
246 // disp only must always be relocated
247
248 // [base + disp/r]
249 explicit Operand(Register base, int32_t disp,
250 RelocInfo::Mode rmode = RelocInfo::NONE);
251
252 // [base + index*scale + disp/r]
253 explicit Operand(Register base,
254 Register index,
255 ScaleFactor scale,
256 int32_t disp,
257 RelocInfo::Mode rmode = RelocInfo::NONE);
258
259 // [index*scale + disp/r]
260 explicit Operand(Register index,
261 ScaleFactor scale,
262 int32_t disp,
263 RelocInfo::Mode rmode = RelocInfo::NONE);
264
StaticVariable(const ExternalReference & ext)265 static Operand StaticVariable(const ExternalReference& ext) {
266 return Operand(reinterpret_cast<int32_t>(ext.address()),
267 RelocInfo::EXTERNAL_REFERENCE);
268 }
269
StaticArray(Register index,ScaleFactor scale,const ExternalReference & arr)270 static Operand StaticArray(Register index,
271 ScaleFactor scale,
272 const ExternalReference& arr) {
273 return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
274 RelocInfo::EXTERNAL_REFERENCE);
275 }
276
277 // Returns true if this Operand is a wrapper for the specified register.
278 bool is_reg(Register reg) const;
279
280 private:
281 byte buf_[6];
282 // The number of bytes in buf_.
283 unsigned int len_;
284 // Only valid if len_ > 4.
285 RelocInfo::Mode rmode_;
286
287 // Set the ModRM byte without an encoded 'reg' register. The
288 // register is encoded later as part of the emit_operand operation.
289 inline void set_modrm(int mod, Register rm);
290
291 inline void set_sib(ScaleFactor scale, Register index, Register base);
292 inline void set_disp8(int8_t disp);
293 inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
294
295 friend class Assembler;
296 };
297
298
299 // -----------------------------------------------------------------------------
300 // A Displacement describes the 32bit immediate field of an instruction which
301 // may be used together with a Label in order to refer to a yet unknown code
302 // position. Displacements stored in the instruction stream are used to describe
303 // the instruction and to chain a list of instructions using the same Label.
304 // A Displacement contains 2 different fields:
305 //
306 // next field: position of next displacement in the chain (0 = end of list)
307 // type field: instruction type
308 //
309 // A next value of null (0) indicates the end of a chain (note that there can
310 // be no displacement at position zero, because there is always at least one
311 // instruction byte before the displacement).
312 //
313 // Displacement _data field layout
314 //
315 // |31.....2|1......0|
316 // [ next | type |
317
318 class Displacement BASE_EMBEDDED {
319 public:
320 enum Type {
321 UNCONDITIONAL_JUMP,
322 CODE_RELATIVE,
323 OTHER
324 };
325
data()326 int data() const { return data_; }
type()327 Type type() const { return TypeField::decode(data_); }
next(Label * L)328 void next(Label* L) const {
329 int n = NextField::decode(data_);
330 n > 0 ? L->link_to(n) : L->Unuse();
331 }
link_to(Label * L)332 void link_to(Label* L) { init(L, type()); }
333
Displacement(int data)334 explicit Displacement(int data) { data_ = data; }
335
Displacement(Label * L,Type type)336 Displacement(Label* L, Type type) { init(L, type); }
337
print()338 void print() {
339 PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
340 NextField::decode(data_));
341 }
342
343 private:
344 int data_;
345
346 class TypeField: public BitField<Type, 0, 2> {};
347 class NextField: public BitField<int, 2, 32-2> {};
348
349 void init(Label* L, Type type);
350 };
351
352
353
354 // CpuFeatures keeps track of which features are supported by the target CPU.
355 // Supported features must be enabled by a Scope before use.
356 // Example:
357 // if (CpuFeatures::IsSupported(SSE2)) {
358 // CpuFeatures::Scope fscope(SSE2);
359 // // Generate SSE2 floating point code.
360 // } else {
361 // // Generate standard x87 floating point code.
362 // }
363 class CpuFeatures : public AllStatic {
364 public:
365 // Detect features of the target CPU. Set safe defaults if the serializer
366 // is enabled (snapshots must be portable).
367 static void Probe();
368 // Check whether a feature is supported by the target CPU.
IsSupported(CpuFeature f)369 static bool IsSupported(CpuFeature f) {
370 if (f == SSE2 && !FLAG_enable_sse2) return false;
371 if (f == SSE3 && !FLAG_enable_sse3) return false;
372 if (f == CMOV && !FLAG_enable_cmov) return false;
373 if (f == RDTSC && !FLAG_enable_rdtsc) return false;
374 return (supported_ & (static_cast<uint64_t>(1) << f)) != 0;
375 }
376 // Check whether a feature is currently enabled.
IsEnabled(CpuFeature f)377 static bool IsEnabled(CpuFeature f) {
378 return (enabled_ & (static_cast<uint64_t>(1) << f)) != 0;
379 }
380 // Enable a specified feature within a scope.
381 class Scope BASE_EMBEDDED {
382 #ifdef DEBUG
383 public:
Scope(CpuFeature f)384 explicit Scope(CpuFeature f) {
385 uint64_t mask = static_cast<uint64_t>(1) << f;
386 ASSERT(CpuFeatures::IsSupported(f));
387 ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
388 old_enabled_ = CpuFeatures::enabled_;
389 CpuFeatures::enabled_ |= mask;
390 }
~Scope()391 ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
392 private:
393 uint64_t old_enabled_;
394 #else
395 public:
396 explicit Scope(CpuFeature f) {}
397 #endif
398 };
399 private:
400 static uint64_t supported_;
401 static uint64_t enabled_;
402 static uint64_t found_by_runtime_probing_;
403 };
404
405
406 class Assembler : public Malloced {
407 private:
408 // We check before assembling an instruction that there is sufficient
409 // space to write an instruction and its relocation information.
410 // The relocation writer's position must be kGap bytes above the end of
411 // the generated instructions. This leaves enough space for the
412 // longest possible ia32 instruction, 15 bytes, and the longest possible
413 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
414 // (There is a 15 byte limit on ia32 instruction length that rules out some
415 // otherwise valid instructions.)
416 // This allows for a single, fast space check per instruction.
417 static const int kGap = 32;
418
419 public:
420 // Create an assembler. Instructions and relocation information are emitted
421 // into a buffer, with the instructions starting from the beginning and the
422 // relocation information starting from the end of the buffer. See CodeDesc
423 // for a detailed comment on the layout (globals.h).
424 //
425 // If the provided buffer is NULL, the assembler allocates and grows its own
426 // buffer, and buffer_size determines the initial buffer size. The buffer is
427 // owned by the assembler and deallocated upon destruction of the assembler.
428 //
429 // If the provided buffer is not NULL, the assembler uses the provided buffer
430 // for code generation and assumes its size to be buffer_size. If the buffer
431 // is too small, a fatal error occurs. No deallocation of the buffer is done
432 // upon destruction of the assembler.
433 Assembler(void* buffer, int buffer_size);
434 ~Assembler();
435
436 // GetCode emits any pending (non-emitted) code and fills the descriptor
437 // desc. GetCode() is idempotent; it returns the same result if no other
438 // Assembler functions are invoked in between GetCode() calls.
439 void GetCode(CodeDesc* desc);
440
441 // Read/Modify the code target in the branch/call instruction at pc.
442 inline static Address target_address_at(Address pc);
443 inline static void set_target_address_at(Address pc, Address target);
444
445 // This sets the branch destination (which is in the instruction on x86).
446 // This is for calls and branches within generated code.
set_target_at(Address instruction_payload,Address target)447 inline static void set_target_at(Address instruction_payload,
448 Address target) {
449 set_target_address_at(instruction_payload, target);
450 }
451
452 // This sets the branch destination (which is in the instruction on x86).
453 // This is for calls and branches to runtime code.
set_external_target_at(Address instruction_payload,Address target)454 inline static void set_external_target_at(Address instruction_payload,
455 Address target) {
456 set_target_address_at(instruction_payload, target);
457 }
458
459 static const int kCallTargetSize = kPointerSize;
460 static const int kExternalTargetSize = kPointerSize;
461
462 // Distance between the address of the code target in the call instruction
463 // and the return address
464 static const int kCallTargetAddressOffset = kPointerSize;
465 // Distance between start of patched return sequence and the emitted address
466 // to jump to.
467 static const int kPatchReturnSequenceAddressOffset = 1; // JMP imm32.
468
469 static const int kCallInstructionLength = 5;
470 static const int kJSReturnSequenceLength = 6;
471
472 // ---------------------------------------------------------------------------
473 // Code generation
474 //
475 // - function names correspond one-to-one to ia32 instruction mnemonics
476 // - unless specified otherwise, instructions operate on 32bit operands
477 // - instructions on 8bit (byte) operands/registers have a trailing '_b'
478 // - instructions on 16bit (word) operands/registers have a trailing '_w'
479 // - naming conflicts with C++ keywords are resolved via a trailing '_'
480
481 // NOTE ON INTERFACE: Currently, the interface is not very consistent
482 // in the sense that some operations (e.g. mov()) can be called in more
483 // the one way to generate the same instruction: The Register argument
484 // can in some cases be replaced with an Operand(Register) argument.
485 // This should be cleaned up and made more orthogonal. The questions
486 // is: should we always use Operands instead of Registers where an
487 // Operand is possible, or should we have a Register (overloaded) form
488 // instead? We must be careful to make sure that the selected instruction
489 // is obvious from the parameters to avoid hard-to-find code generation
490 // bugs.
491
492 // Insert the smallest number of nop instructions
493 // possible to align the pc offset to a multiple
494 // of m. m must be a power of 2.
495 void Align(int m);
496
497 // Stack
498 void pushad();
499 void popad();
500
501 void pushfd();
502 void popfd();
503
504 void push(const Immediate& x);
505 void push(Register src);
506 void push(const Operand& src);
507 void push(Label* label, RelocInfo::Mode relocation_mode);
508
509 void pop(Register dst);
510 void pop(const Operand& dst);
511
512 void enter(const Immediate& size);
513 void leave();
514
515 // Moves
516 void mov_b(Register dst, const Operand& src);
517 void mov_b(const Operand& dst, int8_t imm8);
518 void mov_b(const Operand& dst, Register src);
519
520 void mov_w(Register dst, const Operand& src);
521 void mov_w(const Operand& dst, Register src);
522
523 void mov(Register dst, int32_t imm32);
524 void mov(Register dst, const Immediate& x);
525 void mov(Register dst, Handle<Object> handle);
526 void mov(Register dst, const Operand& src);
527 void mov(Register dst, Register src);
528 void mov(const Operand& dst, const Immediate& x);
529 void mov(const Operand& dst, Handle<Object> handle);
530 void mov(const Operand& dst, Register src);
531
532 void movsx_b(Register dst, const Operand& src);
533
534 void movsx_w(Register dst, const Operand& src);
535
536 void movzx_b(Register dst, const Operand& src);
537
538 void movzx_w(Register dst, const Operand& src);
539
540 // Conditional moves
541 void cmov(Condition cc, Register dst, int32_t imm32);
542 void cmov(Condition cc, Register dst, Handle<Object> handle);
543 void cmov(Condition cc, Register dst, const Operand& src);
544
545 // Repetitive string instructions.
546 void rep_movs();
547
548 // Exchange two registers
549 void xchg(Register dst, Register src);
550
551 // Arithmetics
552 void adc(Register dst, int32_t imm32);
553 void adc(Register dst, const Operand& src);
554
555 void add(Register dst, const Operand& src);
556 void add(const Operand& dst, const Immediate& x);
557
558 void and_(Register dst, int32_t imm32);
559 void and_(Register dst, const Operand& src);
560 void and_(const Operand& src, Register dst);
561 void and_(const Operand& dst, const Immediate& x);
562
563 void cmpb(const Operand& op, int8_t imm8);
564 void cmpb(Register src, const Operand& dst);
565 void cmpb(const Operand& dst, Register src);
566 void cmpb_al(const Operand& op);
567 void cmpw_ax(const Operand& op);
568 void cmpw(const Operand& op, Immediate imm16);
569 void cmp(Register reg, int32_t imm32);
570 void cmp(Register reg, Handle<Object> handle);
571 void cmp(Register reg, const Operand& op);
572 void cmp(const Operand& op, const Immediate& imm);
573 void cmp(const Operand& op, Handle<Object> handle);
574
575 void dec_b(Register dst);
576
577 void dec(Register dst);
578 void dec(const Operand& dst);
579
580 void cdq();
581
582 void idiv(Register src);
583
584 // Signed multiply instructions.
585 void imul(Register src); // edx:eax = eax * src.
586 void imul(Register dst, const Operand& src); // dst = dst * src.
587 void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32.
588
589 void inc(Register dst);
590 void inc(const Operand& dst);
591
592 void lea(Register dst, const Operand& src);
593
594 // Unsigned multiply instruction.
595 void mul(Register src); // edx:eax = eax * reg.
596
597 void neg(Register dst);
598
599 void not_(Register dst);
600
601 void or_(Register dst, int32_t imm32);
602 void or_(Register dst, const Operand& src);
603 void or_(const Operand& dst, Register src);
604 void or_(const Operand& dst, const Immediate& x);
605
606 void rcl(Register dst, uint8_t imm8);
607
608 void sar(Register dst, uint8_t imm8);
609 void sar_cl(Register dst);
610
611 void sbb(Register dst, const Operand& src);
612
613 void shld(Register dst, const Operand& src);
614
615 void shl(Register dst, uint8_t imm8);
616 void shl_cl(Register dst);
617
618 void shrd(Register dst, const Operand& src);
619
620 void shr(Register dst, uint8_t imm8);
621 void shr_cl(Register dst);
622
623 void subb(const Operand& dst, int8_t imm8);
624 void subb(Register dst, const Operand& src);
625 void sub(const Operand& dst, const Immediate& x);
626 void sub(Register dst, const Operand& src);
627 void sub(const Operand& dst, Register src);
628
629 void test(Register reg, const Immediate& imm);
630 void test(Register reg, const Operand& op);
631 void test_b(Register reg, const Operand& op);
632 void test(const Operand& op, const Immediate& imm);
633
634 void xor_(Register dst, int32_t imm32);
635 void xor_(Register dst, const Operand& src);
636 void xor_(const Operand& src, Register dst);
637 void xor_(const Operand& dst, const Immediate& x);
638
639 // Bit operations.
640 void bt(const Operand& dst, Register src);
641 void bts(const Operand& dst, Register src);
642
643 // Miscellaneous
644 void hlt();
645 void int3();
646 void nop();
647 void rdtsc();
648 void ret(int imm16);
649
650 // Label operations & relative jumps (PPUM Appendix D)
651 //
652 // Takes a branch opcode (cc) and a label (L) and generates
653 // either a backward branch or a forward branch and links it
654 // to the label fixup chain. Usage:
655 //
656 // Label L; // unbound label
657 // j(cc, &L); // forward branch to unbound label
658 // bind(&L); // bind label to the current pc
659 // j(cc, &L); // backward branch to bound label
660 // bind(&L); // illegal: a label may be bound only once
661 //
662 // Note: The same Label can be used for forward and backward branches
663 // but it may be bound only once.
664
665 void bind(Label* L); // binds an unbound label L to the current code position
666
667 // Calls
668 void call(Label* L);
669 void call(byte* entry, RelocInfo::Mode rmode);
670 void call(const Operand& adr);
671 void call(const ExternalReference& target);
672 void call(Handle<Code> code, RelocInfo::Mode rmode);
673
674 // Jumps
675 void jmp(Label* L); // unconditional jump to L
676 void jmp(byte* entry, RelocInfo::Mode rmode);
677 void jmp(const Operand& adr);
678 void jmp(Handle<Code> code, RelocInfo::Mode rmode);
679
680 // Conditional jumps
681 void j(Condition cc, Label* L, Hint hint = no_hint);
682 void j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint = no_hint);
683 void j(Condition cc, Handle<Code> code, Hint hint = no_hint);
684
685 // Floating-point operations
686 void fld(int i);
687 void fstp(int i);
688
689 void fld1();
690 void fldz();
691 void fldpi();
692
693 void fld_s(const Operand& adr);
694 void fld_d(const Operand& adr);
695
696 void fstp_s(const Operand& adr);
697 void fstp_d(const Operand& adr);
698 void fst_d(const Operand& adr);
699
700 void fild_s(const Operand& adr);
701 void fild_d(const Operand& adr);
702
703 void fist_s(const Operand& adr);
704
705 void fistp_s(const Operand& adr);
706 void fistp_d(const Operand& adr);
707
708 void fisttp_s(const Operand& adr);
709 void fisttp_d(const Operand& adr);
710
711 void fabs();
712 void fchs();
713 void fcos();
714 void fsin();
715
716 void fadd(int i);
717 void fsub(int i);
718 void fmul(int i);
719 void fdiv(int i);
720
721 void fisub_s(const Operand& adr);
722
723 void faddp(int i = 1);
724 void fsubp(int i = 1);
725 void fsubrp(int i = 1);
726 void fmulp(int i = 1);
727 void fdivp(int i = 1);
728 void fprem();
729 void fprem1();
730
731 void fxch(int i = 1);
732 void fincstp();
733 void ffree(int i = 0);
734
735 void ftst();
736 void fucomp(int i);
737 void fucompp();
738 void fucomi(int i);
739 void fucomip();
740 void fcompp();
741 void fnstsw_ax();
742 void fwait();
743 void fnclex();
744
745 void frndint();
746
747 void sahf();
748 void setcc(Condition cc, Register reg);
749
750 void cpuid();
751
752 // SSE2 instructions
753 void cvttss2si(Register dst, const Operand& src);
754 void cvttsd2si(Register dst, const Operand& src);
755
756 void cvtsi2sd(XMMRegister dst, const Operand& src);
757
758 void addsd(XMMRegister dst, XMMRegister src);
759 void subsd(XMMRegister dst, XMMRegister src);
760 void mulsd(XMMRegister dst, XMMRegister src);
761 void divsd(XMMRegister dst, XMMRegister src);
762 void xorpd(XMMRegister dst, XMMRegister src);
763
764 void comisd(XMMRegister dst, XMMRegister src);
765
766 void movdqa(XMMRegister dst, const Operand& src);
767 void movdqa(const Operand& dst, XMMRegister src);
768 void movdqu(XMMRegister dst, const Operand& src);
769 void movdqu(const Operand& dst, XMMRegister src);
770
771 // Use either movsd or movlpd.
772 void movdbl(XMMRegister dst, const Operand& src);
773 void movdbl(const Operand& dst, XMMRegister src);
774
775 // Debugging
776 void Print();
777
778 // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * l)779 int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
780
781 // Mark address of the ExitJSFrame code.
782 void RecordJSReturn();
783
784 // Record a comment relocation entry that can be used by a disassembler.
785 // Use --debug_code to enable.
786 void RecordComment(const char* msg);
787
788 void RecordPosition(int pos);
789 void RecordStatementPosition(int pos);
790 void WriteRecordedPositions();
791
792 // Writes a single word of data in the code stream.
793 // Used for inline tables, e.g., jump-tables.
794 void dd(uint32_t data, RelocInfo::Mode reloc_info);
795
pc_offset()796 int pc_offset() const { return pc_ - buffer_; }
current_statement_position()797 int current_statement_position() const { return current_statement_position_; }
current_position()798 int current_position() const { return current_position_; }
799
800 // Check if there is less than kGap bytes available in the buffer.
801 // If this is the case, we need to grow the buffer before emitting
802 // an instruction or relocation information.
overflow()803 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
804
805 // Get the number of bytes available in the buffer.
available_space()806 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
807
808 // Avoid overflows for displacements etc.
809 static const int kMaximalBufferSize = 512*MB;
810 static const int kMinimalBufferSize = 4*KB;
811
812 protected:
813 void movsd(XMMRegister dst, const Operand& src);
814 void movsd(const Operand& dst, XMMRegister src);
815
816 void emit_sse_operand(XMMRegister reg, const Operand& adr);
817 void emit_sse_operand(XMMRegister dst, XMMRegister src);
818
819
820 private:
addr_at(int pos)821 byte* addr_at(int pos) { return buffer_ + pos; }
byte_at(int pos)822 byte byte_at(int pos) { return buffer_[pos]; }
long_at(int pos)823 uint32_t long_at(int pos) {
824 return *reinterpret_cast<uint32_t*>(addr_at(pos));
825 }
long_at_put(int pos,uint32_t x)826 void long_at_put(int pos, uint32_t x) {
827 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
828 }
829
830 // code emission
831 void GrowBuffer();
832 inline void emit(uint32_t x);
833 inline void emit(Handle<Object> handle);
834 inline void emit(uint32_t x, RelocInfo::Mode rmode);
835 inline void emit(const Immediate& x);
836 inline void emit_w(const Immediate& x);
837
838 // Emit the code-object-relative offset of the label's position
839 inline void emit_code_relative_offset(Label* label);
840
841 // instruction generation
842 void emit_arith_b(int op1, int op2, Register dst, int imm8);
843
844 // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
845 // with a given destination expression and an immediate operand. It attempts
846 // to use the shortest encoding possible.
847 // sel specifies the /n in the modrm byte (see the Intel PRM).
848 void emit_arith(int sel, Operand dst, const Immediate& x);
849
850 void emit_operand(Register reg, const Operand& adr);
851
852 void emit_farith(int b1, int b2, int i);
853
854 // labels
855 void print(Label* L);
856 void bind_to(Label* L, int pos);
857 void link_to(Label* L, Label* appendix);
858
859 // displacements
860 inline Displacement disp_at(Label* L);
861 inline void disp_at_put(Label* L, Displacement disp);
862 inline void emit_disp(Label* L, Displacement::Type type);
863
864 // record reloc info for current pc_
865 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
866
867 friend class CodePatcher;
868 friend class EnsureSpace;
869
870 // Code buffer:
871 // The buffer into which code and relocation info are generated.
872 byte* buffer_;
873 int buffer_size_;
874 // True if the assembler owns the buffer, false if buffer is external.
875 bool own_buffer_;
876 // A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
877 static byte* spare_buffer_;
878
879 // code generation
880 byte* pc_; // the program counter; moves forward
881 RelocInfoWriter reloc_info_writer;
882
883 // push-pop elimination
884 byte* last_pc_;
885
886 // source position information
887 int current_statement_position_;
888 int current_position_;
889 int written_statement_position_;
890 int written_position_;
891 };
892
893
894 // Helper class that ensures that there is enough space for generating
895 // instructions and relocation information. The constructor makes
896 // sure that there is enough space and (in debug mode) the destructor
897 // checks that we did not generate too much.
898 class EnsureSpace BASE_EMBEDDED {
899 public:
EnsureSpace(Assembler * assembler)900 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
901 if (assembler_->overflow()) assembler_->GrowBuffer();
902 #ifdef DEBUG
903 space_before_ = assembler_->available_space();
904 #endif
905 }
906
907 #ifdef DEBUG
~EnsureSpace()908 ~EnsureSpace() {
909 int bytes_generated = space_before_ - assembler_->available_space();
910 ASSERT(bytes_generated < assembler_->kGap);
911 }
912 #endif
913
914 private:
915 Assembler* assembler_;
916 #ifdef DEBUG
917 int space_before_;
918 #endif
919 };
920
921 } } // namespace v8::internal
922
923 #endif // V8_IA32_ASSEMBLER_IA32_H_
924