1 // Copyright 2007-2009 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 /** \mainpage V8 API Reference Guide 29 * 30 * V8 is Google's open source JavaScript engine. 31 * 32 * This set of documents provides reference material generated from the 33 * V8 header file, include/v8.h. 34 * 35 * For other documentation see http://code.google.com/apis/v8/ 36 */ 37 38 #ifndef V8_H_ 39 #define V8_H_ 40 41 #include <stdio.h> 42 43 #ifdef _WIN32 44 // When compiling on MinGW stdint.h is available. 45 #ifdef __MINGW32__ 46 #include <stdint.h> 47 #else // __MINGW32__ 48 typedef signed char int8_t; 49 typedef unsigned char uint8_t; 50 typedef short int16_t; // NOLINT 51 typedef unsigned short uint16_t; // NOLINT 52 typedef int int32_t; 53 typedef unsigned int uint32_t; 54 typedef __int64 int64_t; 55 typedef unsigned __int64 uint64_t; 56 // intptr_t and friends are defined in crtdefs.h through stdio.h. 57 #endif // __MINGW32__ 58 59 // Setup for Windows DLL export/import. When building the V8 DLL the 60 // BUILDING_V8_SHARED needs to be defined. When building a program which uses 61 // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8 62 // static library or building a program which uses the V8 static library neither 63 // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined. 64 // The reason for having both V8EXPORT and V8EXPORT_INLINE is that classes which 65 // have their code inside this header file need to have __declspec(dllexport) 66 // when building the DLL but cannot have __declspec(dllimport) when building 67 // a program which uses the DLL. 68 #if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED) 69 #error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\ 70 build configuration to ensure that at most one of these is set 71 #endif 72 73 #ifdef BUILDING_V8_SHARED 74 #define V8EXPORT __declspec(dllexport) 75 #define V8EXPORT_INLINE __declspec(dllexport) 76 #elif USING_V8_SHARED 77 #define V8EXPORT __declspec(dllimport) 78 #define V8EXPORT_INLINE 79 #else 80 #define V8EXPORT 81 #define V8EXPORT_INLINE 82 #endif // BUILDING_V8_SHARED 83 84 #else // _WIN32 85 86 #include <stdint.h> 87 88 // Setup for Linux shared library export. There is no need to distinguish 89 // between building or using the V8 shared library, but we should not 90 // export symbols when we are building a static library. 91 #if defined(__GNUC__) && (__GNUC__ >= 4) && defined(V8_SHARED) 92 #define V8EXPORT __attribute__ ((visibility("default"))) 93 #define V8EXPORT_INLINE __attribute__ ((visibility("default"))) 94 #else // defined(__GNUC__) && (__GNUC__ >= 4) 95 #define V8EXPORT 96 #define V8EXPORT_INLINE 97 #endif // defined(__GNUC__) && (__GNUC__ >= 4) 98 99 #endif // _WIN32 100 101 /** 102 * The v8 JavaScript engine. 103 */ 104 namespace v8 { 105 106 class Context; 107 class String; 108 class Value; 109 class Utils; 110 class Number; 111 class Object; 112 class Array; 113 class Int32; 114 class Uint32; 115 class External; 116 class Primitive; 117 class Boolean; 118 class Integer; 119 class Function; 120 class Date; 121 class ImplementationUtilities; 122 class Signature; 123 template <class T> class Handle; 124 template <class T> class Local; 125 template <class T> class Persistent; 126 class FunctionTemplate; 127 class ObjectTemplate; 128 class Data; 129 130 namespace internal { 131 132 class Arguments; 133 class Object; 134 class Top; 135 136 } 137 138 139 // --- W e a k H a n d l e s 140 141 142 /** 143 * A weak reference callback function. 144 * 145 * \param object the weak global object to be reclaimed by the garbage collector 146 * \param parameter the value passed in when making the weak global object 147 */ 148 typedef void (*WeakReferenceCallback)(Persistent<Value> object, 149 void* parameter); 150 151 152 // --- H a n d l e s --- 153 154 #define TYPE_CHECK(T, S) \ 155 while (false) { \ 156 *(static_cast<T**>(0)) = static_cast<S*>(0); \ 157 } 158 159 /** 160 * An object reference managed by the v8 garbage collector. 161 * 162 * All objects returned from v8 have to be tracked by the garbage 163 * collector so that it knows that the objects are still alive. Also, 164 * because the garbage collector may move objects, it is unsafe to 165 * point directly to an object. Instead, all objects are stored in 166 * handles which are known by the garbage collector and updated 167 * whenever an object moves. Handles should always be passed by value 168 * (except in cases like out-parameters) and they should never be 169 * allocated on the heap. 170 * 171 * There are two types of handles: local and persistent handles. 172 * Local handles are light-weight and transient and typically used in 173 * local operations. They are managed by HandleScopes. Persistent 174 * handles can be used when storing objects across several independent 175 * operations and have to be explicitly deallocated when they're no 176 * longer used. 177 * 178 * It is safe to extract the object stored in the handle by 179 * dereferencing the handle (for instance, to extract the Object* from 180 * an Handle<Object>); the value will still be governed by a handle 181 * behind the scenes and the same rules apply to these values as to 182 * their handles. 183 */ 184 template <class T> class V8EXPORT_INLINE Handle { 185 public: 186 187 /** 188 * Creates an empty handle. 189 */ 190 inline Handle(); 191 192 /** 193 * Creates a new handle for the specified value. 194 */ Handle(T * val)195 explicit Handle(T* val) : val_(val) { } 196 197 /** 198 * Creates a handle for the contents of the specified handle. This 199 * constructor allows you to pass handles as arguments by value and 200 * to assign between handles. However, if you try to assign between 201 * incompatible handles, for instance from a Handle<String> to a 202 * Handle<Number> it will cause a compiletime error. Assigning 203 * between compatible handles, for instance assigning a 204 * Handle<String> to a variable declared as Handle<Value>, is legal 205 * because String is a subclass of Value. 206 */ Handle(Handle<S> that)207 template <class S> inline Handle(Handle<S> that) 208 : val_(reinterpret_cast<T*>(*that)) { 209 /** 210 * This check fails when trying to convert between incompatible 211 * handles. For example, converting from a Handle<String> to a 212 * Handle<Number>. 213 */ 214 TYPE_CHECK(T, S); 215 } 216 217 /** 218 * Returns true if the handle is empty. 219 */ IsEmpty()220 bool IsEmpty() const { return val_ == 0; } 221 222 T* operator->() const { return val_; } 223 224 T* operator*() const { return val_; } 225 226 /** 227 * Sets the handle to be empty. IsEmpty() will then return true. 228 */ Clear()229 void Clear() { this->val_ = 0; } 230 231 /** 232 * Checks whether two handles are the same. 233 * Returns true if both are empty, or if the objects 234 * to which they refer are identical. 235 * The handles' references are not checked. 236 */ 237 template <class S> bool operator==(Handle<S> that) const { 238 internal::Object** a = reinterpret_cast<internal::Object**>(**this); 239 internal::Object** b = reinterpret_cast<internal::Object**>(*that); 240 if (a == 0) return b == 0; 241 if (b == 0) return false; 242 return *a == *b; 243 } 244 245 /** 246 * Checks whether two handles are different. 247 * Returns true if only one of the handles is empty, or if 248 * the objects to which they refer are different. 249 * The handles' references are not checked. 250 */ 251 template <class S> bool operator!=(Handle<S> that) const { 252 return !operator==(that); 253 } 254 Cast(Handle<S> that)255 template <class S> static inline Handle<T> Cast(Handle<S> that) { 256 #ifdef V8_ENABLE_CHECKS 257 // If we're going to perform the type check then we have to check 258 // that the handle isn't empty before doing the checked cast. 259 if (that.IsEmpty()) return Handle<T>(); 260 #endif 261 return Handle<T>(T::Cast(*that)); 262 } 263 264 private: 265 T* val_; 266 }; 267 268 269 /** 270 * A light-weight stack-allocated object handle. All operations 271 * that return objects from within v8 return them in local handles. They 272 * are created within HandleScopes, and all local handles allocated within a 273 * handle scope are destroyed when the handle scope is destroyed. Hence it 274 * is not necessary to explicitly deallocate local handles. 275 */ 276 template <class T> class V8EXPORT_INLINE Local : public Handle<T> { 277 public: 278 inline Local(); Local(Local<S> that)279 template <class S> inline Local(Local<S> that) 280 : Handle<T>(reinterpret_cast<T*>(*that)) { 281 /** 282 * This check fails when trying to convert between incompatible 283 * handles. For example, converting from a Handle<String> to a 284 * Handle<Number>. 285 */ 286 TYPE_CHECK(T, S); 287 } Local(S * that)288 template <class S> inline Local(S* that) : Handle<T>(that) { } Cast(Local<S> that)289 template <class S> static inline Local<T> Cast(Local<S> that) { 290 #ifdef V8_ENABLE_CHECKS 291 // If we're going to perform the type check then we have to check 292 // that the handle isn't empty before doing the checked cast. 293 if (that.IsEmpty()) return Local<T>(); 294 #endif 295 return Local<T>(T::Cast(*that)); 296 } 297 298 /** Create a local handle for the content of another handle. 299 * The referee is kept alive by the local handle even when 300 * the original handle is destroyed/disposed. 301 */ 302 inline static Local<T> New(Handle<T> that); 303 }; 304 305 306 /** 307 * An object reference that is independent of any handle scope. Where 308 * a Local handle only lives as long as the HandleScope in which it was 309 * allocated, a Persistent handle remains valid until it is explicitly 310 * disposed. 311 * 312 * A persistent handle contains a reference to a storage cell within 313 * the v8 engine which holds an object value and which is updated by 314 * the garbage collector whenever the object is moved. A new storage 315 * cell can be created using Persistent::New and existing handles can 316 * be disposed using Persistent::Dispose. Since persistent handles 317 * are passed by value you may have many persistent handle objects 318 * that point to the same storage cell. For instance, if you pass a 319 * persistent handle as an argument to a function you will not get two 320 * different storage cells but rather two references to the same 321 * storage cell. 322 */ 323 template <class T> class V8EXPORT_INLINE Persistent : public Handle<T> { 324 public: 325 326 /** 327 * Creates an empty persistent handle that doesn't point to any 328 * storage cell. 329 */ 330 inline Persistent(); 331 332 /** 333 * Creates a persistent handle for the same storage cell as the 334 * specified handle. This constructor allows you to pass persistent 335 * handles as arguments by value and to assign between persistent 336 * handles. However, attempting to assign between incompatible 337 * persistent handles, for instance from a Persistent<String> to a 338 * Persistent<Number> will cause a compiletime error. Assigning 339 * between compatible persistent handles, for instance assigning a 340 * Persistent<String> to a variable declared as Persistent<Value>, 341 * is allowed as String is a subclass of Value. 342 */ Persistent(Persistent<S> that)343 template <class S> inline Persistent(Persistent<S> that) 344 : Handle<T>(reinterpret_cast<T*>(*that)) { 345 /** 346 * This check fails when trying to convert between incompatible 347 * handles. For example, converting from a Handle<String> to a 348 * Handle<Number>. 349 */ 350 TYPE_CHECK(T, S); 351 } 352 Persistent(S * that)353 template <class S> inline Persistent(S* that) : Handle<T>(that) { } 354 355 /** 356 * "Casts" a plain handle which is known to be a persistent handle 357 * to a persistent handle. 358 */ Persistent(Handle<S> that)359 template <class S> explicit inline Persistent(Handle<S> that) 360 : Handle<T>(*that) { } 361 Cast(Persistent<S> that)362 template <class S> static inline Persistent<T> Cast(Persistent<S> that) { 363 #ifdef V8_ENABLE_CHECKS 364 // If we're going to perform the type check then we have to check 365 // that the handle isn't empty before doing the checked cast. 366 if (that.IsEmpty()) return Persistent<T>(); 367 #endif 368 return Persistent<T>(T::Cast(*that)); 369 } 370 371 /** 372 * Creates a new persistent handle for an existing local or 373 * persistent handle. 374 */ 375 inline static Persistent<T> New(Handle<T> that); 376 377 /** 378 * Releases the storage cell referenced by this persistent handle. 379 * Does not remove the reference to the cell from any handles. 380 * This handle's reference, and any any other references to the storage 381 * cell remain and IsEmpty will still return false. 382 */ 383 inline void Dispose(); 384 385 /** 386 * Make the reference to this object weak. When only weak handles 387 * refer to the object, the garbage collector will perform a 388 * callback to the given V8::WeakReferenceCallback function, passing 389 * it the object reference and the given parameters. 390 */ 391 inline void MakeWeak(void* parameters, WeakReferenceCallback callback); 392 393 /** Clears the weak reference to this object.*/ 394 inline void ClearWeak(); 395 396 /** 397 *Checks if the handle holds the only reference to an object. 398 */ 399 inline bool IsNearDeath() const; 400 401 /** 402 * Returns true if the handle's reference is weak. 403 */ 404 inline bool IsWeak() const; 405 406 private: 407 friend class ImplementationUtilities; 408 friend class ObjectTemplate; 409 }; 410 411 412 /** 413 * A stack-allocated class that governs a number of local handles. 414 * After a handle scope has been created, all local handles will be 415 * allocated within that handle scope until either the handle scope is 416 * deleted or another handle scope is created. If there is already a 417 * handle scope and a new one is created, all allocations will take 418 * place in the new handle scope until it is deleted. After that, 419 * new handles will again be allocated in the original handle scope. 420 * 421 * After the handle scope of a local handle has been deleted the 422 * garbage collector will no longer track the object stored in the 423 * handle and may deallocate it. The behavior of accessing a handle 424 * for which the handle scope has been deleted is undefined. 425 */ 426 class V8EXPORT HandleScope { 427 public: 428 HandleScope(); 429 430 ~HandleScope(); 431 432 /** 433 * Closes the handle scope and returns the value as a handle in the 434 * previous scope, which is the new current scope after the call. 435 */ 436 template <class T> Local<T> Close(Handle<T> value); 437 438 /** 439 * Counts the number of allocated handles. 440 */ 441 static int NumberOfHandles(); 442 443 /** 444 * Creates a new handle with the given value. 445 */ 446 static internal::Object** CreateHandle(internal::Object* value); 447 448 private: 449 // Make it impossible to create heap-allocated or illegal handle 450 // scopes by disallowing certain operations. 451 HandleScope(const HandleScope&); 452 void operator=(const HandleScope&); 453 void* operator new(size_t size); 454 void operator delete(void*, size_t); 455 456 // This Data class is accessible internally as HandleScopeData through a 457 // typedef in the ImplementationUtilities class. 458 class V8EXPORT Data { 459 public: 460 int extensions; 461 internal::Object** next; 462 internal::Object** limit; Initialize()463 inline void Initialize() { 464 extensions = -1; 465 next = limit = NULL; 466 } 467 }; 468 469 Data previous_; 470 471 // Allow for the active closing of HandleScopes which allows to pass a handle 472 // from the HandleScope being closed to the next top most HandleScope. 473 bool is_closed_; 474 internal::Object** RawClose(internal::Object** value); 475 476 friend class ImplementationUtilities; 477 }; 478 479 480 // --- S p e c i a l o b j e c t s --- 481 482 483 /** 484 * The superclass of values and API object templates. 485 */ 486 class V8EXPORT Data { 487 private: 488 Data(); 489 }; 490 491 492 /** 493 * Pre-compilation data that can be associated with a script. This 494 * data can be calculated for a script in advance of actually 495 * compiling it, and can be stored between compilations. When script 496 * data is given to the compile method compilation will be faster. 497 */ 498 class V8EXPORT ScriptData { // NOLINT 499 public: ~ScriptData()500 virtual ~ScriptData() { } 501 static ScriptData* PreCompile(const char* input, int length); 502 static ScriptData* New(unsigned* data, int length); 503 504 virtual int Length() = 0; 505 virtual unsigned* Data() = 0; 506 virtual bool HasError() = 0; 507 }; 508 509 510 /** 511 * The origin, within a file, of a script. 512 */ 513 class V8EXPORT ScriptOrigin { 514 public: 515 ScriptOrigin(Handle<Value> resource_name, 516 Handle<Integer> resource_line_offset = Handle<Integer>(), 517 Handle<Integer> resource_column_offset = Handle<Integer>()) resource_name_(resource_name)518 : resource_name_(resource_name), 519 resource_line_offset_(resource_line_offset), 520 resource_column_offset_(resource_column_offset) { } 521 inline Handle<Value> ResourceName() const; 522 inline Handle<Integer> ResourceLineOffset() const; 523 inline Handle<Integer> ResourceColumnOffset() const; 524 private: 525 Handle<Value> resource_name_; 526 Handle<Integer> resource_line_offset_; 527 Handle<Integer> resource_column_offset_; 528 }; 529 530 531 /** 532 * A compiled JavaScript script. 533 */ 534 class V8EXPORT Script { 535 public: 536 537 /** 538 * Compiles the specified script (context-independent). 539 * 540 * \param source Script source code. 541 * \param origin Script origin, owned by caller, no references are kept 542 * when New() returns 543 * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile() 544 * using pre_data speeds compilation if it's done multiple times. 545 * Owned by caller, no references are kept when New() returns. 546 * \param script_data Arbitrary data associated with script. Using 547 * this has same effect as calling SetData(), but allows data to be 548 * available to compile event handlers. 549 * \return Compiled script object (context independent; when run it 550 * will use the currently entered context). 551 */ 552 static Local<Script> New(Handle<String> source, 553 ScriptOrigin* origin = NULL, 554 ScriptData* pre_data = NULL, 555 Handle<String> script_data = Handle<String>()); 556 557 /** 558 * Compiles the specified script using the specified file name 559 * object (typically a string) as the script's origin. 560 * 561 * \param source Script source code. 562 * \patam file_name file name object (typically a string) to be used 563 * as the script's origin. 564 * \return Compiled script object (context independent; when run it 565 * will use the currently entered context). 566 */ 567 static Local<Script> New(Handle<String> source, 568 Handle<Value> file_name); 569 570 /** 571 * Compiles the specified script (bound to current context). 572 * 573 * \param source Script source code. 574 * \param origin Script origin, owned by caller, no references are kept 575 * when Compile() returns 576 * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile() 577 * using pre_data speeds compilation if it's done multiple times. 578 * Owned by caller, no references are kept when Compile() returns. 579 * \param script_data Arbitrary data associated with script. Using 580 * this has same effect as calling SetData(), but makes data available 581 * earlier (i.e. to compile event handlers). 582 * \return Compiled script object, bound to the context that was active 583 * when this function was called. When run it will always use this 584 * context. 585 */ 586 static Local<Script> Compile(Handle<String> source, 587 ScriptOrigin* origin = NULL, 588 ScriptData* pre_data = NULL, 589 Handle<String> script_data = Handle<String>()); 590 591 /** 592 * Compiles the specified script using the specified file name 593 * object (typically a string) as the script's origin. 594 * 595 * \param source Script source code. 596 * \param file_name File name to use as script's origin 597 * \param script_data Arbitrary data associated with script. Using 598 * this has same effect as calling SetData(), but makes data available 599 * earlier (i.e. to compile event handlers). 600 * \return Compiled script object, bound to the context that was active 601 * when this function was called. When run it will always use this 602 * context. 603 */ 604 static Local<Script> Compile(Handle<String> source, 605 Handle<Value> file_name, 606 Handle<String> script_data = Handle<String>()); 607 608 /** 609 * Runs the script returning the resulting value. If the script is 610 * context independent (created using ::New) it will be run in the 611 * currently entered context. If it is context specific (created 612 * using ::Compile) it will be run in the context in which it was 613 * compiled. 614 */ 615 Local<Value> Run(); 616 617 /** 618 * Returns the script id value. 619 */ 620 Local<Value> Id(); 621 622 /** 623 * Associate an additional data object with the script. This is mainly used 624 * with the debugger as this data object is only available through the 625 * debugger API. 626 */ 627 void SetData(Handle<String> data); 628 }; 629 630 631 /** 632 * An error message. 633 */ 634 class V8EXPORT Message { 635 public: 636 Local<String> Get() const; 637 Local<String> GetSourceLine() const; 638 639 /** 640 * Returns the resource name for the script from where the function causing 641 * the error originates. 642 */ 643 Handle<Value> GetScriptResourceName() const; 644 645 /** 646 * Returns the resource data for the script from where the function causing 647 * the error originates. 648 */ 649 Handle<Value> GetScriptData() const; 650 651 /** 652 * Returns the number, 1-based, of the line where the error occurred. 653 */ 654 int GetLineNumber() const; 655 656 /** 657 * Returns the index within the script of the first character where 658 * the error occurred. 659 */ 660 int GetStartPosition() const; 661 662 /** 663 * Returns the index within the script of the last character where 664 * the error occurred. 665 */ 666 int GetEndPosition() const; 667 668 /** 669 * Returns the index within the line of the first character where 670 * the error occurred. 671 */ 672 int GetStartColumn() const; 673 674 /** 675 * Returns the index within the line of the last character where 676 * the error occurred. 677 */ 678 int GetEndColumn() const; 679 680 // TODO(1245381): Print to a string instead of on a FILE. 681 static void PrintCurrentStackTrace(FILE* out); 682 }; 683 684 685 // --- V a l u e --- 686 687 688 /** 689 * The superclass of all JavaScript values and objects. 690 */ 691 class V8EXPORT Value : public Data { 692 public: 693 694 /** 695 * Returns true if this value is the undefined value. See ECMA-262 696 * 4.3.10. 697 */ 698 bool IsUndefined() const; 699 700 /** 701 * Returns true if this value is the null value. See ECMA-262 702 * 4.3.11. 703 */ 704 bool IsNull() const; 705 706 /** 707 * Returns true if this value is true. 708 */ 709 bool IsTrue() const; 710 711 /** 712 * Returns true if this value is false. 713 */ 714 bool IsFalse() const; 715 716 /** 717 * Returns true if this value is an instance of the String type. 718 * See ECMA-262 8.4. 719 */ 720 inline bool IsString() const; 721 722 /** 723 * Returns true if this value is a function. 724 */ 725 bool IsFunction() const; 726 727 /** 728 * Returns true if this value is an array. 729 */ 730 bool IsArray() const; 731 732 /** 733 * Returns true if this value is an object. 734 */ 735 bool IsObject() const; 736 737 /** 738 * Returns true if this value is boolean. 739 */ 740 bool IsBoolean() const; 741 742 /** 743 * Returns true if this value is a number. 744 */ 745 bool IsNumber() const; 746 747 /** 748 * Returns true if this value is external. 749 */ 750 bool IsExternal() const; 751 752 /** 753 * Returns true if this value is a 32-bit signed integer. 754 */ 755 bool IsInt32() const; 756 757 /** 758 * Returns true if this value is a Date. 759 */ 760 bool IsDate() const; 761 762 Local<Boolean> ToBoolean() const; 763 Local<Number> ToNumber() const; 764 Local<String> ToString() const; 765 Local<String> ToDetailString() const; 766 Local<Object> ToObject() const; 767 Local<Integer> ToInteger() const; 768 Local<Uint32> ToUint32() const; 769 Local<Int32> ToInt32() const; 770 771 /** 772 * Attempts to convert a string to an array index. 773 * Returns an empty handle if the conversion fails. 774 */ 775 Local<Uint32> ToArrayIndex() const; 776 777 bool BooleanValue() const; 778 double NumberValue() const; 779 int64_t IntegerValue() const; 780 uint32_t Uint32Value() const; 781 int32_t Int32Value() const; 782 783 /** JS == */ 784 bool Equals(Handle<Value> that) const; 785 bool StrictEquals(Handle<Value> that) const; 786 787 private: 788 inline bool QuickIsString() const; 789 bool FullIsString() const; 790 }; 791 792 793 /** 794 * The superclass of primitive values. See ECMA-262 4.3.2. 795 */ 796 class V8EXPORT Primitive : public Value { }; 797 798 799 /** 800 * A primitive boolean value (ECMA-262, 4.3.14). Either the true 801 * or false value. 802 */ 803 class V8EXPORT Boolean : public Primitive { 804 public: 805 bool Value() const; 806 static inline Handle<Boolean> New(bool value); 807 }; 808 809 810 /** 811 * A JavaScript string value (ECMA-262, 4.3.17). 812 */ 813 class V8EXPORT String : public Primitive { 814 public: 815 816 /** 817 * Returns the number of characters in this string. 818 */ 819 int Length() const; 820 821 /** 822 * Returns the number of bytes in the UTF-8 encoded 823 * representation of this string. 824 */ 825 int Utf8Length() const; 826 827 /** 828 * Write the contents of the string to an external buffer. 829 * If no arguments are given, expects the buffer to be large 830 * enough to hold the entire string and NULL terminator. Copies 831 * the contents of the string and the NULL terminator into the 832 * buffer. 833 * 834 * Copies up to length characters into the output buffer. 835 * Only null-terminates if there is enough space in the buffer. 836 * 837 * \param buffer The buffer into which the string will be copied. 838 * \param start The starting position within the string at which 839 * copying begins. 840 * \param length The number of bytes to copy from the string. 841 * \return The number of characters copied to the buffer 842 * excluding the NULL terminator. 843 */ 844 int Write(uint16_t* buffer, int start = 0, int length = -1) const; // UTF-16 845 int WriteAscii(char* buffer, int start = 0, int length = -1) const; // ASCII 846 int WriteUtf8(char* buffer, int length = -1) const; // UTF-8 847 848 /** 849 * A zero length string. 850 */ 851 static v8::Local<v8::String> Empty(); 852 853 /** 854 * Returns true if the string is external 855 */ 856 bool IsExternal() const; 857 858 /** 859 * Returns true if the string is both external and ascii 860 */ 861 bool IsExternalAscii() const; 862 863 class V8EXPORT ExternalStringResourceBase { 864 public: ~ExternalStringResourceBase()865 virtual ~ExternalStringResourceBase() {} 866 protected: ExternalStringResourceBase()867 ExternalStringResourceBase() {} 868 private: 869 // Disallow copying and assigning. 870 ExternalStringResourceBase(const ExternalStringResourceBase&); 871 void operator=(const ExternalStringResourceBase&); 872 }; 873 874 /** 875 * An ExternalStringResource is a wrapper around a two-byte string 876 * buffer that resides outside V8's heap. Implement an 877 * ExternalStringResource to manage the life cycle of the underlying 878 * buffer. Note that the string data must be immutable. 879 */ 880 class V8EXPORT ExternalStringResource 881 : public ExternalStringResourceBase { 882 public: 883 /** 884 * Override the destructor to manage the life cycle of the underlying 885 * buffer. 886 */ ~ExternalStringResource()887 virtual ~ExternalStringResource() {} 888 /** The string data from the underlying buffer.*/ 889 virtual const uint16_t* data() const = 0; 890 /** The length of the string. That is, the number of two-byte characters.*/ 891 virtual size_t length() const = 0; 892 protected: ExternalStringResource()893 ExternalStringResource() {} 894 }; 895 896 /** 897 * An ExternalAsciiStringResource is a wrapper around an ascii 898 * string buffer that resides outside V8's heap. Implement an 899 * ExternalAsciiStringResource to manage the life cycle of the 900 * underlying buffer. Note that the string data must be immutable 901 * and that the data must be strict 7-bit ASCII, not Latin1 or 902 * UTF-8, which would require special treatment internally in the 903 * engine and, in the case of UTF-8, do not allow efficient indexing. 904 * Use String::New or convert to 16 bit data for non-ASCII. 905 */ 906 907 class V8EXPORT ExternalAsciiStringResource 908 : public ExternalStringResourceBase { 909 public: 910 /** 911 * Override the destructor to manage the life cycle of the underlying 912 * buffer. 913 */ ~ExternalAsciiStringResource()914 virtual ~ExternalAsciiStringResource() {} 915 /** The string data from the underlying buffer.*/ 916 virtual const char* data() const = 0; 917 /** The number of ascii characters in the string.*/ 918 virtual size_t length() const = 0; 919 protected: ExternalAsciiStringResource()920 ExternalAsciiStringResource() {} 921 }; 922 923 /** 924 * Get the ExternalStringResource for an external string. Returns 925 * NULL if IsExternal() doesn't return true. 926 */ 927 inline ExternalStringResource* GetExternalStringResource() const; 928 929 /** 930 * Get the ExternalAsciiStringResource for an external ascii string. 931 * Returns NULL if IsExternalAscii() doesn't return true. 932 */ 933 ExternalAsciiStringResource* GetExternalAsciiStringResource() const; 934 935 static inline String* Cast(v8::Value* obj); 936 937 /** 938 * Allocates a new string from either utf-8 encoded or ascii data. 939 * The second parameter 'length' gives the buffer length. 940 * If the data is utf-8 encoded, the caller must 941 * be careful to supply the length parameter. 942 * If it is not given, the function calls 943 * 'strlen' to determine the buffer length, it might be 944 * wrong if 'data' contains a null character. 945 */ 946 static Local<String> New(const char* data, int length = -1); 947 948 /** Allocates a new string from utf16 data.*/ 949 static Local<String> New(const uint16_t* data, int length = -1); 950 951 /** Creates a symbol. Returns one if it exists already.*/ 952 static Local<String> NewSymbol(const char* data, int length = -1); 953 954 /** 955 * Creates a new string by concatenating the left and the right strings 956 * passed in as parameters. 957 */ 958 static Local<String> Concat(Handle<String> left, Handle<String>right); 959 960 /** 961 * Creates a new external string using the data defined in the given 962 * resource. The resource is deleted when the external string is no 963 * longer live on V8's heap. The caller of this function should not 964 * delete or modify the resource. Neither should the underlying buffer be 965 * deallocated or modified except through the destructor of the 966 * external string resource. 967 */ 968 static Local<String> NewExternal(ExternalStringResource* resource); 969 970 /** 971 * Associate an external string resource with this string by transforming it 972 * in place so that existing references to this string in the JavaScript heap 973 * will use the external string resource. The external string resource's 974 * character contents needs to be equivalent to this string. 975 * Returns true if the string has been changed to be an external string. 976 * The string is not modified if the operation fails. 977 */ 978 bool MakeExternal(ExternalStringResource* resource); 979 980 /** 981 * Creates a new external string using the ascii data defined in the given 982 * resource. The resource is deleted when the external string is no 983 * longer live on V8's heap. The caller of this function should not 984 * delete or modify the resource. Neither should the underlying buffer be 985 * deallocated or modified except through the destructor of the 986 * external string resource. 987 */ 988 static Local<String> NewExternal(ExternalAsciiStringResource* resource); 989 990 /** 991 * Associate an external string resource with this string by transforming it 992 * in place so that existing references to this string in the JavaScript heap 993 * will use the external string resource. The external string resource's 994 * character contents needs to be equivalent to this string. 995 * Returns true if the string has been changed to be an external string. 996 * The string is not modified if the operation fails. 997 */ 998 bool MakeExternal(ExternalAsciiStringResource* resource); 999 1000 /** 1001 * Returns true if this string can be made external. 1002 */ 1003 bool CanMakeExternal(); 1004 1005 /** Creates an undetectable string from the supplied ascii or utf-8 data.*/ 1006 static Local<String> NewUndetectable(const char* data, int length = -1); 1007 1008 /** Creates an undetectable string from the supplied utf-16 data.*/ 1009 static Local<String> NewUndetectable(const uint16_t* data, int length = -1); 1010 1011 /** 1012 * Converts an object to a utf8-encoded character array. Useful if 1013 * you want to print the object. If conversion to a string fails 1014 * (eg. due to an exception in the toString() method of the object) 1015 * then the length() method returns 0 and the * operator returns 1016 * NULL. 1017 */ 1018 class V8EXPORT Utf8Value { 1019 public: 1020 explicit Utf8Value(Handle<v8::Value> obj); 1021 ~Utf8Value(); 1022 char* operator*() { return str_; } 1023 const char* operator*() const { return str_; } length()1024 int length() const { return length_; } 1025 private: 1026 char* str_; 1027 int length_; 1028 1029 // Disallow copying and assigning. 1030 Utf8Value(const Utf8Value&); 1031 void operator=(const Utf8Value&); 1032 }; 1033 1034 /** 1035 * Converts an object to an ascii string. 1036 * Useful if you want to print the object. 1037 * If conversion to a string fails (eg. due to an exception in the toString() 1038 * method of the object) then the length() method returns 0 and the * operator 1039 * returns NULL. 1040 */ 1041 class V8EXPORT AsciiValue { 1042 public: 1043 explicit AsciiValue(Handle<v8::Value> obj); 1044 ~AsciiValue(); 1045 char* operator*() { return str_; } 1046 const char* operator*() const { return str_; } length()1047 int length() const { return length_; } 1048 private: 1049 char* str_; 1050 int length_; 1051 1052 // Disallow copying and assigning. 1053 AsciiValue(const AsciiValue&); 1054 void operator=(const AsciiValue&); 1055 }; 1056 1057 /** 1058 * Converts an object to a two-byte string. 1059 * If conversion to a string fails (eg. due to an exception in the toString() 1060 * method of the object) then the length() method returns 0 and the * operator 1061 * returns NULL. 1062 */ 1063 class V8EXPORT Value { 1064 public: 1065 explicit Value(Handle<v8::Value> obj); 1066 ~Value(); 1067 uint16_t* operator*() { return str_; } 1068 const uint16_t* operator*() const { return str_; } length()1069 int length() const { return length_; } 1070 private: 1071 uint16_t* str_; 1072 int length_; 1073 1074 // Disallow copying and assigning. 1075 Value(const Value&); 1076 void operator=(const Value&); 1077 }; 1078 1079 private: 1080 void VerifyExternalStringResource(ExternalStringResource* val) const; 1081 static void CheckCast(v8::Value* obj); 1082 }; 1083 1084 1085 /** 1086 * A JavaScript number value (ECMA-262, 4.3.20) 1087 */ 1088 class V8EXPORT Number : public Primitive { 1089 public: 1090 double Value() const; 1091 static Local<Number> New(double value); 1092 static inline Number* Cast(v8::Value* obj); 1093 private: 1094 Number(); 1095 static void CheckCast(v8::Value* obj); 1096 }; 1097 1098 1099 /** 1100 * A JavaScript value representing a signed integer. 1101 */ 1102 class V8EXPORT Integer : public Number { 1103 public: 1104 static Local<Integer> New(int32_t value); 1105 static Local<Integer> NewFromUnsigned(uint32_t value); 1106 int64_t Value() const; 1107 static inline Integer* Cast(v8::Value* obj); 1108 private: 1109 Integer(); 1110 static void CheckCast(v8::Value* obj); 1111 }; 1112 1113 1114 /** 1115 * A JavaScript value representing a 32-bit signed integer. 1116 */ 1117 class V8EXPORT Int32 : public Integer { 1118 public: 1119 int32_t Value() const; 1120 private: 1121 Int32(); 1122 }; 1123 1124 1125 /** 1126 * A JavaScript value representing a 32-bit unsigned integer. 1127 */ 1128 class V8EXPORT Uint32 : public Integer { 1129 public: 1130 uint32_t Value() const; 1131 private: 1132 Uint32(); 1133 }; 1134 1135 1136 /** 1137 * An instance of the built-in Date constructor (ECMA-262, 15.9). 1138 */ 1139 class V8EXPORT Date : public Value { 1140 public: 1141 static Local<Value> New(double time); 1142 1143 /** 1144 * A specialization of Value::NumberValue that is more efficient 1145 * because we know the structure of this object. 1146 */ 1147 double NumberValue() const; 1148 1149 static inline Date* Cast(v8::Value* obj); 1150 private: 1151 static void CheckCast(v8::Value* obj); 1152 }; 1153 1154 1155 enum PropertyAttribute { 1156 None = 0, 1157 ReadOnly = 1 << 0, 1158 DontEnum = 1 << 1, 1159 DontDelete = 1 << 2 1160 }; 1161 1162 enum ExternalArrayType { 1163 kExternalByteArray = 1, 1164 kExternalUnsignedByteArray, 1165 kExternalShortArray, 1166 kExternalUnsignedShortArray, 1167 kExternalIntArray, 1168 kExternalUnsignedIntArray, 1169 kExternalFloatArray 1170 }; 1171 1172 /** 1173 * A JavaScript object (ECMA-262, 4.3.3) 1174 */ 1175 class V8EXPORT Object : public Value { 1176 public: 1177 bool Set(Handle<Value> key, 1178 Handle<Value> value, 1179 PropertyAttribute attribs = None); 1180 1181 // Sets a local property on this object bypassing interceptors and 1182 // overriding accessors or read-only properties. 1183 // 1184 // Note that if the object has an interceptor the property will be set 1185 // locally, but since the interceptor takes precedence the local property 1186 // will only be returned if the interceptor doesn't return a value. 1187 // 1188 // Note also that this only works for named properties. 1189 bool ForceSet(Handle<Value> key, 1190 Handle<Value> value, 1191 PropertyAttribute attribs = None); 1192 1193 Local<Value> Get(Handle<Value> key); 1194 1195 // TODO(1245389): Replace the type-specific versions of these 1196 // functions with generic ones that accept a Handle<Value> key. 1197 bool Has(Handle<String> key); 1198 1199 bool Delete(Handle<String> key); 1200 1201 // Delete a property on this object bypassing interceptors and 1202 // ignoring dont-delete attributes. 1203 bool ForceDelete(Handle<Value> key); 1204 1205 bool Has(uint32_t index); 1206 1207 bool Delete(uint32_t index); 1208 1209 /** 1210 * Returns an array containing the names of the enumerable properties 1211 * of this object, including properties from prototype objects. The 1212 * array returned by this method contains the same values as would 1213 * be enumerated by a for-in statement over this object. 1214 */ 1215 Local<Array> GetPropertyNames(); 1216 1217 /** 1218 * Get the prototype object. This does not skip objects marked to 1219 * be skipped by __proto__ and it does not consult the security 1220 * handler. 1221 */ 1222 Local<Value> GetPrototype(); 1223 1224 /** 1225 * Set the prototype object. This does not skip objects marked to 1226 * be skipped by __proto__ and it does not consult the security 1227 * handler. 1228 */ 1229 bool SetPrototype(Handle<Value> prototype); 1230 1231 /** 1232 * Finds an instance of the given function template in the prototype 1233 * chain. 1234 */ 1235 Local<Object> FindInstanceInPrototypeChain(Handle<FunctionTemplate> tmpl); 1236 1237 /** 1238 * Call builtin Object.prototype.toString on this object. 1239 * This is different from Value::ToString() that may call 1240 * user-defined toString function. This one does not. 1241 */ 1242 Local<String> ObjectProtoToString(); 1243 1244 /** Gets the number of internal fields for this Object. */ 1245 int InternalFieldCount(); 1246 /** Gets the value in an internal field. */ 1247 inline Local<Value> GetInternalField(int index); 1248 /** Sets the value in an internal field. */ 1249 void SetInternalField(int index, Handle<Value> value); 1250 1251 /** Gets a native pointer from an internal field. */ 1252 inline void* GetPointerFromInternalField(int index); 1253 1254 /** Sets a native pointer in an internal field. */ 1255 void SetPointerInInternalField(int index, void* value); 1256 1257 // Testers for local properties. 1258 bool HasRealNamedProperty(Handle<String> key); 1259 bool HasRealIndexedProperty(uint32_t index); 1260 bool HasRealNamedCallbackProperty(Handle<String> key); 1261 1262 /** 1263 * If result.IsEmpty() no real property was located in the prototype chain. 1264 * This means interceptors in the prototype chain are not called. 1265 */ 1266 Local<Value> GetRealNamedPropertyInPrototypeChain(Handle<String> key); 1267 1268 /** 1269 * If result.IsEmpty() no real property was located on the object or 1270 * in the prototype chain. 1271 * This means interceptors in the prototype chain are not called. 1272 */ 1273 Local<Value> GetRealNamedProperty(Handle<String> key); 1274 1275 /** Tests for a named lookup interceptor.*/ 1276 bool HasNamedLookupInterceptor(); 1277 1278 /** Tests for an index lookup interceptor.*/ 1279 bool HasIndexedLookupInterceptor(); 1280 1281 /** 1282 * Turns on access check on the object if the object is an instance of 1283 * a template that has access check callbacks. If an object has no 1284 * access check info, the object cannot be accessed by anyone. 1285 */ 1286 void TurnOnAccessCheck(); 1287 1288 /** 1289 * Returns the identity hash for this object. The current implemenation uses 1290 * a hidden property on the object to store the identity hash. 1291 * 1292 * The return value will never be 0. Also, it is not guaranteed to be 1293 * unique. 1294 */ 1295 int GetIdentityHash(); 1296 1297 /** 1298 * Access hidden properties on JavaScript objects. These properties are 1299 * hidden from the executing JavaScript and only accessible through the V8 1300 * C++ API. Hidden properties introduced by V8 internally (for example the 1301 * identity hash) are prefixed with "v8::". 1302 */ 1303 bool SetHiddenValue(Handle<String> key, Handle<Value> value); 1304 Local<Value> GetHiddenValue(Handle<String> key); 1305 bool DeleteHiddenValue(Handle<String> key); 1306 1307 /** 1308 * Returns true if this is an instance of an api function (one 1309 * created from a function created from a function template) and has 1310 * been modified since it was created. Note that this method is 1311 * conservative and may return true for objects that haven't actually 1312 * been modified. 1313 */ 1314 bool IsDirty(); 1315 1316 /** 1317 * Clone this object with a fast but shallow copy. Values will point 1318 * to the same values as the original object. 1319 */ 1320 Local<Object> Clone(); 1321 1322 /** 1323 * Set the backing store of the indexed properties to be managed by the 1324 * embedding layer. Access to the indexed properties will follow the rules 1325 * spelled out in CanvasPixelArray. 1326 * Note: The embedding program still owns the data and needs to ensure that 1327 * the backing store is preserved while V8 has a reference. 1328 */ 1329 void SetIndexedPropertiesToPixelData(uint8_t* data, int length); 1330 1331 /** 1332 * Set the backing store of the indexed properties to be managed by the 1333 * embedding layer. Access to the indexed properties will follow the rules 1334 * spelled out for the CanvasArray subtypes in the WebGL specification. 1335 * Note: The embedding program still owns the data and needs to ensure that 1336 * the backing store is preserved while V8 has a reference. 1337 */ 1338 void SetIndexedPropertiesToExternalArrayData(void* data, 1339 ExternalArrayType array_type, 1340 int number_of_elements); 1341 1342 static Local<Object> New(); 1343 static inline Object* Cast(Value* obj); 1344 private: 1345 Object(); 1346 static void CheckCast(Value* obj); 1347 Local<Value> CheckedGetInternalField(int index); 1348 void* SlowGetPointerFromInternalField(int index); 1349 1350 /** 1351 * If quick access to the internal field is possible this method 1352 * returns the value. Otherwise an empty handle is returned. 1353 */ 1354 inline Local<Value> UncheckedGetInternalField(int index); 1355 }; 1356 1357 1358 /** 1359 * An instance of the built-in array constructor (ECMA-262, 15.4.2). 1360 */ 1361 class V8EXPORT Array : public Object { 1362 public: 1363 uint32_t Length() const; 1364 1365 /** 1366 * Clones an element at index |index|. Returns an empty 1367 * handle if cloning fails (for any reason). 1368 */ 1369 Local<Object> CloneElementAt(uint32_t index); 1370 1371 static Local<Array> New(int length = 0); 1372 static inline Array* Cast(Value* obj); 1373 private: 1374 Array(); 1375 static void CheckCast(Value* obj); 1376 }; 1377 1378 1379 /** 1380 * A JavaScript function object (ECMA-262, 15.3). 1381 */ 1382 class V8EXPORT Function : public Object { 1383 public: 1384 Local<Object> NewInstance() const; 1385 Local<Object> NewInstance(int argc, Handle<Value> argv[]) const; 1386 Local<Value> Call(Handle<Object> recv, int argc, Handle<Value> argv[]); 1387 void SetName(Handle<String> name); 1388 Handle<Value> GetName() const; 1389 1390 /** 1391 * Returns zero based line number of function body and 1392 * kLineOffsetNotFound if no information available. 1393 */ 1394 int GetScriptLineNumber() const; 1395 ScriptOrigin GetScriptOrigin() const; 1396 static inline Function* Cast(Value* obj); 1397 static const int kLineOffsetNotFound; 1398 private: 1399 Function(); 1400 static void CheckCast(Value* obj); 1401 }; 1402 1403 1404 /** 1405 * A JavaScript value that wraps a C++ void*. This type of value is 1406 * mainly used to associate C++ data structures with JavaScript 1407 * objects. 1408 * 1409 * The Wrap function V8 will return the most optimal Value object wrapping the 1410 * C++ void*. The type of the value is not guaranteed to be an External object 1411 * and no assumptions about its type should be made. To access the wrapped 1412 * value Unwrap should be used, all other operations on that object will lead 1413 * to unpredictable results. 1414 */ 1415 class V8EXPORT External : public Value { 1416 public: 1417 static Local<Value> Wrap(void* data); 1418 static inline void* Unwrap(Handle<Value> obj); 1419 1420 static Local<External> New(void* value); 1421 static inline External* Cast(Value* obj); 1422 void* Value() const; 1423 private: 1424 External(); 1425 static void CheckCast(v8::Value* obj); 1426 static inline void* QuickUnwrap(Handle<v8::Value> obj); 1427 static void* FullUnwrap(Handle<v8::Value> obj); 1428 }; 1429 1430 1431 // --- T e m p l a t e s --- 1432 1433 1434 /** 1435 * The superclass of object and function templates. 1436 */ 1437 class V8EXPORT Template : public Data { 1438 public: 1439 /** Adds a property to each instance created by this template.*/ 1440 void Set(Handle<String> name, Handle<Data> value, 1441 PropertyAttribute attributes = None); 1442 inline void Set(const char* name, Handle<Data> value); 1443 private: 1444 Template(); 1445 1446 friend class ObjectTemplate; 1447 friend class FunctionTemplate; 1448 }; 1449 1450 1451 /** 1452 * The argument information given to function call callbacks. This 1453 * class provides access to information about the context of the call, 1454 * including the receiver, the number and values of arguments, and 1455 * the holder of the function. 1456 */ 1457 class V8EXPORT Arguments { 1458 public: 1459 inline int Length() const; 1460 inline Local<Value> operator[](int i) const; 1461 inline Local<Function> Callee() const; 1462 inline Local<Object> This() const; 1463 inline Local<Object> Holder() const; 1464 inline bool IsConstructCall() const; 1465 inline Local<Value> Data() const; 1466 private: 1467 Arguments(); 1468 friend class ImplementationUtilities; 1469 inline Arguments(Local<Value> data, 1470 Local<Object> holder, 1471 Local<Function> callee, 1472 bool is_construct_call, 1473 void** values, int length); 1474 Local<Value> data_; 1475 Local<Object> holder_; 1476 Local<Function> callee_; 1477 bool is_construct_call_; 1478 void** values_; 1479 int length_; 1480 }; 1481 1482 1483 /** 1484 * The information passed to an accessor callback about the context 1485 * of the property access. 1486 */ 1487 class V8EXPORT AccessorInfo { 1488 public: AccessorInfo(internal::Object ** args)1489 inline AccessorInfo(internal::Object** args) 1490 : args_(args) { } 1491 inline Local<Value> Data() const; 1492 inline Local<Object> This() const; 1493 inline Local<Object> Holder() const; 1494 private: 1495 internal::Object** args_; 1496 }; 1497 1498 1499 typedef Handle<Value> (*InvocationCallback)(const Arguments& args); 1500 1501 typedef int (*LookupCallback)(Local<Object> self, Local<String> name); 1502 1503 /** 1504 * Accessor[Getter|Setter] are used as callback functions when 1505 * setting|getting a particular property. See objectTemplate::SetAccessor. 1506 */ 1507 typedef Handle<Value> (*AccessorGetter)(Local<String> property, 1508 const AccessorInfo& info); 1509 1510 1511 typedef void (*AccessorSetter)(Local<String> property, 1512 Local<Value> value, 1513 const AccessorInfo& info); 1514 1515 1516 /** 1517 * NamedProperty[Getter|Setter] are used as interceptors on object. 1518 * See ObjectTemplate::SetNamedPropertyHandler. 1519 */ 1520 typedef Handle<Value> (*NamedPropertyGetter)(Local<String> property, 1521 const AccessorInfo& info); 1522 1523 1524 /** 1525 * Returns the value if the setter intercepts the request. 1526 * Otherwise, returns an empty handle. 1527 */ 1528 typedef Handle<Value> (*NamedPropertySetter)(Local<String> property, 1529 Local<Value> value, 1530 const AccessorInfo& info); 1531 1532 1533 /** 1534 * Returns a non-empty handle if the interceptor intercepts the request. 1535 * The result is true if the property exists and false otherwise. 1536 */ 1537 typedef Handle<Boolean> (*NamedPropertyQuery)(Local<String> property, 1538 const AccessorInfo& info); 1539 1540 1541 /** 1542 * Returns a non-empty handle if the deleter intercepts the request. 1543 * The return value is true if the property could be deleted and false 1544 * otherwise. 1545 */ 1546 typedef Handle<Boolean> (*NamedPropertyDeleter)(Local<String> property, 1547 const AccessorInfo& info); 1548 1549 /** 1550 * Returns an array containing the names of the properties the named 1551 * property getter intercepts. 1552 */ 1553 typedef Handle<Array> (*NamedPropertyEnumerator)(const AccessorInfo& info); 1554 1555 1556 /** 1557 * Returns the value of the property if the getter intercepts the 1558 * request. Otherwise, returns an empty handle. 1559 */ 1560 typedef Handle<Value> (*IndexedPropertyGetter)(uint32_t index, 1561 const AccessorInfo& info); 1562 1563 1564 /** 1565 * Returns the value if the setter intercepts the request. 1566 * Otherwise, returns an empty handle. 1567 */ 1568 typedef Handle<Value> (*IndexedPropertySetter)(uint32_t index, 1569 Local<Value> value, 1570 const AccessorInfo& info); 1571 1572 1573 /** 1574 * Returns a non-empty handle if the interceptor intercepts the request. 1575 * The result is true if the property exists and false otherwise. 1576 */ 1577 typedef Handle<Boolean> (*IndexedPropertyQuery)(uint32_t index, 1578 const AccessorInfo& info); 1579 1580 /** 1581 * Returns a non-empty handle if the deleter intercepts the request. 1582 * The return value is true if the property could be deleted and false 1583 * otherwise. 1584 */ 1585 typedef Handle<Boolean> (*IndexedPropertyDeleter)(uint32_t index, 1586 const AccessorInfo& info); 1587 1588 /** 1589 * Returns an array containing the indices of the properties the 1590 * indexed property getter intercepts. 1591 */ 1592 typedef Handle<Array> (*IndexedPropertyEnumerator)(const AccessorInfo& info); 1593 1594 1595 /** 1596 * Access control specifications. 1597 * 1598 * Some accessors should be accessible across contexts. These 1599 * accessors have an explicit access control parameter which specifies 1600 * the kind of cross-context access that should be allowed. 1601 * 1602 * Additionally, for security, accessors can prohibit overwriting by 1603 * accessors defined in JavaScript. For objects that have such 1604 * accessors either locally or in their prototype chain it is not 1605 * possible to overwrite the accessor by using __defineGetter__ or 1606 * __defineSetter__ from JavaScript code. 1607 */ 1608 enum AccessControl { 1609 DEFAULT = 0, 1610 ALL_CAN_READ = 1, 1611 ALL_CAN_WRITE = 1 << 1, 1612 PROHIBITS_OVERWRITING = 1 << 2 1613 }; 1614 1615 1616 /** 1617 * Access type specification. 1618 */ 1619 enum AccessType { 1620 ACCESS_GET, 1621 ACCESS_SET, 1622 ACCESS_HAS, 1623 ACCESS_DELETE, 1624 ACCESS_KEYS 1625 }; 1626 1627 1628 /** 1629 * Returns true if cross-context access should be allowed to the named 1630 * property with the given key on the host object. 1631 */ 1632 typedef bool (*NamedSecurityCallback)(Local<Object> host, 1633 Local<Value> key, 1634 AccessType type, 1635 Local<Value> data); 1636 1637 1638 /** 1639 * Returns true if cross-context access should be allowed to the indexed 1640 * property with the given index on the host object. 1641 */ 1642 typedef bool (*IndexedSecurityCallback)(Local<Object> host, 1643 uint32_t index, 1644 AccessType type, 1645 Local<Value> data); 1646 1647 1648 /** 1649 * A FunctionTemplate is used to create functions at runtime. There 1650 * can only be one function created from a FunctionTemplate in a 1651 * context. The lifetime of the created function is equal to the 1652 * lifetime of the context. So in case the embedder needs to create 1653 * temporary functions that can be collected using Scripts is 1654 * preferred. 1655 * 1656 * A FunctionTemplate can have properties, these properties are added to the 1657 * function object when it is created. 1658 * 1659 * A FunctionTemplate has a corresponding instance template which is 1660 * used to create object instances when the function is used as a 1661 * constructor. Properties added to the instance template are added to 1662 * each object instance. 1663 * 1664 * A FunctionTemplate can have a prototype template. The prototype template 1665 * is used to create the prototype object of the function. 1666 * 1667 * The following example shows how to use a FunctionTemplate: 1668 * 1669 * \code 1670 * v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New(); 1671 * t->Set("func_property", v8::Number::New(1)); 1672 * 1673 * v8::Local<v8::Template> proto_t = t->PrototypeTemplate(); 1674 * proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback)); 1675 * proto_t->Set("proto_const", v8::Number::New(2)); 1676 * 1677 * v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate(); 1678 * instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback); 1679 * instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...); 1680 * instance_t->Set("instance_property", Number::New(3)); 1681 * 1682 * v8::Local<v8::Function> function = t->GetFunction(); 1683 * v8::Local<v8::Object> instance = function->NewInstance(); 1684 * \endcode 1685 * 1686 * Let's use "function" as the JS variable name of the function object 1687 * and "instance" for the instance object created above. The function 1688 * and the instance will have the following properties: 1689 * 1690 * \code 1691 * func_property in function == true; 1692 * function.func_property == 1; 1693 * 1694 * function.prototype.proto_method() invokes 'InvokeCallback' 1695 * function.prototype.proto_const == 2; 1696 * 1697 * instance instanceof function == true; 1698 * instance.instance_accessor calls 'InstanceAccessorCallback' 1699 * instance.instance_property == 3; 1700 * \endcode 1701 * 1702 * A FunctionTemplate can inherit from another one by calling the 1703 * FunctionTemplate::Inherit method. The following graph illustrates 1704 * the semantics of inheritance: 1705 * 1706 * \code 1707 * FunctionTemplate Parent -> Parent() . prototype -> { } 1708 * ^ ^ 1709 * | Inherit(Parent) | .__proto__ 1710 * | | 1711 * FunctionTemplate Child -> Child() . prototype -> { } 1712 * \endcode 1713 * 1714 * A FunctionTemplate 'Child' inherits from 'Parent', the prototype 1715 * object of the Child() function has __proto__ pointing to the 1716 * Parent() function's prototype object. An instance of the Child 1717 * function has all properties on Parent's instance templates. 1718 * 1719 * Let Parent be the FunctionTemplate initialized in the previous 1720 * section and create a Child FunctionTemplate by: 1721 * 1722 * \code 1723 * Local<FunctionTemplate> parent = t; 1724 * Local<FunctionTemplate> child = FunctionTemplate::New(); 1725 * child->Inherit(parent); 1726 * 1727 * Local<Function> child_function = child->GetFunction(); 1728 * Local<Object> child_instance = child_function->NewInstance(); 1729 * \endcode 1730 * 1731 * The Child function and Child instance will have the following 1732 * properties: 1733 * 1734 * \code 1735 * child_func.prototype.__proto__ == function.prototype; 1736 * child_instance.instance_accessor calls 'InstanceAccessorCallback' 1737 * child_instance.instance_property == 3; 1738 * \endcode 1739 */ 1740 class V8EXPORT FunctionTemplate : public Template { 1741 public: 1742 /** Creates a function template.*/ 1743 static Local<FunctionTemplate> New( 1744 InvocationCallback callback = 0, 1745 Handle<Value> data = Handle<Value>(), 1746 Handle<Signature> signature = Handle<Signature>()); 1747 /** Returns the unique function instance in the current execution context.*/ 1748 Local<Function> GetFunction(); 1749 1750 /** 1751 * Set the call-handler callback for a FunctionTemplate. This 1752 * callback is called whenever the function created from this 1753 * FunctionTemplate is called. 1754 */ 1755 void SetCallHandler(InvocationCallback callback, 1756 Handle<Value> data = Handle<Value>()); 1757 1758 /** Get the InstanceTemplate. */ 1759 Local<ObjectTemplate> InstanceTemplate(); 1760 1761 /** Causes the function template to inherit from a parent function template.*/ 1762 void Inherit(Handle<FunctionTemplate> parent); 1763 1764 /** 1765 * A PrototypeTemplate is the template used to create the prototype object 1766 * of the function created by this template. 1767 */ 1768 Local<ObjectTemplate> PrototypeTemplate(); 1769 1770 1771 /** 1772 * Set the class name of the FunctionTemplate. This is used for 1773 * printing objects created with the function created from the 1774 * FunctionTemplate as its constructor. 1775 */ 1776 void SetClassName(Handle<String> name); 1777 1778 /** 1779 * Determines whether the __proto__ accessor ignores instances of 1780 * the function template. If instances of the function template are 1781 * ignored, __proto__ skips all instances and instead returns the 1782 * next object in the prototype chain. 1783 * 1784 * Call with a value of true to make the __proto__ accessor ignore 1785 * instances of the function template. Call with a value of false 1786 * to make the __proto__ accessor not ignore instances of the 1787 * function template. By default, instances of a function template 1788 * are not ignored. 1789 */ 1790 void SetHiddenPrototype(bool value); 1791 1792 /** 1793 * Returns true if the given object is an instance of this function 1794 * template. 1795 */ 1796 bool HasInstance(Handle<Value> object); 1797 1798 private: 1799 FunctionTemplate(); 1800 void AddInstancePropertyAccessor(Handle<String> name, 1801 AccessorGetter getter, 1802 AccessorSetter setter, 1803 Handle<Value> data, 1804 AccessControl settings, 1805 PropertyAttribute attributes); 1806 void SetNamedInstancePropertyHandler(NamedPropertyGetter getter, 1807 NamedPropertySetter setter, 1808 NamedPropertyQuery query, 1809 NamedPropertyDeleter remover, 1810 NamedPropertyEnumerator enumerator, 1811 Handle<Value> data); 1812 void SetIndexedInstancePropertyHandler(IndexedPropertyGetter getter, 1813 IndexedPropertySetter setter, 1814 IndexedPropertyQuery query, 1815 IndexedPropertyDeleter remover, 1816 IndexedPropertyEnumerator enumerator, 1817 Handle<Value> data); 1818 void SetInstanceCallAsFunctionHandler(InvocationCallback callback, 1819 Handle<Value> data); 1820 1821 friend class Context; 1822 friend class ObjectTemplate; 1823 }; 1824 1825 1826 /** 1827 * An ObjectTemplate is used to create objects at runtime. 1828 * 1829 * Properties added to an ObjectTemplate are added to each object 1830 * created from the ObjectTemplate. 1831 */ 1832 class V8EXPORT ObjectTemplate : public Template { 1833 public: 1834 /** Creates an ObjectTemplate. */ 1835 static Local<ObjectTemplate> New(); 1836 1837 /** Creates a new instance of this template.*/ 1838 Local<Object> NewInstance(); 1839 1840 /** 1841 * Sets an accessor on the object template. 1842 * 1843 * Whenever the property with the given name is accessed on objects 1844 * created from this ObjectTemplate the getter and setter callbacks 1845 * are called instead of getting and setting the property directly 1846 * on the JavaScript object. 1847 * 1848 * \param name The name of the property for which an accessor is added. 1849 * \param getter The callback to invoke when getting the property. 1850 * \param setter The callback to invoke when setting the property. 1851 * \param data A piece of data that will be passed to the getter and setter 1852 * callbacks whenever they are invoked. 1853 * \param settings Access control settings for the accessor. This is a bit 1854 * field consisting of one of more of 1855 * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2. 1856 * The default is to not allow cross-context access. 1857 * ALL_CAN_READ means that all cross-context reads are allowed. 1858 * ALL_CAN_WRITE means that all cross-context writes are allowed. 1859 * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all 1860 * cross-context access. 1861 * \param attribute The attributes of the property for which an accessor 1862 * is added. 1863 */ 1864 void SetAccessor(Handle<String> name, 1865 AccessorGetter getter, 1866 AccessorSetter setter = 0, 1867 Handle<Value> data = Handle<Value>(), 1868 AccessControl settings = DEFAULT, 1869 PropertyAttribute attribute = None); 1870 1871 /** 1872 * Sets a named property handler on the object template. 1873 * 1874 * Whenever a named property is accessed on objects created from 1875 * this object template, the provided callback is invoked instead of 1876 * accessing the property directly on the JavaScript object. 1877 * 1878 * \param getter The callback to invoke when getting a property. 1879 * \param setter The callback to invoke when setting a property. 1880 * \param query The callback to invoke to check is an object has a property. 1881 * \param deleter The callback to invoke when deleting a property. 1882 * \param enumerator The callback to invoke to enumerate all the named 1883 * properties of an object. 1884 * \param data A piece of data that will be passed to the callbacks 1885 * whenever they are invoked. 1886 */ 1887 void SetNamedPropertyHandler(NamedPropertyGetter getter, 1888 NamedPropertySetter setter = 0, 1889 NamedPropertyQuery query = 0, 1890 NamedPropertyDeleter deleter = 0, 1891 NamedPropertyEnumerator enumerator = 0, 1892 Handle<Value> data = Handle<Value>()); 1893 1894 /** 1895 * Sets an indexed property handler on the object template. 1896 * 1897 * Whenever an indexed property is accessed on objects created from 1898 * this object template, the provided callback is invoked instead of 1899 * accessing the property directly on the JavaScript object. 1900 * 1901 * \param getter The callback to invoke when getting a property. 1902 * \param setter The callback to invoke when setting a property. 1903 * \param query The callback to invoke to check is an object has a property. 1904 * \param deleter The callback to invoke when deleting a property. 1905 * \param enumerator The callback to invoke to enumerate all the indexed 1906 * properties of an object. 1907 * \param data A piece of data that will be passed to the callbacks 1908 * whenever they are invoked. 1909 */ 1910 void SetIndexedPropertyHandler(IndexedPropertyGetter getter, 1911 IndexedPropertySetter setter = 0, 1912 IndexedPropertyQuery query = 0, 1913 IndexedPropertyDeleter deleter = 0, 1914 IndexedPropertyEnumerator enumerator = 0, 1915 Handle<Value> data = Handle<Value>()); 1916 /** 1917 * Sets the callback to be used when calling instances created from 1918 * this template as a function. If no callback is set, instances 1919 * behave like normal JavaScript objects that cannot be called as a 1920 * function. 1921 */ 1922 void SetCallAsFunctionHandler(InvocationCallback callback, 1923 Handle<Value> data = Handle<Value>()); 1924 1925 /** 1926 * Mark object instances of the template as undetectable. 1927 * 1928 * In many ways, undetectable objects behave as though they are not 1929 * there. They behave like 'undefined' in conditionals and when 1930 * printed. However, properties can be accessed and called as on 1931 * normal objects. 1932 */ 1933 void MarkAsUndetectable(); 1934 1935 /** 1936 * Sets access check callbacks on the object template. 1937 * 1938 * When accessing properties on instances of this object template, 1939 * the access check callback will be called to determine whether or 1940 * not to allow cross-context access to the properties. 1941 * The last parameter specifies whether access checks are turned 1942 * on by default on instances. If access checks are off by default, 1943 * they can be turned on on individual instances by calling 1944 * Object::TurnOnAccessCheck(). 1945 */ 1946 void SetAccessCheckCallbacks(NamedSecurityCallback named_handler, 1947 IndexedSecurityCallback indexed_handler, 1948 Handle<Value> data = Handle<Value>(), 1949 bool turned_on_by_default = true); 1950 1951 /** 1952 * Gets the number of internal fields for objects generated from 1953 * this template. 1954 */ 1955 int InternalFieldCount(); 1956 1957 /** 1958 * Sets the number of internal fields for objects generated from 1959 * this template. 1960 */ 1961 void SetInternalFieldCount(int value); 1962 1963 private: 1964 ObjectTemplate(); 1965 static Local<ObjectTemplate> New(Handle<FunctionTemplate> constructor); 1966 friend class FunctionTemplate; 1967 }; 1968 1969 1970 /** 1971 * A Signature specifies which receivers and arguments a function can 1972 * legally be called with. 1973 */ 1974 class V8EXPORT Signature : public Data { 1975 public: 1976 static Local<Signature> New(Handle<FunctionTemplate> receiver = 1977 Handle<FunctionTemplate>(), 1978 int argc = 0, 1979 Handle<FunctionTemplate> argv[] = 0); 1980 private: 1981 Signature(); 1982 }; 1983 1984 1985 /** 1986 * A utility for determining the type of objects based on the template 1987 * they were constructed from. 1988 */ 1989 class V8EXPORT TypeSwitch : public Data { 1990 public: 1991 static Local<TypeSwitch> New(Handle<FunctionTemplate> type); 1992 static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]); 1993 int match(Handle<Value> value); 1994 private: 1995 TypeSwitch(); 1996 }; 1997 1998 1999 // --- E x t e n s i o n s --- 2000 2001 2002 /** 2003 * Ignore 2004 */ 2005 class V8EXPORT Extension { // NOLINT 2006 public: 2007 Extension(const char* name, 2008 const char* source = 0, 2009 int dep_count = 0, 2010 const char** deps = 0); ~Extension()2011 virtual ~Extension() { } 2012 virtual v8::Handle<v8::FunctionTemplate> GetNativeFunction(v8::Handle<v8::String> name)2013 GetNativeFunction(v8::Handle<v8::String> name) { 2014 return v8::Handle<v8::FunctionTemplate>(); 2015 } 2016 name()2017 const char* name() { return name_; } source()2018 const char* source() { return source_; } dependency_count()2019 int dependency_count() { return dep_count_; } dependencies()2020 const char** dependencies() { return deps_; } set_auto_enable(bool value)2021 void set_auto_enable(bool value) { auto_enable_ = value; } auto_enable()2022 bool auto_enable() { return auto_enable_; } 2023 2024 private: 2025 const char* name_; 2026 const char* source_; 2027 int dep_count_; 2028 const char** deps_; 2029 bool auto_enable_; 2030 2031 // Disallow copying and assigning. 2032 Extension(const Extension&); 2033 void operator=(const Extension&); 2034 }; 2035 2036 2037 void V8EXPORT RegisterExtension(Extension* extension); 2038 2039 2040 /** 2041 * Ignore 2042 */ 2043 class V8EXPORT DeclareExtension { 2044 public: DeclareExtension(Extension * extension)2045 inline DeclareExtension(Extension* extension) { 2046 RegisterExtension(extension); 2047 } 2048 }; 2049 2050 2051 // --- S t a t i c s --- 2052 2053 2054 Handle<Primitive> V8EXPORT Undefined(); 2055 Handle<Primitive> V8EXPORT Null(); 2056 Handle<Boolean> V8EXPORT True(); 2057 Handle<Boolean> V8EXPORT False(); 2058 2059 2060 /** 2061 * A set of constraints that specifies the limits of the runtime's memory use. 2062 * You must set the heap size before initializing the VM - the size cannot be 2063 * adjusted after the VM is initialized. 2064 * 2065 * If you are using threads then you should hold the V8::Locker lock while 2066 * setting the stack limit and you must set a non-default stack limit separately 2067 * for each thread. 2068 */ 2069 class V8EXPORT ResourceConstraints { 2070 public: 2071 ResourceConstraints(); max_young_space_size()2072 int max_young_space_size() const { return max_young_space_size_; } set_max_young_space_size(int value)2073 void set_max_young_space_size(int value) { max_young_space_size_ = value; } max_old_space_size()2074 int max_old_space_size() const { return max_old_space_size_; } set_max_old_space_size(int value)2075 void set_max_old_space_size(int value) { max_old_space_size_ = value; } stack_limit()2076 uint32_t* stack_limit() const { return stack_limit_; } 2077 // Sets an address beyond which the VM's stack may not grow. set_stack_limit(uint32_t * value)2078 void set_stack_limit(uint32_t* value) { stack_limit_ = value; } 2079 private: 2080 int max_young_space_size_; 2081 int max_old_space_size_; 2082 uint32_t* stack_limit_; 2083 }; 2084 2085 2086 bool SetResourceConstraints(ResourceConstraints* constraints); 2087 2088 2089 // --- E x c e p t i o n s --- 2090 2091 2092 typedef void (*FatalErrorCallback)(const char* location, const char* message); 2093 2094 2095 typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> data); 2096 2097 2098 /** 2099 * Schedules an exception to be thrown when returning to JavaScript. When an 2100 * exception has been scheduled it is illegal to invoke any JavaScript 2101 * operation; the caller must return immediately and only after the exception 2102 * has been handled does it become legal to invoke JavaScript operations. 2103 */ 2104 Handle<Value> V8EXPORT ThrowException(Handle<Value> exception); 2105 2106 /** 2107 * Create new error objects by calling the corresponding error object 2108 * constructor with the message. 2109 */ 2110 class V8EXPORT Exception { 2111 public: 2112 static Local<Value> RangeError(Handle<String> message); 2113 static Local<Value> ReferenceError(Handle<String> message); 2114 static Local<Value> SyntaxError(Handle<String> message); 2115 static Local<Value> TypeError(Handle<String> message); 2116 static Local<Value> Error(Handle<String> message); 2117 }; 2118 2119 2120 // --- C o u n t e r s C a l l b a c k s --- 2121 2122 typedef int* (*CounterLookupCallback)(const char* name); 2123 2124 typedef void* (*CreateHistogramCallback)(const char* name, 2125 int min, 2126 int max, 2127 size_t buckets); 2128 2129 typedef void (*AddHistogramSampleCallback)(void* histogram, int sample); 2130 2131 // --- F a i l e d A c c e s s C h e c k C a l l b a c k --- 2132 typedef void (*FailedAccessCheckCallback)(Local<Object> target, 2133 AccessType type, 2134 Local<Value> data); 2135 2136 // --- G a r b a g e C o l l e c t i o n C a l l b a c k s 2137 2138 /** 2139 * Applications can register a callback function which is called 2140 * before and after a major garbage collection. Allocations are not 2141 * allowed in the callback function, you therefore cannot manipulate 2142 * objects (set or delete properties for example) since it is possible 2143 * such operations will result in the allocation of objects. 2144 */ 2145 typedef void (*GCCallback)(); 2146 2147 2148 // --- C o n t e x t G e n e r a t o r --- 2149 2150 /** 2151 * Applications must provide a callback function which is called to generate 2152 * a context if a context was not deserialized from the snapshot. 2153 */ 2154 typedef Persistent<Context> (*ContextGenerator)(); 2155 2156 2157 /** 2158 * Profiler modules. 2159 * 2160 * In V8, profiler consists of several modules: CPU profiler, and different 2161 * kinds of heap profiling. Each can be turned on / off independently. 2162 * When PROFILER_MODULE_HEAP_SNAPSHOT flag is passed to ResumeProfilerEx, 2163 * modules are enabled only temporarily for making a snapshot of the heap. 2164 */ 2165 enum ProfilerModules { 2166 PROFILER_MODULE_NONE = 0, 2167 PROFILER_MODULE_CPU = 1, 2168 PROFILER_MODULE_HEAP_STATS = 1 << 1, 2169 PROFILER_MODULE_JS_CONSTRUCTORS = 1 << 2, 2170 PROFILER_MODULE_HEAP_SNAPSHOT = 1 << 16 2171 }; 2172 2173 2174 /** 2175 * Collection of V8 heap information. 2176 * 2177 * Instances of this class can be passed to v8::V8::HeapStatistics to 2178 * get heap statistics from V8. 2179 */ 2180 class V8EXPORT HeapStatistics { 2181 public: 2182 HeapStatistics(); total_heap_size()2183 size_t total_heap_size() { return total_heap_size_; } used_heap_size()2184 size_t used_heap_size() { return used_heap_size_; } 2185 2186 private: set_total_heap_size(size_t size)2187 void set_total_heap_size(size_t size) { total_heap_size_ = size; } set_used_heap_size(size_t size)2188 void set_used_heap_size(size_t size) { used_heap_size_ = size; } 2189 2190 size_t total_heap_size_; 2191 size_t used_heap_size_; 2192 2193 friend class V8; 2194 }; 2195 2196 2197 /** 2198 * Container class for static utility functions. 2199 */ 2200 class V8EXPORT V8 { 2201 public: 2202 /** Set the callback to invoke in case of fatal errors. */ 2203 static void SetFatalErrorHandler(FatalErrorCallback that); 2204 2205 /** 2206 * Ignore out-of-memory exceptions. 2207 * 2208 * V8 running out of memory is treated as a fatal error by default. 2209 * This means that the fatal error handler is called and that V8 is 2210 * terminated. 2211 * 2212 * IgnoreOutOfMemoryException can be used to not treat a 2213 * out-of-memory situation as a fatal error. This way, the contexts 2214 * that did not cause the out of memory problem might be able to 2215 * continue execution. 2216 */ 2217 static void IgnoreOutOfMemoryException(); 2218 2219 /** 2220 * Check if V8 is dead and therefore unusable. This is the case after 2221 * fatal errors such as out-of-memory situations. 2222 */ 2223 static bool IsDead(); 2224 2225 /** 2226 * Adds a message listener. 2227 * 2228 * The same message listener can be added more than once and it that 2229 * case it will be called more than once for each message. 2230 */ 2231 static bool AddMessageListener(MessageCallback that, 2232 Handle<Value> data = Handle<Value>()); 2233 2234 /** 2235 * Remove all message listeners from the specified callback function. 2236 */ 2237 static void RemoveMessageListeners(MessageCallback that); 2238 2239 /** 2240 * Sets V8 flags from a string. 2241 */ 2242 static void SetFlagsFromString(const char* str, int length); 2243 2244 /** 2245 * Sets V8 flags from the command line. 2246 */ 2247 static void SetFlagsFromCommandLine(int* argc, 2248 char** argv, 2249 bool remove_flags); 2250 2251 /** Get the version string. */ 2252 static const char* GetVersion(); 2253 2254 /** 2255 * Enables the host application to provide a mechanism for recording 2256 * statistics counters. 2257 */ 2258 static void SetCounterFunction(CounterLookupCallback); 2259 2260 /** 2261 * Enables the host application to provide a mechanism for recording 2262 * histograms. The CreateHistogram function returns a 2263 * histogram which will later be passed to the AddHistogramSample 2264 * function. 2265 */ 2266 static void SetCreateHistogramFunction(CreateHistogramCallback); 2267 static void SetAddHistogramSampleFunction(AddHistogramSampleCallback); 2268 2269 /** 2270 * Enables the computation of a sliding window of states. The sliding 2271 * window information is recorded in statistics counters. 2272 */ 2273 static void EnableSlidingStateWindow(); 2274 2275 /** Callback function for reporting failed access checks.*/ 2276 static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback); 2277 2278 /** 2279 * Enables the host application to receive a notification before a 2280 * major garbage colletion. Allocations are not allowed in the 2281 * callback function, you therefore cannot manipulate objects (set 2282 * or delete properties for example) since it is possible such 2283 * operations will result in the allocation of objects. 2284 */ 2285 static void SetGlobalGCPrologueCallback(GCCallback); 2286 2287 /** 2288 * Enables the host application to receive a notification after a 2289 * major garbage collection. Allocations are not allowed in the 2290 * callback function, you therefore cannot manipulate objects (set 2291 * or delete properties for example) since it is possible such 2292 * operations will result in the allocation of objects. 2293 */ 2294 static void SetGlobalGCEpilogueCallback(GCCallback); 2295 2296 /** 2297 * Allows the host application to group objects together. If one 2298 * object in the group is alive, all objects in the group are alive. 2299 * After each garbage collection, object groups are removed. It is 2300 * intended to be used in the before-garbage-collection callback 2301 * function, for instance to simulate DOM tree connections among JS 2302 * wrapper objects. 2303 */ 2304 static void AddObjectGroup(Persistent<Value>* objects, size_t length); 2305 2306 /** 2307 * Initializes from snapshot if possible. Otherwise, attempts to 2308 * initialize from scratch. This function is called implicitly if 2309 * you use the API without calling it first. 2310 */ 2311 static bool Initialize(); 2312 2313 /** 2314 * Adjusts the amount of registered external memory. Used to give 2315 * V8 an indication of the amount of externally allocated memory 2316 * that is kept alive by JavaScript objects. V8 uses this to decide 2317 * when to perform global garbage collections. Registering 2318 * externally allocated memory will trigger global garbage 2319 * collections more often than otherwise in an attempt to garbage 2320 * collect the JavaScript objects keeping the externally allocated 2321 * memory alive. 2322 * 2323 * \param change_in_bytes the change in externally allocated memory 2324 * that is kept alive by JavaScript objects. 2325 * \returns the adjusted value. 2326 */ 2327 static int AdjustAmountOfExternalAllocatedMemory(int change_in_bytes); 2328 2329 /** 2330 * Suspends recording of tick samples in the profiler. 2331 * When the V8 profiling mode is enabled (usually via command line 2332 * switches) this function suspends recording of tick samples. 2333 * Profiling ticks are discarded until ResumeProfiler() is called. 2334 * 2335 * See also the --prof and --prof_auto command line switches to 2336 * enable V8 profiling. 2337 */ 2338 static void PauseProfiler(); 2339 2340 /** 2341 * Resumes recording of tick samples in the profiler. 2342 * See also PauseProfiler(). 2343 */ 2344 static void ResumeProfiler(); 2345 2346 /** 2347 * Return whether profiler is currently paused. 2348 */ 2349 static bool IsProfilerPaused(); 2350 2351 /** 2352 * Resumes specified profiler modules. Can be called several times to 2353 * mark the opening of a profiler events block with the given tag. 2354 * 2355 * "ResumeProfiler" is equivalent to "ResumeProfilerEx(PROFILER_MODULE_CPU)". 2356 * See ProfilerModules enum. 2357 * 2358 * \param flags Flags specifying profiler modules. 2359 * \param tag Profile tag. 2360 */ 2361 static void ResumeProfilerEx(int flags, int tag = 0); 2362 2363 /** 2364 * Pauses specified profiler modules. Each call to "PauseProfilerEx" closes 2365 * a block of profiler events opened by a call to "ResumeProfilerEx" with the 2366 * same tag value. There is no need for blocks to be properly nested. 2367 * The profiler is paused when the last opened block is closed. 2368 * 2369 * "PauseProfiler" is equivalent to "PauseProfilerEx(PROFILER_MODULE_CPU)". 2370 * See ProfilerModules enum. 2371 * 2372 * \param flags Flags specifying profiler modules. 2373 * \param tag Profile tag. 2374 */ 2375 static void PauseProfilerEx(int flags, int tag = 0); 2376 2377 /** 2378 * Returns active (resumed) profiler modules. 2379 * See ProfilerModules enum. 2380 * 2381 * \returns active profiler modules. 2382 */ 2383 static int GetActiveProfilerModules(); 2384 2385 /** 2386 * If logging is performed into a memory buffer (via --logfile=*), allows to 2387 * retrieve previously written messages. This can be used for retrieving 2388 * profiler log data in the application. This function is thread-safe. 2389 * 2390 * Caller provides a destination buffer that must exist during GetLogLines 2391 * call. Only whole log lines are copied into the buffer. 2392 * 2393 * \param from_pos specified a point in a buffer to read from, 0 is the 2394 * beginning of a buffer. It is assumed that caller updates its current 2395 * position using returned size value from the previous call. 2396 * \param dest_buf destination buffer for log data. 2397 * \param max_size size of the destination buffer. 2398 * \returns actual size of log data copied into buffer. 2399 */ 2400 static int GetLogLines(int from_pos, char* dest_buf, int max_size); 2401 2402 /** 2403 * Retrieve the V8 thread id of the calling thread. 2404 * 2405 * The thread id for a thread should only be retrieved after the V8 2406 * lock has been acquired with a Locker object with that thread. 2407 */ 2408 static int GetCurrentThreadId(); 2409 2410 /** 2411 * Forcefully terminate execution of a JavaScript thread. This can 2412 * be used to terminate long-running scripts. 2413 * 2414 * TerminateExecution should only be called when then V8 lock has 2415 * been acquired with a Locker object. Therefore, in order to be 2416 * able to terminate long-running threads, preemption must be 2417 * enabled to allow the user of TerminateExecution to acquire the 2418 * lock. 2419 * 2420 * The termination is achieved by throwing an exception that is 2421 * uncatchable by JavaScript exception handlers. Termination 2422 * exceptions act as if they were caught by a C++ TryCatch exception 2423 * handlers. If forceful termination is used, any C++ TryCatch 2424 * exception handler that catches an exception should check if that 2425 * exception is a termination exception and immediately return if 2426 * that is the case. Returning immediately in that case will 2427 * continue the propagation of the termination exception if needed. 2428 * 2429 * The thread id passed to TerminateExecution must have been 2430 * obtained by calling GetCurrentThreadId on the thread in question. 2431 * 2432 * \param thread_id The thread id of the thread to terminate. 2433 */ 2434 static void TerminateExecution(int thread_id); 2435 2436 /** 2437 * Forcefully terminate the current thread of JavaScript execution. 2438 * 2439 * This method can be used by any thread even if that thread has not 2440 * acquired the V8 lock with a Locker object. 2441 */ 2442 static void TerminateExecution(); 2443 2444 /** 2445 * Releases any resources used by v8 and stops any utility threads 2446 * that may be running. Note that disposing v8 is permanent, it 2447 * cannot be reinitialized. 2448 * 2449 * It should generally not be necessary to dispose v8 before exiting 2450 * a process, this should happen automatically. It is only necessary 2451 * to use if the process needs the resources taken up by v8. 2452 */ 2453 static bool Dispose(); 2454 2455 /** 2456 * Get statistics about the heap memory usage. 2457 */ 2458 static void GetHeapStatistics(HeapStatistics* heap_statistics); 2459 2460 /** 2461 * Optional notification that the embedder is idle. 2462 * V8 uses the notification to reduce memory footprint. 2463 * This call can be used repeatedly if the embedder remains idle. 2464 * Returns true if the embedder should stop calling IdleNotification 2465 * until real work has been done. This indicates that V8 has done 2466 * as much cleanup as it will be able to do. 2467 */ 2468 static bool IdleNotification(); 2469 2470 /** 2471 * Optional notification that the system is running low on memory. 2472 * V8 uses these notifications to attempt to free memory. 2473 */ 2474 static void LowMemoryNotification(); 2475 2476 private: 2477 V8(); 2478 2479 static internal::Object** GlobalizeReference(internal::Object** handle); 2480 static void DisposeGlobal(internal::Object** global_handle); 2481 static void MakeWeak(internal::Object** global_handle, 2482 void* data, 2483 WeakReferenceCallback); 2484 static void ClearWeak(internal::Object** global_handle); 2485 static bool IsGlobalNearDeath(internal::Object** global_handle); 2486 static bool IsGlobalWeak(internal::Object** global_handle); 2487 2488 template <class T> friend class Handle; 2489 template <class T> friend class Local; 2490 template <class T> friend class Persistent; 2491 friend class Context; 2492 }; 2493 2494 2495 /** 2496 * An external exception handler. 2497 */ 2498 class V8EXPORT TryCatch { 2499 public: 2500 2501 /** 2502 * Creates a new try/catch block and registers it with v8. 2503 */ 2504 TryCatch(); 2505 2506 /** 2507 * Unregisters and deletes this try/catch block. 2508 */ 2509 ~TryCatch(); 2510 2511 /** 2512 * Returns true if an exception has been caught by this try/catch block. 2513 */ 2514 bool HasCaught() const; 2515 2516 /** 2517 * For certain types of exceptions, it makes no sense to continue 2518 * execution. 2519 * 2520 * Currently, the only type of exception that can be caught by a 2521 * TryCatch handler and for which it does not make sense to continue 2522 * is termination exception. Such exceptions are thrown when the 2523 * TerminateExecution methods are called to terminate a long-running 2524 * script. 2525 * 2526 * If CanContinue returns false, the correct action is to perform 2527 * any C++ cleanup needed and then return. 2528 */ 2529 bool CanContinue() const; 2530 2531 /** 2532 * Throws the exception caught by this TryCatch in a way that avoids 2533 * it being caught again by this same TryCatch. As with ThrowException 2534 * it is illegal to execute any JavaScript operations after calling 2535 * ReThrow; the caller must return immediately to where the exception 2536 * is caught. 2537 */ 2538 Handle<Value> ReThrow(); 2539 2540 /** 2541 * Returns the exception caught by this try/catch block. If no exception has 2542 * been caught an empty handle is returned. 2543 * 2544 * The returned handle is valid until this TryCatch block has been destroyed. 2545 */ 2546 Local<Value> Exception() const; 2547 2548 /** 2549 * Returns the .stack property of the thrown object. If no .stack 2550 * property is present an empty handle is returned. 2551 */ 2552 Local<Value> StackTrace() const; 2553 2554 /** 2555 * Returns the message associated with this exception. If there is 2556 * no message associated an empty handle is returned. 2557 * 2558 * The returned handle is valid until this TryCatch block has been 2559 * destroyed. 2560 */ 2561 Local<v8::Message> Message() const; 2562 2563 /** 2564 * Clears any exceptions that may have been caught by this try/catch block. 2565 * After this method has been called, HasCaught() will return false. 2566 * 2567 * It is not necessary to clear a try/catch block before using it again; if 2568 * another exception is thrown the previously caught exception will just be 2569 * overwritten. However, it is often a good idea since it makes it easier 2570 * to determine which operation threw a given exception. 2571 */ 2572 void Reset(); 2573 2574 /** 2575 * Set verbosity of the external exception handler. 2576 * 2577 * By default, exceptions that are caught by an external exception 2578 * handler are not reported. Call SetVerbose with true on an 2579 * external exception handler to have exceptions caught by the 2580 * handler reported as if they were not caught. 2581 */ 2582 void SetVerbose(bool value); 2583 2584 /** 2585 * Set whether or not this TryCatch should capture a Message object 2586 * which holds source information about where the exception 2587 * occurred. True by default. 2588 */ 2589 void SetCaptureMessage(bool value); 2590 2591 private: 2592 void* next_; 2593 void* exception_; 2594 void* message_; 2595 bool is_verbose_ : 1; 2596 bool can_continue_ : 1; 2597 bool capture_message_ : 1; 2598 bool rethrow_ : 1; 2599 2600 friend class v8::internal::Top; 2601 }; 2602 2603 2604 // --- C o n t e x t --- 2605 2606 2607 /** 2608 * Ignore 2609 */ 2610 class V8EXPORT ExtensionConfiguration { 2611 public: ExtensionConfiguration(int name_count,const char * names[])2612 ExtensionConfiguration(int name_count, const char* names[]) 2613 : name_count_(name_count), names_(names) { } 2614 private: 2615 friend class ImplementationUtilities; 2616 int name_count_; 2617 const char** names_; 2618 }; 2619 2620 2621 /** 2622 * A sandboxed execution context with its own set of built-in objects 2623 * and functions. 2624 */ 2625 class V8EXPORT Context { 2626 public: 2627 /** Returns the global object of the context. */ 2628 Local<Object> Global(); 2629 2630 /** 2631 * Detaches the global object from its context before 2632 * the global object can be reused to create a new context. 2633 */ 2634 void DetachGlobal(); 2635 2636 /** 2637 * Reattaches a global object to a context. This can be used to 2638 * restore the connection between a global object and a context 2639 * after DetachGlobal has been called. 2640 * 2641 * \param global_object The global object to reattach to the 2642 * context. For this to work, the global object must be the global 2643 * object that was associated with this context before a call to 2644 * DetachGlobal. 2645 */ 2646 void ReattachGlobal(Handle<Object> global_object); 2647 2648 /** Creates a new context. */ 2649 static Persistent<Context> New( 2650 ExtensionConfiguration* extensions = NULL, 2651 Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(), 2652 Handle<Value> global_object = Handle<Value>()); 2653 2654 /** Returns the last entered context. */ 2655 static Local<Context> GetEntered(); 2656 2657 /** Returns the context that is on the top of the stack. */ 2658 static Local<Context> GetCurrent(); 2659 2660 /** 2661 * Returns the context of the calling JavaScript code. That is the 2662 * context of the top-most JavaScript frame. If there are no 2663 * JavaScript frames an empty handle is returned. 2664 */ 2665 static Local<Context> GetCalling(); 2666 2667 /** 2668 * Sets the security token for the context. To access an object in 2669 * another context, the security tokens must match. 2670 */ 2671 void SetSecurityToken(Handle<Value> token); 2672 2673 /** Restores the security token to the default value. */ 2674 void UseDefaultSecurityToken(); 2675 2676 /** Returns the security token of this context.*/ 2677 Handle<Value> GetSecurityToken(); 2678 2679 /** 2680 * Enter this context. After entering a context, all code compiled 2681 * and run is compiled and run in this context. If another context 2682 * is already entered, this old context is saved so it can be 2683 * restored when the new context is exited. 2684 */ 2685 void Enter(); 2686 2687 /** 2688 * Exit this context. Exiting the current context restores the 2689 * context that was in place when entering the current context. 2690 */ 2691 void Exit(); 2692 2693 /** Returns true if the context has experienced an out of memory situation. */ 2694 bool HasOutOfMemoryException(); 2695 2696 /** Returns true if V8 has a current context. */ 2697 static bool InContext(); 2698 2699 /** 2700 * Associate an additional data object with the context. This is mainly used 2701 * with the debugger to provide additional information on the context through 2702 * the debugger API. 2703 */ 2704 void SetData(Handle<String> data); 2705 Local<Value> GetData(); 2706 2707 /** 2708 * Stack-allocated class which sets the execution context for all 2709 * operations executed within a local scope. 2710 */ 2711 class V8EXPORT Scope { 2712 public: Scope(Handle<Context> context)2713 inline Scope(Handle<Context> context) : context_(context) { 2714 context_->Enter(); 2715 } ~Scope()2716 inline ~Scope() { context_->Exit(); } 2717 private: 2718 Handle<Context> context_; 2719 }; 2720 2721 private: 2722 friend class Value; 2723 friend class Script; 2724 friend class Object; 2725 friend class Function; 2726 }; 2727 2728 2729 /** 2730 * Multiple threads in V8 are allowed, but only one thread at a time 2731 * is allowed to use V8. The definition of 'using V8' includes 2732 * accessing handles or holding onto object pointers obtained from V8 2733 * handles. It is up to the user of V8 to ensure (perhaps with 2734 * locking) that this constraint is not violated. 2735 * 2736 * If you wish to start using V8 in a thread you can do this by constructing 2737 * a v8::Locker object. After the code using V8 has completed for the 2738 * current thread you can call the destructor. This can be combined 2739 * with C++ scope-based construction as follows: 2740 * 2741 * \code 2742 * ... 2743 * { 2744 * v8::Locker locker; 2745 * ... 2746 * // Code using V8 goes here. 2747 * ... 2748 * } // Destructor called here 2749 * \endcode 2750 * 2751 * If you wish to stop using V8 in a thread A you can do this by either 2752 * by destroying the v8::Locker object as above or by constructing a 2753 * v8::Unlocker object: 2754 * 2755 * \code 2756 * { 2757 * v8::Unlocker unlocker; 2758 * ... 2759 * // Code not using V8 goes here while V8 can run in another thread. 2760 * ... 2761 * } // Destructor called here. 2762 * \endcode 2763 * 2764 * The Unlocker object is intended for use in a long-running callback 2765 * from V8, where you want to release the V8 lock for other threads to 2766 * use. 2767 * 2768 * The v8::Locker is a recursive lock. That is, you can lock more than 2769 * once in a given thread. This can be useful if you have code that can 2770 * be called either from code that holds the lock or from code that does 2771 * not. The Unlocker is not recursive so you can not have several 2772 * Unlockers on the stack at once, and you can not use an Unlocker in a 2773 * thread that is not inside a Locker's scope. 2774 * 2775 * An unlocker will unlock several lockers if it has to and reinstate 2776 * the correct depth of locking on its destruction. eg.: 2777 * 2778 * \code 2779 * // V8 not locked. 2780 * { 2781 * v8::Locker locker; 2782 * // V8 locked. 2783 * { 2784 * v8::Locker another_locker; 2785 * // V8 still locked (2 levels). 2786 * { 2787 * v8::Unlocker unlocker; 2788 * // V8 not locked. 2789 * } 2790 * // V8 locked again (2 levels). 2791 * } 2792 * // V8 still locked (1 level). 2793 * } 2794 * // V8 Now no longer locked. 2795 * \endcode 2796 */ 2797 class V8EXPORT Unlocker { 2798 public: 2799 Unlocker(); 2800 ~Unlocker(); 2801 }; 2802 2803 2804 class V8EXPORT Locker { 2805 public: 2806 Locker(); 2807 ~Locker(); 2808 2809 /** 2810 * Start preemption. 2811 * 2812 * When preemption is started, a timer is fired every n milli seconds 2813 * that will switch between multiple threads that are in contention 2814 * for the V8 lock. 2815 */ 2816 static void StartPreemption(int every_n_ms); 2817 2818 /** 2819 * Stop preemption. 2820 */ 2821 static void StopPreemption(); 2822 2823 /** 2824 * Returns whether or not the locker is locked by the current thread. 2825 */ 2826 static bool IsLocked(); 2827 2828 /** 2829 * Returns whether v8::Locker is being used by this V8 instance. 2830 */ IsActive()2831 static bool IsActive() { return active_; } 2832 2833 private: 2834 bool has_lock_; 2835 bool top_level_; 2836 2837 static bool active_; 2838 2839 // Disallow copying and assigning. 2840 Locker(const Locker&); 2841 void operator=(const Locker&); 2842 }; 2843 2844 2845 2846 // --- I m p l e m e n t a t i o n --- 2847 2848 2849 namespace internal { 2850 2851 2852 // Tag information for HeapObject. 2853 const int kHeapObjectTag = 1; 2854 const int kHeapObjectTagSize = 2; 2855 const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1; 2856 2857 // Tag information for Smi. 2858 const int kSmiTag = 0; 2859 const int kSmiTagSize = 1; 2860 const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1; 2861 2862 template <size_t ptr_size> struct SmiConstants; 2863 2864 // Smi constants for 32-bit systems. 2865 template <> struct SmiConstants<4> { 2866 static const int kSmiShiftSize = 0; 2867 static const int kSmiValueSize = 31; 2868 static inline int SmiToInt(internal::Object* value) { 2869 int shift_bits = kSmiTagSize + kSmiShiftSize; 2870 // Throw away top 32 bits and shift down (requires >> to be sign extending). 2871 return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits; 2872 } 2873 }; 2874 2875 // Smi constants for 64-bit systems. 2876 template <> struct SmiConstants<8> { 2877 static const int kSmiShiftSize = 31; 2878 static const int kSmiValueSize = 32; 2879 static inline int SmiToInt(internal::Object* value) { 2880 int shift_bits = kSmiTagSize + kSmiShiftSize; 2881 // Shift down and throw away top 32 bits. 2882 return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits); 2883 } 2884 }; 2885 2886 const int kSmiShiftSize = SmiConstants<sizeof(void*)>::kSmiShiftSize; 2887 const int kSmiValueSize = SmiConstants<sizeof(void*)>::kSmiValueSize; 2888 2889 template <size_t ptr_size> struct InternalConstants; 2890 2891 // Internal constants for 32-bit systems. 2892 template <> struct InternalConstants<4> { 2893 static const int kStringResourceOffset = 3 * sizeof(void*); 2894 }; 2895 2896 // Internal constants for 64-bit systems. 2897 template <> struct InternalConstants<8> { 2898 static const int kStringResourceOffset = 2 * sizeof(void*); 2899 }; 2900 2901 /** 2902 * This class exports constants and functionality from within v8 that 2903 * is necessary to implement inline functions in the v8 api. Don't 2904 * depend on functions and constants defined here. 2905 */ 2906 class Internals { 2907 public: 2908 2909 // These values match non-compiler-dependent values defined within 2910 // the implementation of v8. 2911 static const int kHeapObjectMapOffset = 0; 2912 static const int kMapInstanceTypeOffset = sizeof(void*) + sizeof(int); 2913 static const int kStringResourceOffset = 2914 InternalConstants<sizeof(void*)>::kStringResourceOffset; 2915 2916 static const int kProxyProxyOffset = sizeof(void*); 2917 static const int kJSObjectHeaderSize = 3 * sizeof(void*); 2918 static const int kFullStringRepresentationMask = 0x07; 2919 static const int kExternalTwoByteRepresentationTag = 0x03; 2920 2921 // These constants are compiler dependent so their values must be 2922 // defined within the implementation. 2923 V8EXPORT static int kJSObjectType; 2924 V8EXPORT static int kFirstNonstringType; 2925 V8EXPORT static int kProxyType; 2926 2927 static inline bool HasHeapObjectTag(internal::Object* value) { 2928 return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) == 2929 kHeapObjectTag); 2930 } 2931 2932 static inline bool HasSmiTag(internal::Object* value) { 2933 return ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag); 2934 } 2935 2936 static inline int SmiValue(internal::Object* value) { 2937 return SmiConstants<sizeof(void*)>::SmiToInt(value); 2938 } 2939 2940 static inline int GetInstanceType(internal::Object* obj) { 2941 typedef internal::Object O; 2942 O* map = ReadField<O*>(obj, kHeapObjectMapOffset); 2943 return ReadField<uint8_t>(map, kMapInstanceTypeOffset); 2944 } 2945 2946 static inline void* GetExternalPointer(internal::Object* obj) { 2947 if (HasSmiTag(obj)) { 2948 return obj; 2949 } else if (GetInstanceType(obj) == kProxyType) { 2950 return ReadField<void*>(obj, kProxyProxyOffset); 2951 } else { 2952 return NULL; 2953 } 2954 } 2955 2956 static inline bool IsExternalTwoByteString(int instance_type) { 2957 int representation = (instance_type & kFullStringRepresentationMask); 2958 return representation == kExternalTwoByteRepresentationTag; 2959 } 2960 2961 template <typename T> 2962 static inline T ReadField(Object* ptr, int offset) { 2963 uint8_t* addr = reinterpret_cast<uint8_t*>(ptr) + offset - kHeapObjectTag; 2964 return *reinterpret_cast<T*>(addr); 2965 } 2966 2967 }; 2968 2969 } 2970 2971 2972 template <class T> 2973 Handle<T>::Handle() : val_(0) { } 2974 2975 2976 template <class T> 2977 Local<T>::Local() : Handle<T>() { } 2978 2979 2980 template <class T> 2981 Local<T> Local<T>::New(Handle<T> that) { 2982 if (that.IsEmpty()) return Local<T>(); 2983 internal::Object** p = reinterpret_cast<internal::Object**>(*that); 2984 return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(*p))); 2985 } 2986 2987 2988 template <class T> 2989 Persistent<T> Persistent<T>::New(Handle<T> that) { 2990 if (that.IsEmpty()) return Persistent<T>(); 2991 internal::Object** p = reinterpret_cast<internal::Object**>(*that); 2992 return Persistent<T>(reinterpret_cast<T*>(V8::GlobalizeReference(p))); 2993 } 2994 2995 2996 template <class T> 2997 bool Persistent<T>::IsNearDeath() const { 2998 if (this->IsEmpty()) return false; 2999 return V8::IsGlobalNearDeath(reinterpret_cast<internal::Object**>(**this)); 3000 } 3001 3002 3003 template <class T> 3004 bool Persistent<T>::IsWeak() const { 3005 if (this->IsEmpty()) return false; 3006 return V8::IsGlobalWeak(reinterpret_cast<internal::Object**>(**this)); 3007 } 3008 3009 3010 template <class T> 3011 void Persistent<T>::Dispose() { 3012 if (this->IsEmpty()) return; 3013 V8::DisposeGlobal(reinterpret_cast<internal::Object**>(**this)); 3014 } 3015 3016 3017 template <class T> 3018 Persistent<T>::Persistent() : Handle<T>() { } 3019 3020 template <class T> 3021 void Persistent<T>::MakeWeak(void* parameters, WeakReferenceCallback callback) { 3022 V8::MakeWeak(reinterpret_cast<internal::Object**>(**this), 3023 parameters, 3024 callback); 3025 } 3026 3027 template <class T> 3028 void Persistent<T>::ClearWeak() { 3029 V8::ClearWeak(reinterpret_cast<internal::Object**>(**this)); 3030 } 3031 3032 Local<Value> Arguments::operator[](int i) const { 3033 if (i < 0 || length_ <= i) return Local<Value>(*Undefined()); 3034 return Local<Value>(reinterpret_cast<Value*>(values_ - i)); 3035 } 3036 3037 3038 Local<Function> Arguments::Callee() const { 3039 return callee_; 3040 } 3041 3042 3043 Local<Object> Arguments::This() const { 3044 return Local<Object>(reinterpret_cast<Object*>(values_ + 1)); 3045 } 3046 3047 3048 Local<Object> Arguments::Holder() const { 3049 return holder_; 3050 } 3051 3052 3053 Local<Value> Arguments::Data() const { 3054 return data_; 3055 } 3056 3057 3058 bool Arguments::IsConstructCall() const { 3059 return is_construct_call_; 3060 } 3061 3062 3063 int Arguments::Length() const { 3064 return length_; 3065 } 3066 3067 3068 template <class T> 3069 Local<T> HandleScope::Close(Handle<T> value) { 3070 internal::Object** before = reinterpret_cast<internal::Object**>(*value); 3071 internal::Object** after = RawClose(before); 3072 return Local<T>(reinterpret_cast<T*>(after)); 3073 } 3074 3075 Handle<Value> ScriptOrigin::ResourceName() const { 3076 return resource_name_; 3077 } 3078 3079 3080 Handle<Integer> ScriptOrigin::ResourceLineOffset() const { 3081 return resource_line_offset_; 3082 } 3083 3084 3085 Handle<Integer> ScriptOrigin::ResourceColumnOffset() const { 3086 return resource_column_offset_; 3087 } 3088 3089 3090 Handle<Boolean> Boolean::New(bool value) { 3091 return value ? True() : False(); 3092 } 3093 3094 3095 void Template::Set(const char* name, v8::Handle<Data> value) { 3096 Set(v8::String::New(name), value); 3097 } 3098 3099 3100 Local<Value> Object::GetInternalField(int index) { 3101 #ifndef V8_ENABLE_CHECKS 3102 Local<Value> quick_result = UncheckedGetInternalField(index); 3103 if (!quick_result.IsEmpty()) return quick_result; 3104 #endif 3105 return CheckedGetInternalField(index); 3106 } 3107 3108 3109 Local<Value> Object::UncheckedGetInternalField(int index) { 3110 typedef internal::Object O; 3111 typedef internal::Internals I; 3112 O* obj = *reinterpret_cast<O**>(this); 3113 if (I::GetInstanceType(obj) == I::kJSObjectType) { 3114 // If the object is a plain JSObject, which is the common case, 3115 // we know where to find the internal fields and can return the 3116 // value directly. 3117 int offset = I::kJSObjectHeaderSize + (sizeof(void*) * index); 3118 O* value = I::ReadField<O*>(obj, offset); 3119 O** result = HandleScope::CreateHandle(value); 3120 return Local<Value>(reinterpret_cast<Value*>(result)); 3121 } else { 3122 return Local<Value>(); 3123 } 3124 } 3125 3126 3127 void* External::Unwrap(Handle<v8::Value> obj) { 3128 #ifdef V8_ENABLE_CHECKS 3129 return FullUnwrap(obj); 3130 #else 3131 return QuickUnwrap(obj); 3132 #endif 3133 } 3134 3135 3136 void* External::QuickUnwrap(Handle<v8::Value> wrapper) { 3137 typedef internal::Object O; 3138 O* obj = *reinterpret_cast<O**>(const_cast<v8::Value*>(*wrapper)); 3139 return internal::Internals::GetExternalPointer(obj); 3140 } 3141 3142 3143 void* Object::GetPointerFromInternalField(int index) { 3144 typedef internal::Object O; 3145 typedef internal::Internals I; 3146 3147 O* obj = *reinterpret_cast<O**>(this); 3148 3149 if (I::GetInstanceType(obj) == I::kJSObjectType) { 3150 // If the object is a plain JSObject, which is the common case, 3151 // we know where to find the internal fields and can return the 3152 // value directly. 3153 int offset = I::kJSObjectHeaderSize + (sizeof(void*) * index); 3154 O* value = I::ReadField<O*>(obj, offset); 3155 return I::GetExternalPointer(value); 3156 } 3157 3158 return SlowGetPointerFromInternalField(index); 3159 } 3160 3161 3162 String* String::Cast(v8::Value* value) { 3163 #ifdef V8_ENABLE_CHECKS 3164 CheckCast(value); 3165 #endif 3166 return static_cast<String*>(value); 3167 } 3168 3169 3170 String::ExternalStringResource* String::GetExternalStringResource() const { 3171 typedef internal::Object O; 3172 typedef internal::Internals I; 3173 O* obj = *reinterpret_cast<O**>(const_cast<String*>(this)); 3174 String::ExternalStringResource* result; 3175 if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) { 3176 void* value = I::ReadField<void*>(obj, I::kStringResourceOffset); 3177 result = reinterpret_cast<String::ExternalStringResource*>(value); 3178 } else { 3179 result = NULL; 3180 } 3181 #ifdef V8_ENABLE_CHECKS 3182 VerifyExternalStringResource(result); 3183 #endif 3184 return result; 3185 } 3186 3187 3188 bool Value::IsString() const { 3189 #ifdef V8_ENABLE_CHECKS 3190 return FullIsString(); 3191 #else 3192 return QuickIsString(); 3193 #endif 3194 } 3195 3196 bool Value::QuickIsString() const { 3197 typedef internal::Object O; 3198 typedef internal::Internals I; 3199 O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this)); 3200 if (!I::HasHeapObjectTag(obj)) return false; 3201 return (I::GetInstanceType(obj) < I::kFirstNonstringType); 3202 } 3203 3204 3205 Number* Number::Cast(v8::Value* value) { 3206 #ifdef V8_ENABLE_CHECKS 3207 CheckCast(value); 3208 #endif 3209 return static_cast<Number*>(value); 3210 } 3211 3212 3213 Integer* Integer::Cast(v8::Value* value) { 3214 #ifdef V8_ENABLE_CHECKS 3215 CheckCast(value); 3216 #endif 3217 return static_cast<Integer*>(value); 3218 } 3219 3220 3221 Date* Date::Cast(v8::Value* value) { 3222 #ifdef V8_ENABLE_CHECKS 3223 CheckCast(value); 3224 #endif 3225 return static_cast<Date*>(value); 3226 } 3227 3228 3229 Object* Object::Cast(v8::Value* value) { 3230 #ifdef V8_ENABLE_CHECKS 3231 CheckCast(value); 3232 #endif 3233 return static_cast<Object*>(value); 3234 } 3235 3236 3237 Array* Array::Cast(v8::Value* value) { 3238 #ifdef V8_ENABLE_CHECKS 3239 CheckCast(value); 3240 #endif 3241 return static_cast<Array*>(value); 3242 } 3243 3244 3245 Function* Function::Cast(v8::Value* value) { 3246 #ifdef V8_ENABLE_CHECKS 3247 CheckCast(value); 3248 #endif 3249 return static_cast<Function*>(value); 3250 } 3251 3252 3253 External* External::Cast(v8::Value* value) { 3254 #ifdef V8_ENABLE_CHECKS 3255 CheckCast(value); 3256 #endif 3257 return static_cast<External*>(value); 3258 } 3259 3260 3261 Local<Value> AccessorInfo::Data() const { 3262 return Local<Value>(reinterpret_cast<Value*>(&args_[-3])); 3263 } 3264 3265 3266 Local<Object> AccessorInfo::This() const { 3267 return Local<Object>(reinterpret_cast<Object*>(&args_[0])); 3268 } 3269 3270 3271 Local<Object> AccessorInfo::Holder() const { 3272 return Local<Object>(reinterpret_cast<Object*>(&args_[-1])); 3273 } 3274 3275 3276 /** 3277 * \example shell.cc 3278 * A simple shell that takes a list of expressions on the 3279 * command-line and executes them. 3280 */ 3281 3282 3283 /** 3284 * \example process.cc 3285 */ 3286 3287 3288 } // namespace v8 3289 3290 3291 #undef V8EXPORT 3292 #undef V8EXPORT_INLINE 3293 #undef TYPE_CHECK 3294 3295 3296 #endif // V8_H_ 3297