1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // http://code.google.com/p/protobuf/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: kenton@google.com (Kenton Varda) and others
32 //
33 // Contains basic types and utilities used by the rest of the library.
34
35 #ifndef GOOGLE_PROTOBUF_COMMON_H__
36 #define GOOGLE_PROTOBUF_COMMON_H__
37
38 #include <assert.h>
39 #include <stdlib.h>
40 #include <cstddef>
41 #include <string>
42 #include <string.h>
43 #if defined(__osf__)
44 // Tru64 lacks stdint.h, but has inttypes.h which defines a superset of
45 // what stdint.h would define.
46 #include <inttypes.h>
47 #elif !defined(_MSC_VER)
48 #include <stdint.h>
49 #endif
50
51 namespace std {}
52
53 namespace google {
54 namespace protobuf {
55
56 using namespace std; // Don't do this at home, kids.
57
58 #undef GOOGLE_DISALLOW_EVIL_CONSTRUCTORS
59 #define GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TypeName) \
60 TypeName(const TypeName&); \
61 void operator=(const TypeName&)
62
63 #if defined(_MSC_VER) && defined(PROTOBUF_USE_DLLS)
64 #ifdef LIBPROTOBUF_EXPORTS
65 #define LIBPROTOBUF_EXPORT __declspec(dllexport)
66 #else
67 #define LIBPROTOBUF_EXPORT __declspec(dllimport)
68 #endif
69 #ifdef LIBPROTOC_EXPORTS
70 #define LIBPROTOC_EXPORT __declspec(dllexport)
71 #else
72 #define LIBPROTOC_EXPORT __declspec(dllimport)
73 #endif
74 #else
75 #define LIBPROTOBUF_EXPORT
76 #define LIBPROTOC_EXPORT
77 #endif
78
79 namespace internal {
80
81 // Some of these constants are macros rather than const ints so that they can
82 // be used in #if directives.
83
84 // The current version, represented as a single integer to make comparison
85 // easier: major * 10^6 + minor * 10^3 + micro
86 #define GOOGLE_PROTOBUF_VERSION 2003000
87
88 // The minimum library version which works with the current version of the
89 // headers.
90 #define GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION 2003000
91
92 // The minimum header version which works with the current version of
93 // the library. This constant should only be used by protoc's C++ code
94 // generator.
95 static const int kMinHeaderVersionForLibrary = 2003000;
96
97 // The minimum protoc version which works with the current version of the
98 // headers.
99 #define GOOGLE_PROTOBUF_MIN_PROTOC_VERSION 2003000
100
101 // The minimum header version which works with the current version of
102 // protoc. This constant should only be used in VerifyVersion().
103 static const int kMinHeaderVersionForProtoc = 2003000;
104
105 // Verifies that the headers and libraries are compatible. Use the macro
106 // below to call this.
107 void LIBPROTOBUF_EXPORT VerifyVersion(int headerVersion, int minLibraryVersion,
108 const char* filename);
109
110 // Converts a numeric version number to a string.
111 string LIBPROTOBUF_EXPORT VersionString(int version);
112
113 } // namespace internal
114
115 // Place this macro in your main() function (or somewhere before you attempt
116 // to use the protobuf library) to verify that the version you link against
117 // matches the headers you compiled against. If a version mismatch is
118 // detected, the process will abort.
119 #define GOOGLE_PROTOBUF_VERIFY_VERSION \
120 ::google::protobuf::internal::VerifyVersion( \
121 GOOGLE_PROTOBUF_VERSION, GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION, \
122 __FILE__)
123
124 // ===================================================================
125 // from google3/base/port.h
126
127 typedef unsigned int uint;
128
129 #ifdef _MSC_VER
130 typedef __int8 int8;
131 typedef __int16 int16;
132 typedef __int32 int32;
133 typedef __int64 int64;
134
135 typedef unsigned __int8 uint8;
136 typedef unsigned __int16 uint16;
137 typedef unsigned __int32 uint32;
138 typedef unsigned __int64 uint64;
139 #else
140 typedef int8_t int8;
141 typedef int16_t int16;
142 typedef int32_t int32;
143 typedef int64_t int64;
144
145 typedef uint8_t uint8;
146 typedef uint16_t uint16;
147 typedef uint32_t uint32;
148 typedef uint64_t uint64;
149 #endif
150
151 // long long macros to be used because gcc and vc++ use different suffixes,
152 // and different size specifiers in format strings
153 #undef GOOGLE_LONGLONG
154 #undef GOOGLE_ULONGLONG
155 #undef GOOGLE_LL_FORMAT
156
157 #ifdef _MSC_VER
158 #define GOOGLE_LONGLONG(x) x##I64
159 #define GOOGLE_ULONGLONG(x) x##UI64
160 #define GOOGLE_LL_FORMAT "I64" // As in printf("%I64d", ...)
161 #else
162 #define GOOGLE_LONGLONG(x) x##LL
163 #define GOOGLE_ULONGLONG(x) x##ULL
164 #define GOOGLE_LL_FORMAT "ll" // As in "%lld". Note that "q" is poor form also.
165 #endif
166
167 static const int32 kint32max = 0x7FFFFFFF;
168 static const int32 kint32min = -kint32max - 1;
169 static const int64 kint64max = GOOGLE_LONGLONG(0x7FFFFFFFFFFFFFFF);
170 static const int64 kint64min = -kint64max - 1;
171 static const uint32 kuint32max = 0xFFFFFFFFu;
172 static const uint64 kuint64max = GOOGLE_ULONGLONG(0xFFFFFFFFFFFFFFFF);
173
174 // -------------------------------------------------------------------
175 // Annotations: Some parts of the code have been annotated in ways that might
176 // be useful to some compilers or tools, but are not supported universally.
177 // You can #define these annotations yourself if the default implementation
178 // is not right for you.
179
180 #ifndef GOOGLE_ATTRIBUTE_ALWAYS_INLINE
181 #if defined(__GNUC__) && (__GNUC__ > 3 ||(__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
182 // For functions we want to force inline.
183 // Introduced in gcc 3.1.
184 #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE __attribute__ ((always_inline))
185 #else
186 // Other compilers will have to figure it out for themselves.
187 #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE
188 #endif
189 #endif
190
191 #ifndef GOOGLE_ATTRIBUTE_DEPRECATED
192 #ifdef __GNUC__
193 // If the method/variable/type is used anywhere, produce a warning.
194 #define GOOGLE_ATTRIBUTE_DEPRECATED __attribute__((deprecated))
195 #else
196 #define GOOGLE_ATTRIBUTE_DEPRECATED
197 #endif
198 #endif
199
200 #ifndef GOOGLE_PREDICT_TRUE
201 #ifdef __GNUC__
202 // Provided at least since GCC 3.0.
203 #define GOOGLE_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
204 #else
205 #define GOOGLE_PREDICT_TRUE
206 #endif
207 #endif
208
209 // Delimits a block of code which may write to memory which is simultaneously
210 // written by other threads, but which has been determined to be thread-safe
211 // (e.g. because it is an idempotent write).
212 #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN
213 #define GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN()
214 #endif
215 #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_END
216 #define GOOGLE_SAFE_CONCURRENT_WRITES_END()
217 #endif
218
219 // ===================================================================
220 // from google3/base/basictypes.h
221
222 // The GOOGLE_ARRAYSIZE(arr) macro returns the # of elements in an array arr.
223 // The expression is a compile-time constant, and therefore can be
224 // used in defining new arrays, for example.
225 //
226 // GOOGLE_ARRAYSIZE catches a few type errors. If you see a compiler error
227 //
228 // "warning: division by zero in ..."
229 //
230 // when using GOOGLE_ARRAYSIZE, you are (wrongfully) giving it a pointer.
231 // You should only use GOOGLE_ARRAYSIZE on statically allocated arrays.
232 //
233 // The following comments are on the implementation details, and can
234 // be ignored by the users.
235 //
236 // ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in
237 // the array) and sizeof(*(arr)) (the # of bytes in one array
238 // element). If the former is divisible by the latter, perhaps arr is
239 // indeed an array, in which case the division result is the # of
240 // elements in the array. Otherwise, arr cannot possibly be an array,
241 // and we generate a compiler error to prevent the code from
242 // compiling.
243 //
244 // Since the size of bool is implementation-defined, we need to cast
245 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
246 // result has type size_t.
247 //
248 // This macro is not perfect as it wrongfully accepts certain
249 // pointers, namely where the pointer size is divisible by the pointee
250 // size. Since all our code has to go through a 32-bit compiler,
251 // where a pointer is 4 bytes, this means all pointers to a type whose
252 // size is 3 or greater than 4 will be (righteously) rejected.
253 //
254 // Kudos to Jorg Brown for this simple and elegant implementation.
255
256 #undef GOOGLE_ARRAYSIZE
257 #define GOOGLE_ARRAYSIZE(a) \
258 ((sizeof(a) / sizeof(*(a))) / \
259 static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
260
261 namespace internal {
262
263 // Use implicit_cast as a safe version of static_cast or const_cast
264 // for upcasting in the type hierarchy (i.e. casting a pointer to Foo
265 // to a pointer to SuperclassOfFoo or casting a pointer to Foo to
266 // a const pointer to Foo).
267 // When you use implicit_cast, the compiler checks that the cast is safe.
268 // Such explicit implicit_casts are necessary in surprisingly many
269 // situations where C++ demands an exact type match instead of an
270 // argument type convertable to a target type.
271 //
272 // The From type can be inferred, so the preferred syntax for using
273 // implicit_cast is the same as for static_cast etc.:
274 //
275 // implicit_cast<ToType>(expr)
276 //
277 // implicit_cast would have been part of the C++ standard library,
278 // but the proposal was submitted too late. It will probably make
279 // its way into the language in the future.
280 template<typename To, typename From>
implicit_cast(From const & f)281 inline To implicit_cast(From const &f) {
282 return f;
283 }
284
285 // When you upcast (that is, cast a pointer from type Foo to type
286 // SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts
287 // always succeed. When you downcast (that is, cast a pointer from
288 // type Foo to type SubclassOfFoo), static_cast<> isn't safe, because
289 // how do you know the pointer is really of type SubclassOfFoo? It
290 // could be a bare Foo, or of type DifferentSubclassOfFoo. Thus,
291 // when you downcast, you should use this macro. In debug mode, we
292 // use dynamic_cast<> to double-check the downcast is legal (we die
293 // if it's not). In normal mode, we do the efficient static_cast<>
294 // instead. Thus, it's important to test in debug mode to make sure
295 // the cast is legal!
296 // This is the only place in the code we should use dynamic_cast<>.
297 // In particular, you SHOULDN'T be using dynamic_cast<> in order to
298 // do RTTI (eg code like this:
299 // if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo);
300 // if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo);
301 // You should design the code some other way not to need this.
302
303 template<typename To, typename From> // use like this: down_cast<T*>(foo);
down_cast(From * f)304 inline To down_cast(From* f) { // so we only accept pointers
305 // Ensures that To is a sub-type of From *. This test is here only
306 // for compile-time type checking, and has no overhead in an
307 // optimized build at run-time, as it will be optimized away
308 // completely.
309 if (false) {
310 implicit_cast<From*, To>(0);
311 }
312
313 #if !defined(NDEBUG) && !defined(GOOGLE_PROTOBUF_NO_RTTI)
314 assert(f == NULL || dynamic_cast<To>(f) != NULL); // RTTI: debug mode only!
315 #endif
316 return static_cast<To>(f);
317 }
318
319 } // namespace internal
320
321 // We made these internal so that they would show up as such in the docs,
322 // but we don't want to stick "internal::" in front of them everywhere.
323 using internal::implicit_cast;
324 using internal::down_cast;
325
326 // The COMPILE_ASSERT macro can be used to verify that a compile time
327 // expression is true. For example, you could use it to verify the
328 // size of a static array:
329 //
330 // COMPILE_ASSERT(ARRAYSIZE(content_type_names) == CONTENT_NUM_TYPES,
331 // content_type_names_incorrect_size);
332 //
333 // or to make sure a struct is smaller than a certain size:
334 //
335 // COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large);
336 //
337 // The second argument to the macro is the name of the variable. If
338 // the expression is false, most compilers will issue a warning/error
339 // containing the name of the variable.
340
341 namespace internal {
342
343 template <bool>
344 struct CompileAssert {
345 };
346
347 } // namespace internal
348
349 #undef GOOGLE_COMPILE_ASSERT
350 #define GOOGLE_COMPILE_ASSERT(expr, msg) \
351 typedef ::google::protobuf::internal::CompileAssert<(bool(expr))> \
352 msg[bool(expr) ? 1 : -1]
353
354 // Implementation details of COMPILE_ASSERT:
355 //
356 // - COMPILE_ASSERT works by defining an array type that has -1
357 // elements (and thus is invalid) when the expression is false.
358 //
359 // - The simpler definition
360 //
361 // #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1]
362 //
363 // does not work, as gcc supports variable-length arrays whose sizes
364 // are determined at run-time (this is gcc's extension and not part
365 // of the C++ standard). As a result, gcc fails to reject the
366 // following code with the simple definition:
367 //
368 // int foo;
369 // COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is
370 // // not a compile-time constant.
371 //
372 // - By using the type CompileAssert<(bool(expr))>, we ensures that
373 // expr is a compile-time constant. (Template arguments must be
374 // determined at compile-time.)
375 //
376 // - The outter parentheses in CompileAssert<(bool(expr))> are necessary
377 // to work around a bug in gcc 3.4.4 and 4.0.1. If we had written
378 //
379 // CompileAssert<bool(expr)>
380 //
381 // instead, these compilers will refuse to compile
382 //
383 // COMPILE_ASSERT(5 > 0, some_message);
384 //
385 // (They seem to think the ">" in "5 > 0" marks the end of the
386 // template argument list.)
387 //
388 // - The array size is (bool(expr) ? 1 : -1), instead of simply
389 //
390 // ((expr) ? 1 : -1).
391 //
392 // This is to avoid running into a bug in MS VC 7.1, which
393 // causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1.
394
395 // ===================================================================
396 // from google3/base/scoped_ptr.h
397
398 namespace internal {
399
400 // This is an implementation designed to match the anticipated future TR2
401 // implementation of the scoped_ptr class, and its closely-related brethren,
402 // scoped_array, scoped_ptr_malloc, and make_scoped_ptr.
403
404 template <class C> class scoped_ptr;
405 template <class C> class scoped_array;
406
407 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
408 // automatically deletes the pointer it holds (if any).
409 // That is, scoped_ptr<T> owns the T object that it points to.
410 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
411 //
412 // The size of a scoped_ptr is small:
413 // sizeof(scoped_ptr<C>) == sizeof(C*)
414 template <class C>
415 class scoped_ptr {
416 public:
417
418 // The element type
419 typedef C element_type;
420
421 // Constructor. Defaults to intializing with NULL.
422 // There is no way to create an uninitialized scoped_ptr.
423 // The input parameter must be allocated with new.
ptr_(p)424 explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
425
426 // Destructor. If there is a C object, delete it.
427 // We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_ptr()428 ~scoped_ptr() {
429 enum { type_must_be_complete = sizeof(C) };
430 delete ptr_;
431 }
432
433 // Reset. Deletes the current owned object, if any.
434 // Then takes ownership of a new object, if given.
435 // this->reset(this->get()) works.
436 void reset(C* p = NULL) {
437 if (p != ptr_) {
438 enum { type_must_be_complete = sizeof(C) };
439 delete ptr_;
440 ptr_ = p;
441 }
442 }
443
444 // Accessors to get the owned object.
445 // operator* and operator-> will assert() if there is no current object.
446 C& operator*() const {
447 assert(ptr_ != NULL);
448 return *ptr_;
449 }
450 C* operator->() const {
451 assert(ptr_ != NULL);
452 return ptr_;
453 }
get()454 C* get() const { return ptr_; }
455
456 // Comparison operators.
457 // These return whether two scoped_ptr refer to the same object, not just to
458 // two different but equal objects.
459 bool operator==(C* p) const { return ptr_ == p; }
460 bool operator!=(C* p) const { return ptr_ != p; }
461
462 // Swap two scoped pointers.
swap(scoped_ptr & p2)463 void swap(scoped_ptr& p2) {
464 C* tmp = ptr_;
465 ptr_ = p2.ptr_;
466 p2.ptr_ = tmp;
467 }
468
469 // Release a pointer.
470 // The return value is the current pointer held by this object.
471 // If this object holds a NULL pointer, the return value is NULL.
472 // After this operation, this object will hold a NULL pointer,
473 // and will not own the object any more.
release()474 C* release() {
475 C* retVal = ptr_;
476 ptr_ = NULL;
477 return retVal;
478 }
479
480 private:
481 C* ptr_;
482
483 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't
484 // make sense, and if C2 == C, it still doesn't make sense because you should
485 // never have the same object owned by two different scoped_ptrs.
486 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
487 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
488
489 // Disallow evil constructors
490 scoped_ptr(const scoped_ptr&);
491 void operator=(const scoped_ptr&);
492 };
493
494 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
495 // with new [] and the destructor deletes objects with delete [].
496 //
497 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
498 // or is NULL. A scoped_array<C> owns the object that it points to.
499 //
500 // Size: sizeof(scoped_array<C>) == sizeof(C*)
501 template <class C>
502 class scoped_array {
503 public:
504
505 // The element type
506 typedef C element_type;
507
508 // Constructor. Defaults to intializing with NULL.
509 // There is no way to create an uninitialized scoped_array.
510 // The input parameter must be allocated with new [].
array_(p)511 explicit scoped_array(C* p = NULL) : array_(p) { }
512
513 // Destructor. If there is a C object, delete it.
514 // We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_array()515 ~scoped_array() {
516 enum { type_must_be_complete = sizeof(C) };
517 delete[] array_;
518 }
519
520 // Reset. Deletes the current owned object, if any.
521 // Then takes ownership of a new object, if given.
522 // this->reset(this->get()) works.
523 void reset(C* p = NULL) {
524 if (p != array_) {
525 enum { type_must_be_complete = sizeof(C) };
526 delete[] array_;
527 array_ = p;
528 }
529 }
530
531 // Get one element of the current object.
532 // Will assert() if there is no current object, or index i is negative.
533 C& operator[](std::ptrdiff_t i) const {
534 assert(i >= 0);
535 assert(array_ != NULL);
536 return array_[i];
537 }
538
539 // Get a pointer to the zeroth element of the current object.
540 // If there is no current object, return NULL.
get()541 C* get() const {
542 return array_;
543 }
544
545 // Comparison operators.
546 // These return whether two scoped_array refer to the same object, not just to
547 // two different but equal objects.
548 bool operator==(C* p) const { return array_ == p; }
549 bool operator!=(C* p) const { return array_ != p; }
550
551 // Swap two scoped arrays.
swap(scoped_array & p2)552 void swap(scoped_array& p2) {
553 C* tmp = array_;
554 array_ = p2.array_;
555 p2.array_ = tmp;
556 }
557
558 // Release an array.
559 // The return value is the current pointer held by this object.
560 // If this object holds a NULL pointer, the return value is NULL.
561 // After this operation, this object will hold a NULL pointer,
562 // and will not own the object any more.
release()563 C* release() {
564 C* retVal = array_;
565 array_ = NULL;
566 return retVal;
567 }
568
569 private:
570 C* array_;
571
572 // Forbid comparison of different scoped_array types.
573 template <class C2> bool operator==(scoped_array<C2> const& p2) const;
574 template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
575
576 // Disallow evil constructors
577 scoped_array(const scoped_array&);
578 void operator=(const scoped_array&);
579 };
580
581 } // namespace internal
582
583 // We made these internal so that they would show up as such in the docs,
584 // but we don't want to stick "internal::" in front of them everywhere.
585 using internal::scoped_ptr;
586 using internal::scoped_array;
587
588 // ===================================================================
589 // emulates google3/base/logging.h
590
591 enum LogLevel {
592 LOGLEVEL_INFO, // Informational. This is never actually used by
593 // libprotobuf.
594 LOGLEVEL_WARNING, // Warns about issues that, although not technically a
595 // problem now, could cause problems in the future. For
596 // example, a // warning will be printed when parsing a
597 // message that is near the message size limit.
598 LOGLEVEL_ERROR, // An error occurred which should never happen during
599 // normal use.
600 LOGLEVEL_FATAL, // An error occurred from which the library cannot
601 // recover. This usually indicates a programming error
602 // in the code which calls the library, especially when
603 // compiled in debug mode.
604
605 #ifdef NDEBUG
606 LOGLEVEL_DFATAL = LOGLEVEL_ERROR
607 #else
608 LOGLEVEL_DFATAL = LOGLEVEL_FATAL
609 #endif
610 };
611
612 namespace internal {
613
614 class LogFinisher;
615
616 class LIBPROTOBUF_EXPORT LogMessage {
617 public:
618 LogMessage(LogLevel level, const char* filename, int line);
619 ~LogMessage();
620
621 LogMessage& operator<<(const string& value);
622 LogMessage& operator<<(const char* value);
623 LogMessage& operator<<(char value);
624 LogMessage& operator<<(int value);
625 LogMessage& operator<<(uint value);
626 LogMessage& operator<<(long value);
627 LogMessage& operator<<(unsigned long value);
628 LogMessage& operator<<(double value);
629
630 private:
631 friend class LogFinisher;
632 void Finish();
633
634 LogLevel level_;
635 const char* filename_;
636 int line_;
637 string message_;
638 };
639
640 // Used to make the entire "LOG(BLAH) << etc." expression have a void return
641 // type and print a newline after each message.
642 class LIBPROTOBUF_EXPORT LogFinisher {
643 public:
644 void operator=(LogMessage& other);
645 };
646
647 } // namespace internal
648
649 // Undef everything in case we're being mixed with some other Google library
650 // which already defined them itself. Presumably all Google libraries will
651 // support the same syntax for these so it should not be a big deal if they
652 // end up using our definitions instead.
653 #undef GOOGLE_LOG
654 #undef GOOGLE_LOG_IF
655
656 #undef GOOGLE_CHECK
657 #undef GOOGLE_CHECK_EQ
658 #undef GOOGLE_CHECK_NE
659 #undef GOOGLE_CHECK_LT
660 #undef GOOGLE_CHECK_LE
661 #undef GOOGLE_CHECK_GT
662 #undef GOOGLE_CHECK_GE
663
664 #undef GOOGLE_DLOG
665 #undef GOOGLE_DCHECK
666 #undef GOOGLE_DCHECK_EQ
667 #undef GOOGLE_DCHECK_NE
668 #undef GOOGLE_DCHECK_LT
669 #undef GOOGLE_DCHECK_LE
670 #undef GOOGLE_DCHECK_GT
671 #undef GOOGLE_DCHECK_GE
672
673 #define GOOGLE_LOG(LEVEL) \
674 ::google::protobuf::internal::LogFinisher() = \
675 ::google::protobuf::internal::LogMessage( \
676 ::google::protobuf::LOGLEVEL_##LEVEL, __FILE__, __LINE__)
677 #define GOOGLE_LOG_IF(LEVEL, CONDITION) \
678 !(CONDITION) ? (void)0 : GOOGLE_LOG(LEVEL)
679
680 #define GOOGLE_CHECK(EXPRESSION) \
681 GOOGLE_LOG_IF(FATAL, !(EXPRESSION)) << "CHECK failed: " #EXPRESSION ": "
682 #define GOOGLE_CHECK_EQ(A, B) GOOGLE_CHECK((A) == (B))
683 #define GOOGLE_CHECK_NE(A, B) GOOGLE_CHECK((A) != (B))
684 #define GOOGLE_CHECK_LT(A, B) GOOGLE_CHECK((A) < (B))
685 #define GOOGLE_CHECK_LE(A, B) GOOGLE_CHECK((A) <= (B))
686 #define GOOGLE_CHECK_GT(A, B) GOOGLE_CHECK((A) > (B))
687 #define GOOGLE_CHECK_GE(A, B) GOOGLE_CHECK((A) >= (B))
688
689 #ifdef NDEBUG
690
691 #define GOOGLE_DLOG GOOGLE_LOG_IF(INFO, false)
692
693 #define GOOGLE_DCHECK(EXPRESSION) while(false) GOOGLE_CHECK(EXPRESSION)
694 #define GOOGLE_DCHECK_EQ(A, B) GOOGLE_DCHECK((A) == (B))
695 #define GOOGLE_DCHECK_NE(A, B) GOOGLE_DCHECK((A) != (B))
696 #define GOOGLE_DCHECK_LT(A, B) GOOGLE_DCHECK((A) < (B))
697 #define GOOGLE_DCHECK_LE(A, B) GOOGLE_DCHECK((A) <= (B))
698 #define GOOGLE_DCHECK_GT(A, B) GOOGLE_DCHECK((A) > (B))
699 #define GOOGLE_DCHECK_GE(A, B) GOOGLE_DCHECK((A) >= (B))
700
701 #else // NDEBUG
702
703 #define GOOGLE_DLOG GOOGLE_LOG
704
705 #define GOOGLE_DCHECK GOOGLE_CHECK
706 #define GOOGLE_DCHECK_EQ GOOGLE_CHECK_EQ
707 #define GOOGLE_DCHECK_NE GOOGLE_CHECK_NE
708 #define GOOGLE_DCHECK_LT GOOGLE_CHECK_LT
709 #define GOOGLE_DCHECK_LE GOOGLE_CHECK_LE
710 #define GOOGLE_DCHECK_GT GOOGLE_CHECK_GT
711 #define GOOGLE_DCHECK_GE GOOGLE_CHECK_GE
712
713 #endif // !NDEBUG
714
715 typedef void LogHandler(LogLevel level, const char* filename, int line,
716 const string& message);
717
718 // The protobuf library sometimes writes warning and error messages to
719 // stderr. These messages are primarily useful for developers, but may
720 // also help end users figure out a problem. If you would prefer that
721 // these messages be sent somewhere other than stderr, call SetLogHandler()
722 // to set your own handler. This returns the old handler. Set the handler
723 // to NULL to ignore log messages (but see also LogSilencer, below).
724 //
725 // Obviously, SetLogHandler is not thread-safe. You should only call it
726 // at initialization time, and probably not from library code. If you
727 // simply want to suppress log messages temporarily (e.g. because you
728 // have some code that tends to trigger them frequently and you know
729 // the warnings are not important to you), use the LogSilencer class
730 // below.
731 LIBPROTOBUF_EXPORT LogHandler* SetLogHandler(LogHandler* new_func);
732
733 // Create a LogSilencer if you want to temporarily suppress all log
734 // messages. As long as any LogSilencer objects exist, non-fatal
735 // log messages will be discarded (the current LogHandler will *not*
736 // be called). Constructing a LogSilencer is thread-safe. You may
737 // accidentally suppress log messages occurring in another thread, but
738 // since messages are generally for debugging purposes only, this isn't
739 // a big deal. If you want to intercept log messages, use SetLogHandler().
740 class LIBPROTOBUF_EXPORT LogSilencer {
741 public:
742 LogSilencer();
743 ~LogSilencer();
744 };
745
746 // ===================================================================
747 // emulates google3/base/callback.h
748
749 // Abstract interface for a callback. When calling an RPC, you must provide
750 // a Closure to call when the procedure completes. See the Service interface
751 // in service.h.
752 //
753 // To automatically construct a Closure which calls a particular function or
754 // method with a particular set of parameters, use the NewCallback() function.
755 // Example:
756 // void FooDone(const FooResponse* response) {
757 // ...
758 // }
759 //
760 // void CallFoo() {
761 // ...
762 // // When done, call FooDone() and pass it a pointer to the response.
763 // Closure* callback = NewCallback(&FooDone, response);
764 // // Make the call.
765 // service->Foo(controller, request, response, callback);
766 // }
767 //
768 // Example that calls a method:
769 // class Handler {
770 // public:
771 // ...
772 //
773 // void FooDone(const FooResponse* response) {
774 // ...
775 // }
776 //
777 // void CallFoo() {
778 // ...
779 // // When done, call FooDone() and pass it a pointer to the response.
780 // Closure* callback = NewCallback(this, &Handler::FooDone, response);
781 // // Make the call.
782 // service->Foo(controller, request, response, callback);
783 // }
784 // };
785 //
786 // Currently NewCallback() supports binding zero, one, or two arguments.
787 //
788 // Callbacks created with NewCallback() automatically delete themselves when
789 // executed. They should be used when a callback is to be called exactly
790 // once (usually the case with RPC callbacks). If a callback may be called
791 // a different number of times (including zero), create it with
792 // NewPermanentCallback() instead. You are then responsible for deleting the
793 // callback (using the "delete" keyword as normal).
794 //
795 // Note that NewCallback() is a bit touchy regarding argument types. Generally,
796 // the values you provide for the parameter bindings must exactly match the
797 // types accepted by the callback function. For example:
798 // void Foo(string s);
799 // NewCallback(&Foo, "foo"); // WON'T WORK: const char* != string
800 // NewCallback(&Foo, string("foo")); // WORKS
801 // Also note that the arguments cannot be references:
802 // void Foo(const string& s);
803 // string my_str;
804 // NewCallback(&Foo, my_str); // WON'T WORK: Can't use referecnes.
805 // However, correctly-typed pointers will work just fine.
806 class LIBPROTOBUF_EXPORT Closure {
807 public:
Closure()808 Closure() {}
809 virtual ~Closure();
810
811 virtual void Run() = 0;
812
813 private:
814 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Closure);
815 };
816
817 namespace internal {
818
819 class LIBPROTOBUF_EXPORT FunctionClosure0 : public Closure {
820 public:
821 typedef void (*FunctionType)();
822
FunctionClosure0(FunctionType function,bool self_deleting)823 FunctionClosure0(FunctionType function, bool self_deleting)
824 : function_(function), self_deleting_(self_deleting) {}
825 ~FunctionClosure0();
826
Run()827 void Run() {
828 function_();
829 if (self_deleting_) delete this;
830 }
831
832 private:
833 FunctionType function_;
834 bool self_deleting_;
835 };
836
837 template <typename Class>
838 class MethodClosure0 : public Closure {
839 public:
840 typedef void (Class::*MethodType)();
841
MethodClosure0(Class * object,MethodType method,bool self_deleting)842 MethodClosure0(Class* object, MethodType method, bool self_deleting)
843 : object_(object), method_(method), self_deleting_(self_deleting) {}
~MethodClosure0()844 ~MethodClosure0() {}
845
Run()846 void Run() {
847 (object_->*method_)();
848 if (self_deleting_) delete this;
849 }
850
851 private:
852 Class* object_;
853 MethodType method_;
854 bool self_deleting_;
855 };
856
857 template <typename Arg1>
858 class FunctionClosure1 : public Closure {
859 public:
860 typedef void (*FunctionType)(Arg1 arg1);
861
FunctionClosure1(FunctionType function,bool self_deleting,Arg1 arg1)862 FunctionClosure1(FunctionType function, bool self_deleting,
863 Arg1 arg1)
864 : function_(function), self_deleting_(self_deleting),
865 arg1_(arg1) {}
~FunctionClosure1()866 ~FunctionClosure1() {}
867
Run()868 void Run() {
869 function_(arg1_);
870 if (self_deleting_) delete this;
871 }
872
873 private:
874 FunctionType function_;
875 bool self_deleting_;
876 Arg1 arg1_;
877 };
878
879 template <typename Class, typename Arg1>
880 class MethodClosure1 : public Closure {
881 public:
882 typedef void (Class::*MethodType)(Arg1 arg1);
883
MethodClosure1(Class * object,MethodType method,bool self_deleting,Arg1 arg1)884 MethodClosure1(Class* object, MethodType method, bool self_deleting,
885 Arg1 arg1)
886 : object_(object), method_(method), self_deleting_(self_deleting),
887 arg1_(arg1) {}
~MethodClosure1()888 ~MethodClosure1() {}
889
Run()890 void Run() {
891 (object_->*method_)(arg1_);
892 if (self_deleting_) delete this;
893 }
894
895 private:
896 Class* object_;
897 MethodType method_;
898 bool self_deleting_;
899 Arg1 arg1_;
900 };
901
902 template <typename Arg1, typename Arg2>
903 class FunctionClosure2 : public Closure {
904 public:
905 typedef void (*FunctionType)(Arg1 arg1, Arg2 arg2);
906
FunctionClosure2(FunctionType function,bool self_deleting,Arg1 arg1,Arg2 arg2)907 FunctionClosure2(FunctionType function, bool self_deleting,
908 Arg1 arg1, Arg2 arg2)
909 : function_(function), self_deleting_(self_deleting),
910 arg1_(arg1), arg2_(arg2) {}
~FunctionClosure2()911 ~FunctionClosure2() {}
912
Run()913 void Run() {
914 function_(arg1_, arg2_);
915 if (self_deleting_) delete this;
916 }
917
918 private:
919 FunctionType function_;
920 bool self_deleting_;
921 Arg1 arg1_;
922 Arg2 arg2_;
923 };
924
925 template <typename Class, typename Arg1, typename Arg2>
926 class MethodClosure2 : public Closure {
927 public:
928 typedef void (Class::*MethodType)(Arg1 arg1, Arg2 arg2);
929
MethodClosure2(Class * object,MethodType method,bool self_deleting,Arg1 arg1,Arg2 arg2)930 MethodClosure2(Class* object, MethodType method, bool self_deleting,
931 Arg1 arg1, Arg2 arg2)
932 : object_(object), method_(method), self_deleting_(self_deleting),
933 arg1_(arg1), arg2_(arg2) {}
~MethodClosure2()934 ~MethodClosure2() {}
935
Run()936 void Run() {
937 (object_->*method_)(arg1_, arg2_);
938 if (self_deleting_) delete this;
939 }
940
941 private:
942 Class* object_;
943 MethodType method_;
944 bool self_deleting_;
945 Arg1 arg1_;
946 Arg2 arg2_;
947 };
948
949 } // namespace internal
950
951 // See Closure.
NewCallback(void (* function)())952 inline Closure* NewCallback(void (*function)()) {
953 return new internal::FunctionClosure0(function, true);
954 }
955
956 // See Closure.
NewPermanentCallback(void (* function)())957 inline Closure* NewPermanentCallback(void (*function)()) {
958 return new internal::FunctionClosure0(function, false);
959 }
960
961 // See Closure.
962 template <typename Class>
NewCallback(Class * object,void (Class::* method)())963 inline Closure* NewCallback(Class* object, void (Class::*method)()) {
964 return new internal::MethodClosure0<Class>(object, method, true);
965 }
966
967 // See Closure.
968 template <typename Class>
NewPermanentCallback(Class * object,void (Class::* method)())969 inline Closure* NewPermanentCallback(Class* object, void (Class::*method)()) {
970 return new internal::MethodClosure0<Class>(object, method, false);
971 }
972
973 // See Closure.
974 template <typename Arg1>
NewCallback(void (* function)(Arg1),Arg1 arg1)975 inline Closure* NewCallback(void (*function)(Arg1),
976 Arg1 arg1) {
977 return new internal::FunctionClosure1<Arg1>(function, true, arg1);
978 }
979
980 // See Closure.
981 template <typename Arg1>
NewPermanentCallback(void (* function)(Arg1),Arg1 arg1)982 inline Closure* NewPermanentCallback(void (*function)(Arg1),
983 Arg1 arg1) {
984 return new internal::FunctionClosure1<Arg1>(function, false, arg1);
985 }
986
987 // See Closure.
988 template <typename Class, typename Arg1>
NewCallback(Class * object,void (Class::* method)(Arg1),Arg1 arg1)989 inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1),
990 Arg1 arg1) {
991 return new internal::MethodClosure1<Class, Arg1>(object, method, true, arg1);
992 }
993
994 // See Closure.
995 template <typename Class, typename Arg1>
NewPermanentCallback(Class * object,void (Class::* method)(Arg1),Arg1 arg1)996 inline Closure* NewPermanentCallback(Class* object, void (Class::*method)(Arg1),
997 Arg1 arg1) {
998 return new internal::MethodClosure1<Class, Arg1>(object, method, false, arg1);
999 }
1000
1001 // See Closure.
1002 template <typename Arg1, typename Arg2>
NewCallback(void (* function)(Arg1,Arg2),Arg1 arg1,Arg2 arg2)1003 inline Closure* NewCallback(void (*function)(Arg1, Arg2),
1004 Arg1 arg1, Arg2 arg2) {
1005 return new internal::FunctionClosure2<Arg1, Arg2>(
1006 function, true, arg1, arg2);
1007 }
1008
1009 // See Closure.
1010 template <typename Arg1, typename Arg2>
NewPermanentCallback(void (* function)(Arg1,Arg2),Arg1 arg1,Arg2 arg2)1011 inline Closure* NewPermanentCallback(void (*function)(Arg1, Arg2),
1012 Arg1 arg1, Arg2 arg2) {
1013 return new internal::FunctionClosure2<Arg1, Arg2>(
1014 function, false, arg1, arg2);
1015 }
1016
1017 // See Closure.
1018 template <typename Class, typename Arg1, typename Arg2>
NewCallback(Class * object,void (Class::* method)(Arg1,Arg2),Arg1 arg1,Arg2 arg2)1019 inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1, Arg2),
1020 Arg1 arg1, Arg2 arg2) {
1021 return new internal::MethodClosure2<Class, Arg1, Arg2>(
1022 object, method, true, arg1, arg2);
1023 }
1024
1025 // See Closure.
1026 template <typename Class, typename Arg1, typename Arg2>
NewPermanentCallback(Class * object,void (Class::* method)(Arg1,Arg2),Arg1 arg1,Arg2 arg2)1027 inline Closure* NewPermanentCallback(
1028 Class* object, void (Class::*method)(Arg1, Arg2),
1029 Arg1 arg1, Arg2 arg2) {
1030 return new internal::MethodClosure2<Class, Arg1, Arg2>(
1031 object, method, false, arg1, arg2);
1032 }
1033
1034 // A function which does nothing. Useful for creating no-op callbacks, e.g.:
1035 // Closure* nothing = NewCallback(&DoNothing);
1036 void LIBPROTOBUF_EXPORT DoNothing();
1037
1038 // ===================================================================
1039 // emulates google3/base/mutex.h
1040
1041 namespace internal {
1042
1043 // A Mutex is a non-reentrant (aka non-recursive) mutex. At most one thread T
1044 // may hold a mutex at a given time. If T attempts to Lock() the same Mutex
1045 // while holding it, T will deadlock.
1046 class LIBPROTOBUF_EXPORT Mutex {
1047 public:
1048 // Create a Mutex that is not held by anybody.
1049 Mutex();
1050
1051 // Destructor
1052 ~Mutex();
1053
1054 // Block if necessary until this Mutex is free, then acquire it exclusively.
1055 void Lock();
1056
1057 // Release this Mutex. Caller must hold it exclusively.
1058 void Unlock();
1059
1060 // Crash if this Mutex is not held exclusively by this thread.
1061 // May fail to crash when it should; will never crash when it should not.
1062 void AssertHeld();
1063
1064 private:
1065 struct Internal;
1066 Internal* mInternal;
1067
1068 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Mutex);
1069 };
1070
1071 // MutexLock(mu) acquires mu when constructed and releases it when destroyed.
1072 class LIBPROTOBUF_EXPORT MutexLock {
1073 public:
MutexLock(Mutex * mu)1074 explicit MutexLock(Mutex *mu) : mu_(mu) { this->mu_->Lock(); }
~MutexLock()1075 ~MutexLock() { this->mu_->Unlock(); }
1076 private:
1077 Mutex *const mu_;
1078 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLock);
1079 };
1080
1081 // TODO(kenton): Implement these? Hard to implement portably.
1082 typedef MutexLock ReaderMutexLock;
1083 typedef MutexLock WriterMutexLock;
1084
1085 // MutexLockMaybe is like MutexLock, but is a no-op when mu is NULL.
1086 class LIBPROTOBUF_EXPORT MutexLockMaybe {
1087 public:
MutexLockMaybe(Mutex * mu)1088 explicit MutexLockMaybe(Mutex *mu) :
1089 mu_(mu) { if (this->mu_ != NULL) { this->mu_->Lock(); } }
~MutexLockMaybe()1090 ~MutexLockMaybe() { if (this->mu_ != NULL) { this->mu_->Unlock(); } }
1091 private:
1092 Mutex *const mu_;
1093 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLockMaybe);
1094 };
1095
1096 } // namespace internal
1097
1098 // We made these internal so that they would show up as such in the docs,
1099 // but we don't want to stick "internal::" in front of them everywhere.
1100 using internal::Mutex;
1101 using internal::MutexLock;
1102 using internal::ReaderMutexLock;
1103 using internal::WriterMutexLock;
1104 using internal::MutexLockMaybe;
1105
1106 // ===================================================================
1107 // from google3/base/type_traits.h
1108
1109 namespace internal {
1110
1111 // Specified by TR1 [4.7.4] Pointer modifications.
1112 template<typename T> struct remove_pointer { typedef T type; };
1113 template<typename T> struct remove_pointer<T*> { typedef T type; };
1114 template<typename T> struct remove_pointer<T* const> { typedef T type; };
1115 template<typename T> struct remove_pointer<T* volatile> { typedef T type; };
1116 template<typename T> struct remove_pointer<T* const volatile> {
1117 typedef T type; };
1118
1119 // ===================================================================
1120
1121 // Checks if the buffer contains structurally-valid UTF-8. Implemented in
1122 // structurally_valid.cc.
1123 LIBPROTOBUF_EXPORT bool IsStructurallyValidUTF8(const char* buf, int len);
1124
1125 } // namespace internal
1126
1127 // ===================================================================
1128 // Shutdown support.
1129
1130 // Shut down the entire protocol buffers library, deleting all static-duration
1131 // objects allocated by the library or by generated .pb.cc files.
1132 //
1133 // There are two reasons you might want to call this:
1134 // * You use a draconian definition of "memory leak" in which you expect
1135 // every single malloc() to have a corresponding free(), even for objects
1136 // which live until program exit.
1137 // * You are writing a dynamically-loaded library which needs to clean up
1138 // after itself when the library is unloaded.
1139 //
1140 // It is safe to call this multiple times. However, it is not safe to use
1141 // any other part of the protocol buffers library after
1142 // ShutdownProtobufLibrary() has been called.
1143 LIBPROTOBUF_EXPORT void ShutdownProtobufLibrary();
1144
1145 namespace internal {
1146
1147 // Register a function to be called when ShutdownProtocolBuffers() is called.
1148 LIBPROTOBUF_EXPORT void OnShutdown(void (*func)());
1149
1150 } // namespace internal
1151
1152 } // namespace protobuf
1153 } // namespace google
1154
1155 #endif // GOOGLE_PROTOBUF_COMMON_H__
1156