1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "api.h"
31 #include "bootstrapper.h"
32 #include "debug.h"
33 #include "execution.h"
34 #include "platform.h"
35 #include "simulator.h"
36 #include "string-stream.h"
37
38 namespace v8 {
39 namespace internal {
40
41 ThreadLocalTop Top::thread_local_;
42 Mutex* Top::break_access_ = OS::CreateMutex();
43
44 NoAllocationStringAllocator* preallocated_message_space = NULL;
45
46 Address top_addresses[] = {
47 #define C(name) reinterpret_cast<Address>(Top::name()),
48 TOP_ADDRESS_LIST(C)
49 TOP_ADDRESS_LIST_PROF(C)
50 #undef C
51 NULL
52 };
53
54
TryCatchHandler()55 v8::TryCatch* ThreadLocalTop::TryCatchHandler() {
56 return TRY_CATCH_FROM_ADDRESS(try_catch_handler_address());
57 }
58
59
Initialize()60 void ThreadLocalTop::Initialize() {
61 c_entry_fp_ = 0;
62 handler_ = 0;
63 #ifdef ENABLE_LOGGING_AND_PROFILING
64 js_entry_sp_ = 0;
65 #endif
66 stack_is_cooked_ = false;
67 try_catch_handler_address_ = NULL;
68 context_ = NULL;
69 int id = ThreadManager::CurrentId();
70 thread_id_ = (id == 0) ? ThreadManager::kInvalidId : id;
71 external_caught_exception_ = false;
72 failed_access_check_callback_ = NULL;
73 save_context_ = NULL;
74 catcher_ = NULL;
75 }
76
77
get_address_from_id(Top::AddressId id)78 Address Top::get_address_from_id(Top::AddressId id) {
79 return top_addresses[id];
80 }
81
82
Iterate(ObjectVisitor * v,char * thread_storage)83 char* Top::Iterate(ObjectVisitor* v, char* thread_storage) {
84 ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage);
85 Iterate(v, thread);
86 return thread_storage + sizeof(ThreadLocalTop);
87 }
88
89
Iterate(ObjectVisitor * v,ThreadLocalTop * thread)90 void Top::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) {
91 v->VisitPointer(&(thread->pending_exception_));
92 v->VisitPointer(&(thread->pending_message_obj_));
93 v->VisitPointer(
94 bit_cast<Object**, Script**>(&(thread->pending_message_script_)));
95 v->VisitPointer(bit_cast<Object**, Context**>(&(thread->context_)));
96 v->VisitPointer(&(thread->scheduled_exception_));
97
98 for (v8::TryCatch* block = thread->TryCatchHandler();
99 block != NULL;
100 block = TRY_CATCH_FROM_ADDRESS(block->next_)) {
101 v->VisitPointer(bit_cast<Object**, void**>(&(block->exception_)));
102 v->VisitPointer(bit_cast<Object**, void**>(&(block->message_)));
103 }
104
105 // Iterate over pointers on native execution stack.
106 for (StackFrameIterator it(thread); !it.done(); it.Advance()) {
107 it.frame()->Iterate(v);
108 }
109 }
110
111
Iterate(ObjectVisitor * v)112 void Top::Iterate(ObjectVisitor* v) {
113 ThreadLocalTop* current_t = &thread_local_;
114 Iterate(v, current_t);
115 }
116
117
InitializeThreadLocal()118 void Top::InitializeThreadLocal() {
119 thread_local_.Initialize();
120 clear_pending_exception();
121 clear_pending_message();
122 clear_scheduled_exception();
123 }
124
125
126 // Create a dummy thread that will wait forever on a semaphore. The only
127 // purpose for this thread is to have some stack area to save essential data
128 // into for use by a stacks only core dump (aka minidump).
129 class PreallocatedMemoryThread: public Thread {
130 public:
PreallocatedMemoryThread()131 PreallocatedMemoryThread() : keep_running_(true) {
132 wait_for_ever_semaphore_ = OS::CreateSemaphore(0);
133 data_ready_semaphore_ = OS::CreateSemaphore(0);
134 }
135
136 // When the thread starts running it will allocate a fixed number of bytes
137 // on the stack and publish the location of this memory for others to use.
Run()138 void Run() {
139 EmbeddedVector<char, 15 * 1024> local_buffer;
140
141 // Initialize the buffer with a known good value.
142 OS::StrNCpy(local_buffer, "Trace data was not generated.\n",
143 local_buffer.length());
144
145 // Publish the local buffer and signal its availability.
146 data_ = local_buffer.start();
147 length_ = local_buffer.length();
148 data_ready_semaphore_->Signal();
149
150 while (keep_running_) {
151 // This thread will wait here until the end of time.
152 wait_for_ever_semaphore_->Wait();
153 }
154
155 // Make sure we access the buffer after the wait to remove all possibility
156 // of it being optimized away.
157 OS::StrNCpy(local_buffer, "PreallocatedMemoryThread shutting down.\n",
158 local_buffer.length());
159 }
160
data()161 static char* data() {
162 if (data_ready_semaphore_ != NULL) {
163 // Initial access is guarded until the data has been published.
164 data_ready_semaphore_->Wait();
165 delete data_ready_semaphore_;
166 data_ready_semaphore_ = NULL;
167 }
168 return data_;
169 }
170
length()171 static unsigned length() {
172 if (data_ready_semaphore_ != NULL) {
173 // Initial access is guarded until the data has been published.
174 data_ready_semaphore_->Wait();
175 delete data_ready_semaphore_;
176 data_ready_semaphore_ = NULL;
177 }
178 return length_;
179 }
180
StartThread()181 static void StartThread() {
182 if (the_thread_ != NULL) return;
183
184 the_thread_ = new PreallocatedMemoryThread();
185 the_thread_->Start();
186 }
187
188 // Stop the PreallocatedMemoryThread and release its resources.
StopThread()189 static void StopThread() {
190 if (the_thread_ == NULL) return;
191
192 the_thread_->keep_running_ = false;
193 wait_for_ever_semaphore_->Signal();
194
195 // Wait for the thread to terminate.
196 the_thread_->Join();
197
198 if (data_ready_semaphore_ != NULL) {
199 delete data_ready_semaphore_;
200 data_ready_semaphore_ = NULL;
201 }
202
203 delete wait_for_ever_semaphore_;
204 wait_for_ever_semaphore_ = NULL;
205
206 // Done with the thread entirely.
207 delete the_thread_;
208 the_thread_ = NULL;
209 }
210
211 private:
212 // Used to make sure that the thread keeps looping even for spurious wakeups.
213 bool keep_running_;
214
215 // The preallocated memory thread singleton.
216 static PreallocatedMemoryThread* the_thread_;
217 // This semaphore is used by the PreallocatedMemoryThread to wait for ever.
218 static Semaphore* wait_for_ever_semaphore_;
219 // Semaphore to signal that the data has been initialized.
220 static Semaphore* data_ready_semaphore_;
221
222 // Location and size of the preallocated memory block.
223 static char* data_;
224 static unsigned length_;
225
226 DISALLOW_COPY_AND_ASSIGN(PreallocatedMemoryThread);
227 };
228
229 PreallocatedMemoryThread* PreallocatedMemoryThread::the_thread_ = NULL;
230 Semaphore* PreallocatedMemoryThread::wait_for_ever_semaphore_ = NULL;
231 Semaphore* PreallocatedMemoryThread::data_ready_semaphore_ = NULL;
232 char* PreallocatedMemoryThread::data_ = NULL;
233 unsigned PreallocatedMemoryThread::length_ = 0;
234
235 static bool initialized = false;
236
Initialize()237 void Top::Initialize() {
238 CHECK(!initialized);
239
240 InitializeThreadLocal();
241
242 // Only preallocate on the first initialization.
243 if (FLAG_preallocate_message_memory && (preallocated_message_space == NULL)) {
244 // Start the thread which will set aside some memory.
245 PreallocatedMemoryThread::StartThread();
246 preallocated_message_space =
247 new NoAllocationStringAllocator(PreallocatedMemoryThread::data(),
248 PreallocatedMemoryThread::length());
249 PreallocatedStorage::Init(PreallocatedMemoryThread::length() / 4);
250 }
251 initialized = true;
252 }
253
254
TearDown()255 void Top::TearDown() {
256 if (initialized) {
257 // Remove the external reference to the preallocated stack memory.
258 if (preallocated_message_space != NULL) {
259 delete preallocated_message_space;
260 preallocated_message_space = NULL;
261 }
262
263 PreallocatedMemoryThread::StopThread();
264 initialized = false;
265 }
266 }
267
268
RegisterTryCatchHandler(v8::TryCatch * that)269 void Top::RegisterTryCatchHandler(v8::TryCatch* that) {
270 // The ARM simulator has a separate JS stack. We therefore register
271 // the C++ try catch handler with the simulator and get back an
272 // address that can be used for comparisons with addresses into the
273 // JS stack. When running without the simulator, the address
274 // returned will be the address of the C++ try catch handler itself.
275 Address address = reinterpret_cast<Address>(
276 SimulatorStack::RegisterCTryCatch(reinterpret_cast<uintptr_t>(that)));
277 thread_local_.set_try_catch_handler_address(address);
278 }
279
280
UnregisterTryCatchHandler(v8::TryCatch * that)281 void Top::UnregisterTryCatchHandler(v8::TryCatch* that) {
282 ASSERT(thread_local_.TryCatchHandler() == that);
283 thread_local_.set_try_catch_handler_address(
284 reinterpret_cast<Address>(that->next_));
285 thread_local_.catcher_ = NULL;
286 SimulatorStack::UnregisterCTryCatch();
287 }
288
289
MarkCompactPrologue(bool is_compacting)290 void Top::MarkCompactPrologue(bool is_compacting) {
291 MarkCompactPrologue(is_compacting, &thread_local_);
292 }
293
294
MarkCompactPrologue(bool is_compacting,char * data)295 void Top::MarkCompactPrologue(bool is_compacting, char* data) {
296 MarkCompactPrologue(is_compacting, reinterpret_cast<ThreadLocalTop*>(data));
297 }
298
299
MarkCompactPrologue(bool is_compacting,ThreadLocalTop * thread)300 void Top::MarkCompactPrologue(bool is_compacting, ThreadLocalTop* thread) {
301 if (is_compacting) {
302 StackFrame::CookFramesForThread(thread);
303 }
304 }
305
306
MarkCompactEpilogue(bool is_compacting,char * data)307 void Top::MarkCompactEpilogue(bool is_compacting, char* data) {
308 MarkCompactEpilogue(is_compacting, reinterpret_cast<ThreadLocalTop*>(data));
309 }
310
311
MarkCompactEpilogue(bool is_compacting)312 void Top::MarkCompactEpilogue(bool is_compacting) {
313 MarkCompactEpilogue(is_compacting, &thread_local_);
314 }
315
316
MarkCompactEpilogue(bool is_compacting,ThreadLocalTop * thread)317 void Top::MarkCompactEpilogue(bool is_compacting, ThreadLocalTop* thread) {
318 if (is_compacting) {
319 StackFrame::UncookFramesForThread(thread);
320 }
321 }
322
323
324 static int stack_trace_nesting_level = 0;
325 static StringStream* incomplete_message = NULL;
326
327
StackTrace()328 Handle<String> Top::StackTrace() {
329 if (stack_trace_nesting_level == 0) {
330 stack_trace_nesting_level++;
331 HeapStringAllocator allocator;
332 StringStream::ClearMentionedObjectCache();
333 StringStream accumulator(&allocator);
334 incomplete_message = &accumulator;
335 PrintStack(&accumulator);
336 Handle<String> stack_trace = accumulator.ToString();
337 incomplete_message = NULL;
338 stack_trace_nesting_level = 0;
339 return stack_trace;
340 } else if (stack_trace_nesting_level == 1) {
341 stack_trace_nesting_level++;
342 OS::PrintError(
343 "\n\nAttempt to print stack while printing stack (double fault)\n");
344 OS::PrintError(
345 "If you are lucky you may find a partial stack dump on stdout.\n\n");
346 incomplete_message->OutputToStdOut();
347 return Factory::empty_symbol();
348 } else {
349 OS::Abort();
350 // Unreachable
351 return Factory::empty_symbol();
352 }
353 }
354
355
PrintStack()356 void Top::PrintStack() {
357 if (stack_trace_nesting_level == 0) {
358 stack_trace_nesting_level++;
359
360 StringAllocator* allocator;
361 if (preallocated_message_space == NULL) {
362 allocator = new HeapStringAllocator();
363 } else {
364 allocator = preallocated_message_space;
365 }
366
367 NativeAllocationChecker allocation_checker(
368 !FLAG_preallocate_message_memory ?
369 NativeAllocationChecker::ALLOW :
370 NativeAllocationChecker::DISALLOW);
371
372 StringStream::ClearMentionedObjectCache();
373 StringStream accumulator(allocator);
374 incomplete_message = &accumulator;
375 PrintStack(&accumulator);
376 accumulator.OutputToStdOut();
377 accumulator.Log();
378 incomplete_message = NULL;
379 stack_trace_nesting_level = 0;
380 if (preallocated_message_space == NULL) {
381 // Remove the HeapStringAllocator created above.
382 delete allocator;
383 }
384 } else if (stack_trace_nesting_level == 1) {
385 stack_trace_nesting_level++;
386 OS::PrintError(
387 "\n\nAttempt to print stack while printing stack (double fault)\n");
388 OS::PrintError(
389 "If you are lucky you may find a partial stack dump on stdout.\n\n");
390 incomplete_message->OutputToStdOut();
391 }
392 }
393
394
PrintFrames(StringStream * accumulator,StackFrame::PrintMode mode)395 static void PrintFrames(StringStream* accumulator,
396 StackFrame::PrintMode mode) {
397 StackFrameIterator it;
398 for (int i = 0; !it.done(); it.Advance()) {
399 it.frame()->Print(accumulator, mode, i++);
400 }
401 }
402
403
PrintStack(StringStream * accumulator)404 void Top::PrintStack(StringStream* accumulator) {
405 // The MentionedObjectCache is not GC-proof at the moment.
406 AssertNoAllocation nogc;
407 ASSERT(StringStream::IsMentionedObjectCacheClear());
408
409 // Avoid printing anything if there are no frames.
410 if (c_entry_fp(GetCurrentThread()) == 0) return;
411
412 accumulator->Add(
413 "\n==== Stack trace ============================================\n\n");
414 PrintFrames(accumulator, StackFrame::OVERVIEW);
415
416 accumulator->Add(
417 "\n==== Details ================================================\n\n");
418 PrintFrames(accumulator, StackFrame::DETAILS);
419
420 accumulator->PrintMentionedObjectCache();
421 accumulator->Add("=====================\n\n");
422 }
423
424
SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback)425 void Top::SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback) {
426 ASSERT(thread_local_.failed_access_check_callback_ == NULL);
427 thread_local_.failed_access_check_callback_ = callback;
428 }
429
430
ReportFailedAccessCheck(JSObject * receiver,v8::AccessType type)431 void Top::ReportFailedAccessCheck(JSObject* receiver, v8::AccessType type) {
432 if (!thread_local_.failed_access_check_callback_) return;
433
434 ASSERT(receiver->IsAccessCheckNeeded());
435 ASSERT(Top::context());
436 // The callers of this method are not expecting a GC.
437 AssertNoAllocation no_gc;
438
439 // Get the data object from access check info.
440 JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
441 Object* info = constructor->shared()->function_data();
442 if (info == Heap::undefined_value()) return;
443
444 Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info();
445 if (data_obj == Heap::undefined_value()) return;
446
447 HandleScope scope;
448 Handle<JSObject> receiver_handle(receiver);
449 Handle<Object> data(AccessCheckInfo::cast(data_obj)->data());
450 thread_local_.failed_access_check_callback_(
451 v8::Utils::ToLocal(receiver_handle),
452 type,
453 v8::Utils::ToLocal(data));
454 }
455
456
457 enum MayAccessDecision {
458 YES, NO, UNKNOWN
459 };
460
461
MayAccessPreCheck(JSObject * receiver,v8::AccessType type)462 static MayAccessDecision MayAccessPreCheck(JSObject* receiver,
463 v8::AccessType type) {
464 // During bootstrapping, callback functions are not enabled yet.
465 if (Bootstrapper::IsActive()) return YES;
466
467 if (receiver->IsJSGlobalProxy()) {
468 Object* receiver_context = JSGlobalProxy::cast(receiver)->context();
469 if (!receiver_context->IsContext()) return NO;
470
471 // Get the global context of current top context.
472 // avoid using Top::global_context() because it uses Handle.
473 Context* global_context = Top::context()->global()->global_context();
474 if (receiver_context == global_context) return YES;
475
476 if (Context::cast(receiver_context)->security_token() ==
477 global_context->security_token())
478 return YES;
479 }
480
481 return UNKNOWN;
482 }
483
484
MayNamedAccess(JSObject * receiver,Object * key,v8::AccessType type)485 bool Top::MayNamedAccess(JSObject* receiver, Object* key, v8::AccessType type) {
486 ASSERT(receiver->IsAccessCheckNeeded());
487
488 // The callers of this method are not expecting a GC.
489 AssertNoAllocation no_gc;
490
491 // Skip checks for hidden properties access. Note, we do not
492 // require existence of a context in this case.
493 if (key == Heap::hidden_symbol()) return true;
494
495 // Check for compatibility between the security tokens in the
496 // current lexical context and the accessed object.
497 ASSERT(Top::context());
498
499 MayAccessDecision decision = MayAccessPreCheck(receiver, type);
500 if (decision != UNKNOWN) return decision == YES;
501
502 // Get named access check callback
503 JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
504 Object* info = constructor->shared()->function_data();
505 if (info == Heap::undefined_value()) return false;
506
507 Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info();
508 if (data_obj == Heap::undefined_value()) return false;
509
510 Object* fun_obj = AccessCheckInfo::cast(data_obj)->named_callback();
511 v8::NamedSecurityCallback callback =
512 v8::ToCData<v8::NamedSecurityCallback>(fun_obj);
513
514 if (!callback) return false;
515
516 HandleScope scope;
517 Handle<JSObject> receiver_handle(receiver);
518 Handle<Object> key_handle(key);
519 Handle<Object> data(AccessCheckInfo::cast(data_obj)->data());
520 LOG(ApiNamedSecurityCheck(key));
521 bool result = false;
522 {
523 // Leaving JavaScript.
524 VMState state(EXTERNAL);
525 result = callback(v8::Utils::ToLocal(receiver_handle),
526 v8::Utils::ToLocal(key_handle),
527 type,
528 v8::Utils::ToLocal(data));
529 }
530 return result;
531 }
532
533
MayIndexedAccess(JSObject * receiver,uint32_t index,v8::AccessType type)534 bool Top::MayIndexedAccess(JSObject* receiver,
535 uint32_t index,
536 v8::AccessType type) {
537 ASSERT(receiver->IsAccessCheckNeeded());
538 // Check for compatibility between the security tokens in the
539 // current lexical context and the accessed object.
540 ASSERT(Top::context());
541 // The callers of this method are not expecting a GC.
542 AssertNoAllocation no_gc;
543
544 MayAccessDecision decision = MayAccessPreCheck(receiver, type);
545 if (decision != UNKNOWN) return decision == YES;
546
547 // Get indexed access check callback
548 JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
549 Object* info = constructor->shared()->function_data();
550 if (info == Heap::undefined_value()) return false;
551
552 Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info();
553 if (data_obj == Heap::undefined_value()) return false;
554
555 Object* fun_obj = AccessCheckInfo::cast(data_obj)->indexed_callback();
556 v8::IndexedSecurityCallback callback =
557 v8::ToCData<v8::IndexedSecurityCallback>(fun_obj);
558
559 if (!callback) return false;
560
561 HandleScope scope;
562 Handle<JSObject> receiver_handle(receiver);
563 Handle<Object> data(AccessCheckInfo::cast(data_obj)->data());
564 LOG(ApiIndexedSecurityCheck(index));
565 bool result = false;
566 {
567 // Leaving JavaScript.
568 VMState state(EXTERNAL);
569 result = callback(v8::Utils::ToLocal(receiver_handle),
570 index,
571 type,
572 v8::Utils::ToLocal(data));
573 }
574 return result;
575 }
576
577
578 const char* Top::kStackOverflowMessage =
579 "Uncaught RangeError: Maximum call stack size exceeded";
580
581
StackOverflow()582 Failure* Top::StackOverflow() {
583 HandleScope scope;
584 Handle<String> key = Factory::stack_overflow_symbol();
585 Handle<JSObject> boilerplate =
586 Handle<JSObject>::cast(GetProperty(Top::builtins(), key));
587 Handle<Object> exception = Copy(boilerplate);
588 // TODO(1240995): To avoid having to call JavaScript code to compute
589 // the message for stack overflow exceptions which is very likely to
590 // double fault with another stack overflow exception, we use a
591 // precomputed message. This is somewhat problematic in that it
592 // doesn't use ReportUncaughtException to determine the location
593 // from where the exception occurred. It should probably be
594 // reworked.
595 DoThrow(*exception, NULL, kStackOverflowMessage);
596 return Failure::Exception();
597 }
598
599
TerminateExecution()600 Failure* Top::TerminateExecution() {
601 DoThrow(Heap::termination_exception(), NULL, NULL);
602 return Failure::Exception();
603 }
604
605
Throw(Object * exception,MessageLocation * location)606 Failure* Top::Throw(Object* exception, MessageLocation* location) {
607 DoThrow(exception, location, NULL);
608 return Failure::Exception();
609 }
610
611
ReThrow(Object * exception,MessageLocation * location)612 Failure* Top::ReThrow(Object* exception, MessageLocation* location) {
613 // Set the exception being re-thrown.
614 set_pending_exception(exception);
615 return Failure::Exception();
616 }
617
618
ThrowIllegalOperation()619 Failure* Top::ThrowIllegalOperation() {
620 return Throw(Heap::illegal_access_symbol());
621 }
622
623
ScheduleThrow(Object * exception)624 void Top::ScheduleThrow(Object* exception) {
625 // When scheduling a throw we first throw the exception to get the
626 // error reporting if it is uncaught before rescheduling it.
627 Throw(exception);
628 thread_local_.scheduled_exception_ = pending_exception();
629 thread_local_.external_caught_exception_ = false;
630 clear_pending_exception();
631 }
632
633
PromoteScheduledException()634 Object* Top::PromoteScheduledException() {
635 Object* thrown = scheduled_exception();
636 clear_scheduled_exception();
637 // Re-throw the exception to avoid getting repeated error reporting.
638 return ReThrow(thrown);
639 }
640
641
PrintCurrentStackTrace(FILE * out)642 void Top::PrintCurrentStackTrace(FILE* out) {
643 StackTraceFrameIterator it;
644 while (!it.done()) {
645 HandleScope scope;
646 // Find code position if recorded in relocation info.
647 JavaScriptFrame* frame = it.frame();
648 int pos = frame->code()->SourcePosition(frame->pc());
649 Handle<Object> pos_obj(Smi::FromInt(pos));
650 // Fetch function and receiver.
651 Handle<JSFunction> fun(JSFunction::cast(frame->function()));
652 Handle<Object> recv(frame->receiver());
653 // Advance to the next JavaScript frame and determine if the
654 // current frame is the top-level frame.
655 it.Advance();
656 Handle<Object> is_top_level = it.done()
657 ? Factory::true_value()
658 : Factory::false_value();
659 // Generate and print stack trace line.
660 Handle<String> line =
661 Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level);
662 if (line->length() > 0) {
663 line->PrintOn(out);
664 fprintf(out, "\n");
665 }
666 }
667 }
668
669
ComputeLocation(MessageLocation * target)670 void Top::ComputeLocation(MessageLocation* target) {
671 *target = MessageLocation(Handle<Script>(Heap::empty_script()), -1, -1);
672 StackTraceFrameIterator it;
673 if (!it.done()) {
674 JavaScriptFrame* frame = it.frame();
675 JSFunction* fun = JSFunction::cast(frame->function());
676 Object* script = fun->shared()->script();
677 if (script->IsScript() &&
678 !(Script::cast(script)->source()->IsUndefined())) {
679 int pos = frame->code()->SourcePosition(frame->pc());
680 // Compute the location from the function and the reloc info.
681 Handle<Script> casted_script(Script::cast(script));
682 *target = MessageLocation(casted_script, pos, pos + 1);
683 }
684 }
685 }
686
687
ReportUncaughtException(Handle<Object> exception,MessageLocation * location,Handle<String> stack_trace)688 void Top::ReportUncaughtException(Handle<Object> exception,
689 MessageLocation* location,
690 Handle<String> stack_trace) {
691 Handle<Object> message;
692 if (!Bootstrapper::IsActive()) {
693 // It's not safe to try to make message objects while the bootstrapper
694 // is active since the infrastructure may not have been properly
695 // initialized.
696 message =
697 MessageHandler::MakeMessageObject("uncaught_exception",
698 location,
699 HandleVector<Object>(&exception, 1),
700 stack_trace);
701 }
702 // Report the uncaught exception.
703 MessageHandler::ReportMessage(location, message);
704 }
705
706
ShouldReturnException(bool * is_caught_externally,bool catchable_by_javascript)707 bool Top::ShouldReturnException(bool* is_caught_externally,
708 bool catchable_by_javascript) {
709 // Find the top-most try-catch handler.
710 StackHandler* handler =
711 StackHandler::FromAddress(Top::handler(Top::GetCurrentThread()));
712 while (handler != NULL && !handler->is_try_catch()) {
713 handler = handler->next();
714 }
715
716 // Get the address of the external handler so we can compare the address to
717 // determine which one is closer to the top of the stack.
718 Address external_handler_address = thread_local_.try_catch_handler_address();
719
720 // The exception has been externally caught if and only if there is
721 // an external handler which is on top of the top-most try-catch
722 // handler.
723 *is_caught_externally = external_handler_address != NULL &&
724 (handler == NULL || handler->address() > external_handler_address ||
725 !catchable_by_javascript);
726
727 if (*is_caught_externally) {
728 // Only report the exception if the external handler is verbose.
729 return thread_local_.TryCatchHandler()->is_verbose_;
730 } else {
731 // Report the exception if it isn't caught by JavaScript code.
732 return handler == NULL;
733 }
734 }
735
736
DoThrow(Object * exception,MessageLocation * location,const char * message)737 void Top::DoThrow(Object* exception,
738 MessageLocation* location,
739 const char* message) {
740 ASSERT(!has_pending_exception());
741
742 HandleScope scope;
743 Handle<Object> exception_handle(exception);
744
745 // Determine reporting and whether the exception is caught externally.
746 bool is_caught_externally = false;
747 bool is_out_of_memory = exception == Failure::OutOfMemoryException();
748 bool is_termination_exception = exception == Heap::termination_exception();
749 bool catchable_by_javascript = !is_termination_exception && !is_out_of_memory;
750 bool should_return_exception =
751 ShouldReturnException(&is_caught_externally, catchable_by_javascript);
752 bool report_exception = catchable_by_javascript && should_return_exception;
753
754 #ifdef ENABLE_DEBUGGER_SUPPORT
755 // Notify debugger of exception.
756 if (catchable_by_javascript) {
757 Debugger::OnException(exception_handle, report_exception);
758 }
759 #endif
760
761 // Generate the message.
762 Handle<Object> message_obj;
763 MessageLocation potential_computed_location;
764 bool try_catch_needs_message =
765 is_caught_externally &&
766 thread_local_.TryCatchHandler()->capture_message_;
767 if (report_exception || try_catch_needs_message) {
768 if (location == NULL) {
769 // If no location was specified we use a computed one instead
770 ComputeLocation(&potential_computed_location);
771 location = &potential_computed_location;
772 }
773 if (!Bootstrapper::IsActive()) {
774 // It's not safe to try to make message objects or collect stack
775 // traces while the bootstrapper is active since the infrastructure
776 // may not have been properly initialized.
777 Handle<String> stack_trace;
778 if (FLAG_trace_exception) stack_trace = StackTrace();
779 message_obj = MessageHandler::MakeMessageObject("uncaught_exception",
780 location, HandleVector<Object>(&exception_handle, 1), stack_trace);
781 }
782 }
783
784 // Save the message for reporting if the the exception remains uncaught.
785 thread_local_.has_pending_message_ = report_exception;
786 thread_local_.pending_message_ = message;
787 if (!message_obj.is_null()) {
788 thread_local_.pending_message_obj_ = *message_obj;
789 if (location != NULL) {
790 thread_local_.pending_message_script_ = *location->script();
791 thread_local_.pending_message_start_pos_ = location->start_pos();
792 thread_local_.pending_message_end_pos_ = location->end_pos();
793 }
794 }
795
796 if (is_caught_externally) {
797 thread_local_.catcher_ = thread_local_.TryCatchHandler();
798 }
799
800 // NOTE: Notifying the debugger or generating the message
801 // may have caused new exceptions. For now, we just ignore
802 // that and set the pending exception to the original one.
803 set_pending_exception(*exception_handle);
804 }
805
806
ReportPendingMessages()807 void Top::ReportPendingMessages() {
808 ASSERT(has_pending_exception());
809 setup_external_caught();
810 // If the pending exception is OutOfMemoryException set out_of_memory in
811 // the global context. Note: We have to mark the global context here
812 // since the GenerateThrowOutOfMemory stub cannot make a RuntimeCall to
813 // set it.
814 bool external_caught = thread_local_.external_caught_exception_;
815 HandleScope scope;
816 if (thread_local_.pending_exception_ == Failure::OutOfMemoryException()) {
817 context()->mark_out_of_memory();
818 } else if (thread_local_.pending_exception_ ==
819 Heap::termination_exception()) {
820 if (external_caught) {
821 thread_local_.TryCatchHandler()->can_continue_ = false;
822 thread_local_.TryCatchHandler()->exception_ = Heap::null_value();
823 }
824 } else {
825 Handle<Object> exception(pending_exception());
826 thread_local_.external_caught_exception_ = false;
827 if (external_caught) {
828 thread_local_.TryCatchHandler()->can_continue_ = true;
829 thread_local_.TryCatchHandler()->exception_ =
830 thread_local_.pending_exception_;
831 if (!thread_local_.pending_message_obj_->IsTheHole()) {
832 try_catch_handler()->message_ = thread_local_.pending_message_obj_;
833 }
834 }
835 if (thread_local_.has_pending_message_) {
836 thread_local_.has_pending_message_ = false;
837 if (thread_local_.pending_message_ != NULL) {
838 MessageHandler::ReportMessage(thread_local_.pending_message_);
839 } else if (!thread_local_.pending_message_obj_->IsTheHole()) {
840 Handle<Object> message_obj(thread_local_.pending_message_obj_);
841 if (thread_local_.pending_message_script_ != NULL) {
842 Handle<Script> script(thread_local_.pending_message_script_);
843 int start_pos = thread_local_.pending_message_start_pos_;
844 int end_pos = thread_local_.pending_message_end_pos_;
845 MessageLocation location(script, start_pos, end_pos);
846 MessageHandler::ReportMessage(&location, message_obj);
847 } else {
848 MessageHandler::ReportMessage(NULL, message_obj);
849 }
850 }
851 }
852 thread_local_.external_caught_exception_ = external_caught;
853 set_pending_exception(*exception);
854 }
855 clear_pending_message();
856 }
857
858
TraceException(bool flag)859 void Top::TraceException(bool flag) {
860 FLAG_trace_exception = flag;
861 }
862
863
OptionalRescheduleException(bool is_bottom_call)864 bool Top::OptionalRescheduleException(bool is_bottom_call) {
865 // Allways reschedule out of memory exceptions.
866 if (!is_out_of_memory()) {
867 bool is_termination_exception =
868 pending_exception() == Heap::termination_exception();
869
870 // Do not reschedule the exception if this is the bottom call.
871 bool clear_exception = is_bottom_call;
872
873 if (is_termination_exception) {
874 if (is_bottom_call) {
875 thread_local_.external_caught_exception_ = false;
876 clear_pending_exception();
877 return false;
878 }
879 } else if (thread_local_.external_caught_exception_) {
880 // If the exception is externally caught, clear it if there are no
881 // JavaScript frames on the way to the C++ frame that has the
882 // external handler.
883 ASSERT(thread_local_.try_catch_handler_address() != NULL);
884 Address external_handler_address =
885 thread_local_.try_catch_handler_address();
886 JavaScriptFrameIterator it;
887 if (it.done() || (it.frame()->sp() > external_handler_address)) {
888 clear_exception = true;
889 }
890 }
891
892 // Clear the exception if needed.
893 if (clear_exception) {
894 thread_local_.external_caught_exception_ = false;
895 clear_pending_exception();
896 return false;
897 }
898 }
899
900 // Reschedule the exception.
901 thread_local_.scheduled_exception_ = pending_exception();
902 clear_pending_exception();
903 return true;
904 }
905
906
is_out_of_memory()907 bool Top::is_out_of_memory() {
908 if (has_pending_exception()) {
909 Object* e = pending_exception();
910 if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) {
911 return true;
912 }
913 }
914 if (has_scheduled_exception()) {
915 Object* e = scheduled_exception();
916 if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) {
917 return true;
918 }
919 }
920 return false;
921 }
922
923
global_context()924 Handle<Context> Top::global_context() {
925 GlobalObject* global = thread_local_.context_->global();
926 return Handle<Context>(global->global_context());
927 }
928
929
GetCallingGlobalContext()930 Handle<Context> Top::GetCallingGlobalContext() {
931 JavaScriptFrameIterator it;
932 #ifdef ENABLE_DEBUGGER_SUPPORT
933 if (Debug::InDebugger()) {
934 while (!it.done()) {
935 JavaScriptFrame* frame = it.frame();
936 Context* context = Context::cast(frame->context());
937 if (context->global_context() == *Debug::debug_context()) {
938 it.Advance();
939 } else {
940 break;
941 }
942 }
943 }
944 #endif // ENABLE_DEBUGGER_SUPPORT
945 if (it.done()) return Handle<Context>::null();
946 JavaScriptFrame* frame = it.frame();
947 Context* context = Context::cast(frame->context());
948 return Handle<Context>(context->global_context());
949 }
950
951
CanHaveSpecialFunctions(JSObject * object)952 bool Top::CanHaveSpecialFunctions(JSObject* object) {
953 return object->IsJSArray();
954 }
955
956
LookupSpecialFunction(JSObject * receiver,JSObject * prototype,JSFunction * function)957 Object* Top::LookupSpecialFunction(JSObject* receiver,
958 JSObject* prototype,
959 JSFunction* function) {
960 if (CanHaveSpecialFunctions(receiver)) {
961 FixedArray* table = context()->global_context()->special_function_table();
962 for (int index = 0; index < table->length(); index +=3) {
963 if ((prototype == table->get(index)) &&
964 (function == table->get(index+1))) {
965 return table->get(index+2);
966 }
967 }
968 }
969 return Heap::undefined_value();
970 }
971
972
ArchiveThread(char * to)973 char* Top::ArchiveThread(char* to) {
974 memcpy(to, reinterpret_cast<char*>(&thread_local_), sizeof(thread_local_));
975 InitializeThreadLocal();
976 return to + sizeof(thread_local_);
977 }
978
979
RestoreThread(char * from)980 char* Top::RestoreThread(char* from) {
981 memcpy(reinterpret_cast<char*>(&thread_local_), from, sizeof(thread_local_));
982 return from + sizeof(thread_local_);
983 }
984
985
ExecutionAccess()986 ExecutionAccess::ExecutionAccess() {
987 Top::break_access_->Lock();
988 }
989
990
~ExecutionAccess()991 ExecutionAccess::~ExecutionAccess() {
992 Top::break_access_->Unlock();
993 }
994
995
996 } } // namespace v8::internal
997