1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/process_util.h"
6
7 #include <ctype.h>
8 #include <dirent.h>
9 #include <dlfcn.h>
10 #include <errno.h>
11 #include <fcntl.h>
12 #include <sys/time.h>
13 #include <sys/types.h>
14 #include <sys/wait.h>
15 #include <time.h>
16 #include <unistd.h>
17
18 #include "base/file_util.h"
19 #include "base/logging.h"
20 #include "base/string_tokenizer.h"
21 #include "base/string_util.h"
22
23 namespace {
24
25 enum ParsingState {
26 KEY_NAME,
27 KEY_VALUE
28 };
29
30 // Reads /proc/<pid>/stat and populates |proc_stats| with the values split by
31 // spaces.
GetProcStats(pid_t pid,std::vector<std::string> * proc_stats)32 void GetProcStats(pid_t pid, std::vector<std::string>* proc_stats) {
33 FilePath stat_file("/proc");
34 stat_file = stat_file.Append(IntToString(pid));
35 stat_file = stat_file.Append("stat");
36 std::string mem_stats;
37 if (!file_util::ReadFileToString(stat_file, &mem_stats))
38 return;
39 SplitString(mem_stats, ' ', proc_stats);
40 }
41
42 } // namespace
43
44 namespace base {
45
GetParentProcessId(ProcessHandle process)46 ProcessId GetParentProcessId(ProcessHandle process) {
47 FilePath stat_file("/proc");
48 stat_file = stat_file.Append(IntToString(process));
49 stat_file = stat_file.Append("status");
50 std::string status;
51 if (!file_util::ReadFileToString(stat_file, &status))
52 return -1;
53
54 StringTokenizer tokenizer(status, ":\n");
55 ParsingState state = KEY_NAME;
56 std::string last_key_name;
57 while (tokenizer.GetNext()) {
58 switch (state) {
59 case KEY_NAME:
60 last_key_name = tokenizer.token();
61 state = KEY_VALUE;
62 break;
63 case KEY_VALUE:
64 DCHECK(!last_key_name.empty());
65 if (last_key_name == "PPid") {
66 pid_t ppid = StringToInt(tokenizer.token());
67 return ppid;
68 }
69 state = KEY_NAME;
70 break;
71 }
72 }
73 NOTREACHED();
74 return -1;
75 }
76
GetProcessExecutablePath(ProcessHandle process)77 FilePath GetProcessExecutablePath(ProcessHandle process) {
78 FilePath stat_file("/proc");
79 stat_file = stat_file.Append(IntToString(process));
80 stat_file = stat_file.Append("exe");
81 char exename[2048];
82 ssize_t len = readlink(stat_file.value().c_str(), exename, sizeof(exename));
83 if (len < 1) {
84 // No such process. Happens frequently in e.g. TerminateAllChromeProcesses
85 return FilePath();
86 }
87 return FilePath(std::string(exename, len));
88 }
89
NamedProcessIterator(const std::wstring & executable_name,const ProcessFilter * filter)90 NamedProcessIterator::NamedProcessIterator(const std::wstring& executable_name,
91 const ProcessFilter* filter)
92 : executable_name_(executable_name), filter_(filter) {
93 procfs_dir_ = opendir("/proc");
94 }
95
~NamedProcessIterator()96 NamedProcessIterator::~NamedProcessIterator() {
97 if (procfs_dir_) {
98 closedir(procfs_dir_);
99 procfs_dir_ = NULL;
100 }
101 }
102
NextProcessEntry()103 const ProcessEntry* NamedProcessIterator::NextProcessEntry() {
104 bool result = false;
105 do {
106 result = CheckForNextProcess();
107 } while (result && !IncludeEntry());
108
109 if (result)
110 return &entry_;
111
112 return NULL;
113 }
114
CheckForNextProcess()115 bool NamedProcessIterator::CheckForNextProcess() {
116 // TODO(port): skip processes owned by different UID
117
118 dirent* slot = 0;
119 const char* openparen;
120 const char* closeparen;
121
122 // Arbitrarily guess that there will never be more than 200 non-process
123 // files in /proc. Hardy has 53.
124 int skipped = 0;
125 const int kSkipLimit = 200;
126 while (skipped < kSkipLimit) {
127 slot = readdir(procfs_dir_);
128 // all done looking through /proc?
129 if (!slot)
130 return false;
131
132 // If not a process, keep looking for one.
133 bool notprocess = false;
134 int i;
135 for (i = 0; i < NAME_MAX && slot->d_name[i]; ++i) {
136 if (!isdigit(slot->d_name[i])) {
137 notprocess = true;
138 break;
139 }
140 }
141 if (i == NAME_MAX || notprocess) {
142 skipped++;
143 continue;
144 }
145
146 // Read the process's status.
147 char buf[NAME_MAX + 12];
148 sprintf(buf, "/proc/%s/stat", slot->d_name);
149 FILE *fp = fopen(buf, "r");
150 if (!fp)
151 return false;
152 const char* result = fgets(buf, sizeof(buf), fp);
153 fclose(fp);
154 if (!result)
155 return false;
156
157 // Parse the status. It is formatted like this:
158 // %d (%s) %c %d ...
159 // pid (name) runstate ppid
160 // To avoid being fooled by names containing a closing paren, scan
161 // backwards.
162 openparen = strchr(buf, '(');
163 closeparen = strrchr(buf, ')');
164 if (!openparen || !closeparen)
165 return false;
166 char runstate = closeparen[2];
167
168 // Is the process in 'Zombie' state, i.e. dead but waiting to be reaped?
169 // Allowed values: D R S T Z
170 if (runstate != 'Z')
171 break;
172
173 // Nope, it's a zombie; somebody isn't cleaning up after their children.
174 // (e.g. WaitForProcessesToExit doesn't clean up after dead children yet.)
175 // There could be a lot of zombies, can't really decrement i here.
176 }
177 if (skipped >= kSkipLimit) {
178 NOTREACHED();
179 return false;
180 }
181
182 entry_.pid = atoi(slot->d_name);
183 entry_.ppid = atoi(closeparen + 3);
184
185 // TODO(port): read pid's commandline's $0, like killall does. Using the
186 // short name between openparen and closeparen won't work for long names!
187 int len = closeparen - openparen - 1;
188 if (len > NAME_MAX)
189 len = NAME_MAX;
190 memcpy(entry_.szExeFile, openparen + 1, len);
191 entry_.szExeFile[len] = 0;
192
193 return true;
194 }
195
IncludeEntry()196 bool NamedProcessIterator::IncludeEntry() {
197 // TODO(port): make this also work for non-ASCII filenames
198 if (WideToASCII(executable_name_) != entry_.szExeFile)
199 return false;
200 if (!filter_)
201 return true;
202 return filter_->Includes(entry_.pid, entry_.ppid);
203 }
204
205 // On linux, we return vsize.
GetPagefileUsage() const206 size_t ProcessMetrics::GetPagefileUsage() const {
207 std::vector<std::string> proc_stats;
208 GetProcStats(process_, &proc_stats);
209 const size_t kVmSize = 22;
210 if (proc_stats.size() > kVmSize)
211 return static_cast<size_t>(StringToInt(proc_stats[kVmSize]));
212 return 0;
213 }
214
215 // On linux, we return the high water mark of vsize.
GetPeakPagefileUsage() const216 size_t ProcessMetrics::GetPeakPagefileUsage() const {
217 std::vector<std::string> proc_stats;
218 GetProcStats(process_, &proc_stats);
219 const size_t kVmPeak = 21;
220 if (proc_stats.size() > kVmPeak)
221 return static_cast<size_t>(StringToInt(proc_stats[kVmPeak]));
222 return 0;
223 }
224
225 // On linux, we return RSS.
GetWorkingSetSize() const226 size_t ProcessMetrics::GetWorkingSetSize() const {
227 std::vector<std::string> proc_stats;
228 GetProcStats(process_, &proc_stats);
229 const size_t kVmRss = 23;
230 if (proc_stats.size() > kVmRss) {
231 size_t num_pages = static_cast<size_t>(StringToInt(proc_stats[kVmRss]));
232 return num_pages * getpagesize();
233 }
234 return 0;
235 }
236
237 // On linux, we return the high water mark of RSS.
GetPeakWorkingSetSize() const238 size_t ProcessMetrics::GetPeakWorkingSetSize() const {
239 std::vector<std::string> proc_stats;
240 GetProcStats(process_, &proc_stats);
241 const size_t kVmHwm = 23;
242 if (proc_stats.size() > kVmHwm) {
243 size_t num_pages = static_cast<size_t>(StringToInt(proc_stats[kVmHwm]));
244 return num_pages * getpagesize();
245 }
246 return 0;
247 }
248
GetPrivateBytes() const249 size_t ProcessMetrics::GetPrivateBytes() const {
250 WorkingSetKBytes ws_usage;
251 GetWorkingSetKBytes(&ws_usage);
252 return ws_usage.priv << 10;
253 }
254
255 // Private and Shared working set sizes are obtained from /proc/<pid>/smaps.
256 // When that's not available, use the values from /proc<pid>/statm as a
257 // close approximation.
258 // See http://www.pixelbeat.org/scripts/ps_mem.py
GetWorkingSetKBytes(WorkingSetKBytes * ws_usage) const259 bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const {
260 FilePath stat_file =
261 FilePath("/proc").Append(IntToString(process_)).Append("smaps");
262 std::string smaps;
263 int private_kb = 0;
264 int pss_kb = 0;
265 bool have_pss = false;
266 if (file_util::ReadFileToString(stat_file, &smaps) && smaps.length() > 0) {
267 StringTokenizer tokenizer(smaps, ":\n");
268 ParsingState state = KEY_NAME;
269 std::string last_key_name;
270 while (tokenizer.GetNext()) {
271 switch (state) {
272 case KEY_NAME:
273 last_key_name = tokenizer.token();
274 state = KEY_VALUE;
275 break;
276 case KEY_VALUE:
277 if (last_key_name.empty()) {
278 NOTREACHED();
279 return false;
280 }
281 if (StartsWithASCII(last_key_name, "Private_", 1)) {
282 private_kb += StringToInt(tokenizer.token());
283 } else if (StartsWithASCII(last_key_name, "Pss", 1)) {
284 have_pss = true;
285 pss_kb += StringToInt(tokenizer.token());
286 }
287 state = KEY_NAME;
288 break;
289 }
290 }
291 } else {
292 // Try statm if smaps is empty because of the SUID sandbox.
293 // First we need to get the page size though.
294 int page_size_kb = sysconf(_SC_PAGE_SIZE) / 1024;
295 if (page_size_kb <= 0)
296 return false;
297
298 stat_file =
299 FilePath("/proc").Append(IntToString(process_)).Append("statm");
300 std::string statm;
301 if (!file_util::ReadFileToString(stat_file, &statm) || statm.length() == 0)
302 return false;
303
304 std::vector<std::string> statm_vec;
305 SplitString(statm, ' ', &statm_vec);
306 if (statm_vec.size() != 7)
307 return false; // Not the format we expect.
308 private_kb = StringToInt(statm_vec[1]) - StringToInt(statm_vec[2]);
309 private_kb *= page_size_kb;
310 }
311 ws_usage->priv = private_kb;
312 // Sharable is not calculated, as it does not provide interesting data.
313 ws_usage->shareable = 0;
314
315 ws_usage->shared = 0;
316 if (have_pss)
317 ws_usage->shared = pss_kb;
318 return true;
319 }
320
321 // To have /proc/self/io file you must enable CONFIG_TASK_IO_ACCOUNTING
322 // in your kernel configuration.
GetIOCounters(IoCounters * io_counters) const323 bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const {
324 std::string proc_io_contents;
325 FilePath io_file("/proc");
326 io_file = io_file.Append(IntToString(process_));
327 io_file = io_file.Append("io");
328 if (!file_util::ReadFileToString(io_file, &proc_io_contents))
329 return false;
330
331 (*io_counters).OtherOperationCount = 0;
332 (*io_counters).OtherTransferCount = 0;
333
334 StringTokenizer tokenizer(proc_io_contents, ": \n");
335 ParsingState state = KEY_NAME;
336 std::string last_key_name;
337 while (tokenizer.GetNext()) {
338 switch (state) {
339 case KEY_NAME:
340 last_key_name = tokenizer.token();
341 state = KEY_VALUE;
342 break;
343 case KEY_VALUE:
344 DCHECK(!last_key_name.empty());
345 if (last_key_name == "syscr") {
346 (*io_counters).ReadOperationCount = StringToInt64(tokenizer.token());
347 } else if (last_key_name == "syscw") {
348 (*io_counters).WriteOperationCount = StringToInt64(tokenizer.token());
349 } else if (last_key_name == "rchar") {
350 (*io_counters).ReadTransferCount = StringToInt64(tokenizer.token());
351 } else if (last_key_name == "wchar") {
352 (*io_counters).WriteTransferCount = StringToInt64(tokenizer.token());
353 }
354 state = KEY_NAME;
355 break;
356 }
357 }
358 return true;
359 }
360
361
362 // Exposed for testing.
ParseProcStatCPU(const std::string & input)363 int ParseProcStatCPU(const std::string& input) {
364 // /proc/<pid>/stat contains the process name in parens. In case the
365 // process name itself contains parens, skip past them.
366 std::string::size_type rparen = input.rfind(')');
367 if (rparen == std::string::npos)
368 return -1;
369
370 // From here, we expect a bunch of space-separated fields, where the
371 // 0-indexed 11th and 12th are utime and stime. On two different machines
372 // I found 42 and 39 fields, so let's just expect the ones we need.
373 std::vector<std::string> fields;
374 SplitString(input.substr(rparen + 2), ' ', &fields);
375 if (fields.size() < 13)
376 return -1; // Output not in the format we expect.
377
378 return StringToInt(fields[11]) + StringToInt(fields[12]);
379 }
380
381 // Get the total CPU of a single process. Return value is number of jiffies
382 // on success or -1 on error.
GetProcessCPU(pid_t pid)383 static int GetProcessCPU(pid_t pid) {
384 // Use /proc/<pid>/task to find all threads and parse their /stat file.
385 FilePath path = FilePath(StringPrintf("/proc/%d/task/", pid));
386
387 DIR* dir = opendir(path.value().c_str());
388 if (!dir) {
389 PLOG(ERROR) << "opendir(" << path.value() << ")";
390 return -1;
391 }
392
393 int total_cpu = 0;
394 while (struct dirent* ent = readdir(dir)) {
395 if (ent->d_name[0] == '.')
396 continue;
397
398 FilePath stat_path = path.AppendASCII(ent->d_name).AppendASCII("stat");
399 std::string stat;
400 if (file_util::ReadFileToString(stat_path, &stat)) {
401 int cpu = ParseProcStatCPU(stat);
402 if (cpu > 0)
403 total_cpu += cpu;
404 }
405 }
406 closedir(dir);
407
408 return total_cpu;
409 }
410
GetCPUUsage()411 double ProcessMetrics::GetCPUUsage() {
412 // This queries the /proc-specific scaling factor which is
413 // conceptually the system hertz. To dump this value on another
414 // system, try
415 // od -t dL /proc/self/auxv
416 // and look for the number after 17 in the output; mine is
417 // 0000040 17 100 3 134512692
418 // which means the answer is 100.
419 // It may be the case that this value is always 100.
420 static const int kHertz = sysconf(_SC_CLK_TCK);
421
422 struct timeval now;
423 int retval = gettimeofday(&now, NULL);
424 if (retval)
425 return 0;
426 int64 time = TimeValToMicroseconds(now);
427
428 if (last_time_ == 0) {
429 // First call, just set the last values.
430 last_time_ = time;
431 last_cpu_ = GetProcessCPU(process_);
432 return 0;
433 }
434
435 int64 time_delta = time - last_time_;
436 DCHECK_NE(time_delta, 0);
437 if (time_delta == 0)
438 return 0;
439
440 int cpu = GetProcessCPU(process_);
441
442 // We have the number of jiffies in the time period. Convert to percentage.
443 // Note this means we will go *over* 100 in the case where multiple threads
444 // are together adding to more than one CPU's worth.
445 int percentage = 100 * (cpu - last_cpu_) /
446 (kHertz * TimeDelta::FromMicroseconds(time_delta).InSecondsF());
447
448 last_time_ = time;
449 last_cpu_ = cpu;
450
451 return percentage;
452 }
453
454 namespace {
455
456 // The format of /proc/meminfo is:
457 //
458 // MemTotal: 8235324 kB
459 // MemFree: 1628304 kB
460 // Buffers: 429596 kB
461 // Cached: 4728232 kB
462 // ...
463 const size_t kMemTotalIndex = 1;
464 const size_t kMemFreeIndex = 4;
465 const size_t kMemBuffersIndex = 7;
466 const size_t kMemCacheIndex = 10;
467
468 } // namespace
469
GetSystemCommitCharge()470 size_t GetSystemCommitCharge() {
471 // Used memory is: total - free - buffers - caches
472 FilePath meminfo_file("/proc/meminfo");
473 std::string meminfo_data;
474 if (!file_util::ReadFileToString(meminfo_file, &meminfo_data)) {
475 LOG(WARNING) << "Failed to open /proc/meminfo.";
476 return 0;
477 }
478 std::vector<std::string> meminfo_fields;
479 SplitStringAlongWhitespace(meminfo_data, &meminfo_fields);
480
481 if (meminfo_fields.size() < kMemCacheIndex) {
482 LOG(WARNING) << "Failed to parse /proc/meminfo. Only found " <<
483 meminfo_fields.size() << " fields.";
484 return 0;
485 }
486
487 DCHECK_EQ(meminfo_fields[kMemTotalIndex-1], "MemTotal:");
488 DCHECK_EQ(meminfo_fields[kMemFreeIndex-1], "MemFree:");
489 DCHECK_EQ(meminfo_fields[kMemBuffersIndex-1], "Buffers:");
490 DCHECK_EQ(meminfo_fields[kMemCacheIndex-1], "Cached:");
491
492 size_t result_in_kb;
493 result_in_kb = StringToInt(meminfo_fields[kMemTotalIndex]);
494 result_in_kb -= StringToInt(meminfo_fields[kMemFreeIndex]);
495 result_in_kb -= StringToInt(meminfo_fields[kMemBuffersIndex]);
496 result_in_kb -= StringToInt(meminfo_fields[kMemCacheIndex]);
497
498 return result_in_kb;
499 }
500
501 namespace {
502
OnNoMemorySize(size_t size)503 void OnNoMemorySize(size_t size) {
504 if (size != 0)
505 CHECK(false) << "Out of memory, size = " << size;
506 CHECK(false) << "Out of memory.";
507 }
508
OnNoMemory()509 void OnNoMemory() {
510 OnNoMemorySize(0);
511 }
512
513 } // namespace
514
515 extern "C" {
516
517 #if !defined(LINUX_USE_TCMALLOC)
518
519 extern "C" {
520 void* __libc_malloc(size_t size);
521 void* __libc_realloc(void* ptr, size_t size);
522 void* __libc_calloc(size_t nmemb, size_t size);
523 void* __libc_valloc(size_t size);
524 void* __libc_pvalloc(size_t size);
525 void* __libc_memalign(size_t alignment, size_t size);
526 } // extern "C"
527
528 // Overriding the system memory allocation functions:
529 //
530 // For security reasons, we want malloc failures to be fatal. Too much code
531 // doesn't check for a NULL return value from malloc and unconditionally uses
532 // the resulting pointer. If the first offset that they try to access is
533 // attacker controlled, then the attacker can direct the code to access any
534 // part of memory.
535 //
536 // Thus, we define all the standard malloc functions here and mark them as
537 // visibility 'default'. This means that they replace the malloc functions for
538 // all Chromium code and also for all code in shared libraries. There are tests
539 // for this in process_util_unittest.cc.
540 //
541 // If we are using tcmalloc, then the problem is moot since tcmalloc handles
542 // this for us. Thus this code is in a !defined(LINUX_USE_TCMALLOC) block.
543 //
544 // We call the real libc functions in this code by using __libc_malloc etc.
545 // Previously we tried using dlsym(RTLD_NEXT, ...) but that failed depending on
546 // the link order. Since ld.so needs calloc during symbol resolution, it
547 // defines its own versions of several of these functions in dl-minimal.c.
548 // Depending on the runtime library order, dlsym ended up giving us those
549 // functions and bad things happened. See crbug.com/31809
550 //
551 // This means that any code which calls __libc_* gets the raw libc versions of
552 // these functions.
553
554 #define DIE_ON_OOM_1(function_name) \
555 void* function_name(size_t) __attribute__ ((visibility("default"))); \
556 \
557 void* function_name(size_t size) { \
558 void* ret = __libc_##function_name(size); \
559 if (ret == NULL && size != 0) \
560 OnNoMemorySize(size); \
561 return ret; \
562 }
563
564 #define DIE_ON_OOM_2(function_name, arg1_type) \
565 void* function_name(arg1_type, size_t) \
566 __attribute__ ((visibility("default"))); \
567 \
568 void* function_name(arg1_type arg1, size_t size) { \
569 void* ret = __libc_##function_name(arg1, size); \
570 if (ret == NULL && size != 0) \
571 OnNoMemorySize(size); \
572 return ret; \
573 }
574
575 DIE_ON_OOM_1(malloc)
576 DIE_ON_OOM_1(valloc)
577 DIE_ON_OOM_1(pvalloc)
578
579 DIE_ON_OOM_2(calloc, size_t)
580 DIE_ON_OOM_2(realloc, void*)
581 DIE_ON_OOM_2(memalign, size_t)
582
583 // posix_memalign has a unique signature and doesn't have a __libc_ variant.
584 int posix_memalign(void** ptr, size_t alignment, size_t size)
585 __attribute__ ((visibility("default")));
586
posix_memalign(void ** ptr,size_t alignment,size_t size)587 int posix_memalign(void** ptr, size_t alignment, size_t size) {
588 // This will use the safe version of memalign, above.
589 *ptr = memalign(alignment, size);
590 return 0;
591 }
592
593 #endif // !defined(LINUX_USE_TCMALLOC)
594 } // extern C
595
EnableTerminationOnOutOfMemory()596 void EnableTerminationOnOutOfMemory() {
597 // Set the new-out of memory handler.
598 std::set_new_handler(&OnNoMemory);
599 // If we're using glibc's allocator, the above functions will override
600 // malloc and friends and make them die on out of memory.
601 }
602
AdjustOOMScore(ProcessId process,int score)603 bool AdjustOOMScore(ProcessId process, int score) {
604 if (score < 0 || score > 15)
605 return false;
606
607 FilePath oom_adj("/proc");
608 oom_adj = oom_adj.Append(Int64ToString(process));
609 oom_adj = oom_adj.AppendASCII("oom_adj");
610
611 if (!file_util::PathExists(oom_adj))
612 return false;
613
614 std::string score_str = IntToString(score);
615 return (static_cast<int>(score_str.length()) ==
616 file_util::WriteFile(oom_adj, score_str.c_str(), score_str.length()));
617 }
618
619 } // namespace base
620