1 // Copyright (c) 2009 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef NET_TOOLS_FLIP_SERVER_BALSA_HEADERS_H_ 6 #define NET_TOOLS_FLIP_SERVER_BALSA_HEADERS_H_ 7 8 #include <algorithm> 9 #include <iostream> 10 #include <iterator> 11 #include <string> 12 #include <utility> 13 #include <vector> 14 15 #include "base/port.h" 16 #include "base/logging.h" 17 #include "base/string_piece.h" 18 #include "net/tools/flip_server/balsa_enums.h" 19 #include "net/tools/flip_server/string_piece_utils.h" 20 21 namespace net { 22 23 // WARNING: 24 // Note that -no- char* returned by any function in this 25 // file is null-terminated. 26 27 // This class exists to service the specific needs of BalsaHeaders. 28 // 29 // Functional goals: 30 // 1) provide a backing-store for all of the StringPieces that BalsaHeaders 31 // returns. Every StringPiece returned from BalsaHeaders should remain 32 // valid until the BalsaHeader's object is cleared, or the header-line is 33 // erased. 34 // 2) provide a backing-store for BalsaFrame, which requires contiguous memory 35 // for its fast-path parsing functions. Note that the cost of copying is 36 // less than the cost of requiring the parser to do slow-path parsing, as 37 // it would have to check for bounds every byte, instead of every 16 bytes. 38 // 39 // This class is optimized for the case where headers are stored in one of two 40 // buffers. It doesn't make a lot of effort to densely pack memory-- in fact, 41 // it -may- be somewhat memory inefficient. This possible inefficiency allows a 42 // certain simplicity of implementation and speed which makes it worthwhile. 43 // If, in the future, better memory density is required, it should be possible 44 // to reuse the abstraction presented by this object to achieve those goals. 45 // 46 // In the most common use-case, this memory inefficiency should be relatively 47 // small. 48 // 49 // Alternate implementations of BalsaBuffer may include: 50 // - vector of strings, one per header line (similar to HTTPHeaders) 51 // - densely packed strings: 52 // - keep a sorted array/map of free-space linked lists or numbers. 53 // - use the entry that most closely first your needs. 54 // - at this point, perhaps just use a vector of strings, and let 55 // the allocator do the right thing. 56 // 57 class BalsaBuffer { 58 public: 59 static const size_t kDefaultBlocksize = 4096; 60 // We have two friends here. These exist as friends as we 61 // want to allow access to the constructors for the test 62 // class and the Balsa* classes. We put this into the 63 // header file as we want this class to be inlined into the 64 // BalsaHeaders implementation, yet be testable. 65 friend class BalsaBufferTestSpouse; 66 friend class BalsaHeaders; 67 68 // The BufferBlock is a structure used internally by the 69 // BalsaBuffer class to store the base buffer pointers to 70 // each block, as well as the important metadata for buffer 71 // sizes and bytes free. 72 struct BufferBlock { 73 public: 74 char* buffer; 75 size_t buffer_size; 76 size_t bytes_free; 77 bytes_usedBufferBlock78 size_t bytes_used() const { 79 return buffer_size - bytes_free; 80 } start_of_unused_bytesBufferBlock81 char* start_of_unused_bytes() const { 82 return buffer + bytes_used(); 83 } 84 BufferBlockBufferBlock85 BufferBlock() : buffer(NULL), buffer_size(0), bytes_free(0) {} ~BufferBlockBufferBlock86 ~BufferBlock() {} 87 BufferBlockBufferBlock88 BufferBlock(char* buf, size_t size, size_t free) : 89 buffer(buf), buffer_size(size), bytes_free(free) {} 90 // Yes we want this to be copyable (it gets stuck into vectors). 91 // For this reason, we don't use scoped ptrs, etc. here-- it 92 // is more efficient to manage this memory externally to this 93 // object. 94 }; 95 96 typedef std::vector<BufferBlock> Blocks; 97 ~BalsaBuffer()98 ~BalsaBuffer() { 99 CleanupBlocksStartingFrom(0); 100 } 101 102 // Returns the total amount of memory used by the buffer blocks. GetTotalBufferBlockSize()103 size_t GetTotalBufferBlockSize() const { 104 size_t buffer_size = 0; 105 for (Blocks::const_iterator iter = blocks_.begin(); 106 iter != blocks_.end(); 107 ++iter) { 108 buffer_size += iter->buffer_size; 109 } 110 return buffer_size; 111 } 112 GetPtr(Blocks::size_type block_idx)113 const char* GetPtr(Blocks::size_type block_idx) const { 114 DCHECK_LT(block_idx, blocks_.size()) 115 << block_idx << ", " << blocks_.size(); 116 return blocks_[block_idx].buffer; 117 } 118 GetPtr(Blocks::size_type block_idx)119 char* GetPtr(Blocks::size_type block_idx) { 120 DCHECK_LT(block_idx, blocks_.size()) 121 << block_idx << ", " << blocks_.size(); 122 return blocks_[block_idx].buffer; 123 } 124 125 // This function is different from Write(), as it ensures that the data 126 // stored via subsequent calls to this function are all contiguous (and in 127 // the order in which these writes happened). This is essentially the same 128 // as a string append. 129 // 130 // You may call this function at any time between object 131 // construction/Clear(), and the calling of the 132 // NoMoreWriteToContiguousBuffer() function. 133 // 134 // You must not call this function after the NoMoreWriteToContiguousBuffer() 135 // function is called, unless a Clear() has been called since. 136 // If you do, the program will abort(). 137 // 138 // This condition is placed upon this code so that calls to Write() can 139 // append to the buffer in the first block safely, and without invaliding 140 // the StringPiece which it returns. 141 // 142 // This function's main intended user is the BalsaFrame class, which, 143 // for reasons of efficiency, requires that the buffer from which it parses 144 // the headers be contiguous. 145 // WriteToContiguousBuffer(const base::StringPiece & sp)146 void WriteToContiguousBuffer(const base::StringPiece& sp) { 147 if (sp.empty()) { 148 return; 149 } 150 CHECK(can_write_to_contiguous_buffer_); 151 DCHECK_GE(blocks_.size(), 1u); 152 if (blocks_[0].buffer == NULL && sp.size() <= blocksize_) { 153 blocks_[0] = AllocBlock(); 154 memcpy(blocks_[0].start_of_unused_bytes(), sp.data(), sp.size()); 155 } else if (blocks_[0].bytes_free < sp.size()) { 156 // the first block isn't big enough, resize it. 157 const size_t old_storage_size_used = blocks_[0].bytes_used(); 158 const size_t new_storage_size = old_storage_size_used + sp.size(); 159 char* new_storage = new char[new_storage_size]; 160 char* old_storage = blocks_[0].buffer; 161 if (old_storage_size_used) { 162 memcpy(new_storage, old_storage, old_storage_size_used); 163 } 164 memcpy(new_storage + old_storage_size_used, sp.data(), sp.size()); 165 blocks_[0].buffer = new_storage; 166 blocks_[0].bytes_free = sp.size(); 167 blocks_[0].buffer_size = new_storage_size; 168 delete[] old_storage; 169 } else { 170 memcpy(blocks_[0].start_of_unused_bytes(), sp.data(), sp.size()); 171 } 172 blocks_[0].bytes_free -= sp.size(); 173 } 174 NoMoreWriteToContiguousBuffer()175 void NoMoreWriteToContiguousBuffer() { 176 can_write_to_contiguous_buffer_ = false; 177 } 178 179 // Takes a StringPiece and writes it to "permanent" storage, then returns a 180 // StringPiece which points to that data. If block_idx != NULL, it will be 181 // assigned the index of the block into which the data was stored. 182 // Note that the 'permanent' storage in which it stores data may be in 183 // the first block IFF the NoMoreWriteToContiguousBuffer function has 184 // been called since the last Clear/Construction. Write(const base::StringPiece & sp,Blocks::size_type * block_buffer_idx)185 base::StringPiece Write(const base::StringPiece& sp, 186 Blocks::size_type* block_buffer_idx) { 187 if (sp.empty()) { 188 return sp; 189 } 190 char* storage = Reserve(sp.size(), block_buffer_idx); 191 memcpy(storage, sp.data(), sp.size()); 192 return base::StringPiece(storage, sp.size()); 193 } 194 195 // Reserves "permanent" storage of the size indicated. Returns a pointer to 196 // the beginning of that storage, and assigns the index of the block used to 197 // block_buffer_idx. This function uses the first block IFF the 198 // NoMoreWriteToContiguousBuffer function has been called since the last 199 // Clear/Construction. Reserve(size_t size,Blocks::size_type * block_buffer_idx)200 char* Reserve(size_t size, 201 Blocks::size_type* block_buffer_idx) { 202 // There should always be a 'first_block', even if it 203 // contains nothing. 204 DCHECK_GE(blocks_.size(), 1u); 205 BufferBlock* block = NULL; 206 Blocks::size_type block_idx = can_write_to_contiguous_buffer_ ? 1 : 0; 207 for (; block_idx < blocks_.size(); ++block_idx) { 208 if (blocks_[block_idx].bytes_free >= size) { 209 block = &blocks_[block_idx]; 210 break; 211 } 212 } 213 if (block == NULL) { 214 if (blocksize_ < size) { 215 blocks_.push_back(AllocCustomBlock(size)); 216 } else { 217 blocks_.push_back(AllocBlock()); 218 } 219 block = &blocks_.back(); 220 } 221 222 char* storage = block->start_of_unused_bytes(); 223 block->bytes_free -= size; 224 if (block_buffer_idx) { 225 *block_buffer_idx = block_idx; 226 } 227 return storage; 228 } 229 Clear()230 void Clear() { 231 CHECK(!blocks_.empty()); 232 if (blocksize_ == blocks_[0].buffer_size) { 233 CleanupBlocksStartingFrom(1); 234 blocks_[0].bytes_free = blocks_[0].buffer_size; 235 } else { 236 CleanupBlocksStartingFrom(0); 237 blocks_.push_back(AllocBlock()); 238 } 239 DCHECK_GE(blocks_.size(), 1u); 240 can_write_to_contiguous_buffer_ = true; 241 } 242 Swap(BalsaBuffer * b)243 void Swap(BalsaBuffer* b) { 244 blocks_.swap(b->blocks_); 245 std::swap(can_write_to_contiguous_buffer_, 246 b->can_write_to_contiguous_buffer_); 247 std::swap(blocksize_, b->blocksize_); 248 } 249 CopyFrom(const BalsaBuffer & b)250 void CopyFrom(const BalsaBuffer& b) { 251 CleanupBlocksStartingFrom(0); 252 blocks_.resize(b.blocks_.size()); 253 for (Blocks::size_type i = 0; i < blocks_.size(); ++i) { 254 blocks_[i] = CopyBlock(b.blocks_[i]); 255 } 256 blocksize_ = b.blocksize_; 257 can_write_to_contiguous_buffer_ = b.can_write_to_contiguous_buffer_; 258 } 259 StartOfFirstBlock()260 const char* StartOfFirstBlock() const { 261 return blocks_[0].buffer; 262 } 263 EndOfFirstBlock()264 const char* EndOfFirstBlock() const { 265 return blocks_[0].buffer + blocks_[0].bytes_used(); 266 } 267 can_write_to_contiguous_buffer()268 bool can_write_to_contiguous_buffer() const { 269 return can_write_to_contiguous_buffer_; 270 } blocksize()271 size_t blocksize() const { return blocksize_; } num_blocks()272 Blocks::size_type num_blocks() const { return blocks_.size(); } buffer_size(size_t idx)273 size_t buffer_size(size_t idx) const { return blocks_[idx].buffer_size; } bytes_used(size_t idx)274 size_t bytes_used(size_t idx) const { return blocks_[idx].bytes_used(); } 275 276 protected: BalsaBuffer()277 BalsaBuffer() : 278 blocksize_(kDefaultBlocksize), can_write_to_contiguous_buffer_(true) { 279 blocks_.push_back(AllocBlock()); 280 } 281 BalsaBuffer(size_t blocksize)282 explicit BalsaBuffer(size_t blocksize) : 283 blocksize_(blocksize), can_write_to_contiguous_buffer_(true) { 284 blocks_.push_back(AllocBlock()); 285 } 286 AllocBlock()287 BufferBlock AllocBlock() { 288 return AllocCustomBlock(blocksize_); 289 } 290 AllocCustomBlock(size_t blocksize)291 BufferBlock AllocCustomBlock(size_t blocksize) { 292 return BufferBlock(new char[blocksize], blocksize, blocksize); 293 } 294 CopyBlock(const BufferBlock & b)295 BufferBlock CopyBlock(const BufferBlock& b) { 296 BufferBlock block = b; 297 if (b.buffer == NULL) { 298 return block; 299 } 300 301 block.buffer = new char[b.buffer_size]; 302 memcpy(block.buffer, b.buffer, b.bytes_used()); 303 return block; 304 } 305 306 // Cleans up the object. 307 // The block at start_idx, and all subsequent blocks 308 // will be cleared and have associated memory deleted. CleanupBlocksStartingFrom(Blocks::size_type start_idx)309 void CleanupBlocksStartingFrom(Blocks::size_type start_idx) { 310 for (Blocks::size_type i = start_idx; i < blocks_.size(); ++i) { 311 delete[] blocks_[i].buffer; 312 } 313 blocks_.resize(start_idx); 314 } 315 316 // A container of BufferBlocks 317 Blocks blocks_; 318 319 // The default allocation size for a block. 320 // In general, blocksize_ bytes will be allocated for 321 // each buffer. 322 size_t blocksize_; 323 324 // If set to true, then the first block cannot be used for Write() calls as 325 // the WriteToContiguous... function will modify the base pointer for this 326 // block, and the Write() calls need to be sure that the base pointer will 327 // not be changing in order to provide the user with StringPieces which 328 // continue to be valid. 329 bool can_write_to_contiguous_buffer_; 330 }; 331 332 //////////////////////////////////////////////////////////////////////////////// 333 334 // All of the functions in the BalsaHeaders class use string pieces, by either 335 // using the StringPiece class, or giving an explicit size and char* (as these 336 // are the native representation for these string pieces). 337 // This is done for several reasons. 338 // 1) This minimizes copying/allocation/deallocation as compared to using 339 // string parameters 340 // 2) This reduces the number of strlen() calls done (as the length of any 341 // string passed in is relatively likely to be known at compile time, and for 342 // those strings passed back we obviate the need for a strlen() to determine 343 // the size of new storage allocations if a new allocation is required. 344 // 3) This class attempts to store all of its data in two linear buffers in 345 // order to enhance the speed of parsing and writing out to a buffer. As a 346 // result, many string pieces are -not- terminated by '\0', and are not 347 // c-strings. Since this is the case, we must delineate the length of the 348 // string explicitly via a length. 349 // 350 // WARNING: The side effect of using StringPiece is that if the underlying 351 // buffer changes (due to modifying the headers) the StringPieces which point 352 // to the data which was modified, may now contain "garbage", and should not 353 // be dereferenced. 354 // For example, If you fetch some component of the first-line, (request or 355 // response), and then you modify the first line, the StringPieces you 356 // originally received from the original first-line may no longer be valid). 357 // 358 // StringPieces pointing to pieces of header lines which have not been 359 // erased() or modified should be valid until the object is cleared or 360 // destroyed. 361 362 class BalsaHeaders { 363 public: 364 struct HeaderLineDescription { HeaderLineDescriptionHeaderLineDescription365 HeaderLineDescription(size_t first_character_index, 366 size_t key_end_index, 367 size_t value_begin_index, 368 size_t last_character_index, 369 size_t buffer_base_index) : 370 first_char_idx(first_character_index), 371 key_end_idx(key_end_index), 372 value_begin_idx(value_begin_index), 373 last_char_idx(last_character_index), 374 buffer_base_idx(buffer_base_index), 375 skip(false) {} 376 HeaderLineDescriptionHeaderLineDescription377 HeaderLineDescription() : 378 first_char_idx(0), 379 key_end_idx(0), 380 value_begin_idx(0), 381 last_char_idx(0), 382 buffer_base_idx(0), 383 skip(false) {} 384 385 size_t first_char_idx; 386 size_t key_end_idx; 387 size_t value_begin_idx; 388 size_t last_char_idx; 389 BalsaBuffer::Blocks::size_type buffer_base_idx; 390 bool skip; 391 }; 392 393 typedef std::vector<base::StringPiece> HeaderTokenList; 394 friend bool net::ParseHTTPFirstLine(const char* begin, 395 const char* end, 396 bool is_request, 397 size_t max_request_uri_length, 398 BalsaHeaders* headers, 399 BalsaFrameEnums::ErrorCode* error_code); 400 401 protected: 402 typedef std::vector<HeaderLineDescription> HeaderLines; 403 404 // Why these base classes (iterator_base, reverse_iterator_base)? Well, if 405 // we do want to export both iterator and const_iterator types (currently we 406 // only have const_iterator), then this is useful to avoid code duplication. 407 // Additionally, having this base class makes comparisons of iterators of 408 // different types (they're different types to ensure that operator= and 409 // constructors do not work in the places where they're expected to not work) 410 // work properly. There could be as many as 4 iterator types, all based on 411 // the same data as iterator_base... so it makes sense to simply have some 412 // base classes. 413 414 class iterator_base { 415 public: 416 friend class BalsaHeaders; 417 friend class reverse_iterator_base; 418 typedef std::pair<base::StringPiece, base::StringPiece> StringPiecePair; 419 typedef StringPiecePair value_type; 420 typedef value_type& reference; 421 typedef value_type* pointer; 422 423 typedef std::forward_iterator_tag iterator_category; 424 typedef ptrdiff_t difference_type; 425 426 typedef iterator_base self; 427 428 // default constructor. iterator_base()429 iterator_base() : headers_(NULL), idx_(0) { } 430 431 // copy constructor. iterator_base(const iterator_base & it)432 iterator_base(const iterator_base& it) 433 : headers_(it.headers_), 434 idx_(it.idx_) {} 435 436 reference operator*() const { 437 return Lookup(idx_); 438 } 439 440 pointer operator->() const { 441 return &(this->operator*()); 442 } 443 444 bool operator==(const self& it) const { 445 return idx_ == it.idx_; 446 } 447 448 bool operator<(const self& it) const { 449 return idx_ < it.idx_; 450 } 451 452 bool operator<=(const self& it) const { 453 return idx_ <= it.idx_; 454 } 455 456 bool operator!=(const self& it) const { 457 return !(*this == it); 458 } 459 460 bool operator>(const self& it) const { 461 return it < *this; 462 } 463 464 bool operator>=(const self& it) const { 465 return it <= *this; 466 } 467 468 // This mainly exists so that we can have interesting output for 469 // unittesting. The EXPECT_EQ, EXPECT_NE functions require that 470 // operator<< work for the classes it sees. It would be better if there 471 // was an additional traits-like system for the gUnit output... but oh 472 // well. 473 friend std::ostream& operator<<(std::ostream& os, const iterator_base& it) { 474 os << "[" << it.headers_ << ", " << it.idx_ << "]"; 475 return os; 476 } 477 478 protected: iterator_base(const BalsaHeaders * headers,HeaderLines::size_type index)479 iterator_base(const BalsaHeaders* headers, HeaderLines::size_type index) : 480 headers_(headers), 481 idx_(index) {} 482 increment()483 void increment() { 484 const HeaderLines& header_lines = headers_->header_lines_; 485 const HeaderLines::size_type header_lines_size = header_lines.size(); 486 const HeaderLines::size_type original_idx = idx_; 487 do { 488 ++idx_; 489 } while (idx_ < header_lines_size && header_lines[idx_].skip == true); 490 // The condition below exists so that ++(end() - 1) == end(), even 491 // if there are only 'skip == true' elements between the end() iterator 492 // and the end of the vector of HeaderLineDescriptions. 493 // TODO(fenix): refactor this list so that we don't have to do 494 // linear scanning through skipped headers (and this condition is 495 // then unnecessary) 496 if (idx_ == header_lines_size) { 497 idx_ = original_idx + 1; 498 } 499 } 500 decrement()501 void decrement() { 502 const HeaderLines& header_lines = headers_->header_lines_; 503 const HeaderLines::size_type header_lines_size = header_lines.size(); 504 const HeaderLines::size_type original_idx = idx_; 505 do { 506 --idx_; 507 } while (idx_ >= 0 && 508 idx_ < header_lines_size && 509 header_lines[idx_].skip == true); 510 // The condition below exists so that --(rbegin() + 1) == rbegin(), even 511 // if there are only 'skip == true' elements between the rbegin() iterator 512 // and the beginning of the vector of HeaderLineDescriptions. 513 // TODO(fenix): refactor this list so that we don't have to do 514 // linear scanning through skipped headers (and this condition is 515 // then unnecessary) 516 if (idx_ < 0 || idx_ > header_lines_size) { 517 idx_ = original_idx - 1; 518 } 519 } 520 Lookup(HeaderLines::size_type index)521 reference Lookup(HeaderLines::size_type index) const { 522 DCHECK_LT(index, headers_->header_lines_.size()); 523 const HeaderLineDescription& line = headers_->header_lines_[index]; 524 const char* stream_begin = headers_->GetPtr(line.buffer_base_idx); 525 value_ = value_type( 526 base::StringPiece(stream_begin + line.first_char_idx, 527 line.key_end_idx - line.first_char_idx), 528 base::StringPiece(stream_begin + line.value_begin_idx, 529 line.last_char_idx - line.value_begin_idx)); 530 DCHECK_GE(line.key_end_idx, line.first_char_idx); 531 DCHECK_GE(line.last_char_idx, line.value_begin_idx); 532 return value_; 533 } 534 535 const BalsaHeaders* headers_; 536 HeaderLines::size_type idx_; 537 mutable StringPiecePair value_; 538 }; 539 540 class reverse_iterator_base : public iterator_base { 541 public: 542 typedef reverse_iterator_base self; 543 typedef iterator_base::reference reference; 544 typedef iterator_base::pointer pointer; 545 using iterator_base::headers_; 546 using iterator_base::idx_; 547 reverse_iterator_base()548 reverse_iterator_base() : iterator_base() {} 549 550 // This constructor is no explicit purposely. reverse_iterator_base(const iterator_base & it)551 reverse_iterator_base(const iterator_base& it) : // NOLINT 552 iterator_base(it) { 553 } 554 555 self& operator=(const iterator_base& it) { 556 idx_ = it.idx_; 557 headers_ = it.headers_; 558 return *this; 559 } 560 561 self& operator=(const reverse_iterator_base& it) { 562 idx_ = it.idx_; 563 headers_ = it.headers_; 564 return *this; 565 } 566 567 reference operator*() const { 568 return Lookup(idx_ - 1); 569 } 570 571 pointer operator->() const { 572 return &(this->operator*()); 573 } 574 reverse_iterator_base(const reverse_iterator_base & it)575 reverse_iterator_base(const reverse_iterator_base& it) : 576 iterator_base(it) { } 577 578 protected: increment()579 void increment() { 580 --idx_; 581 iterator_base::decrement(); 582 ++idx_; 583 } 584 decrement()585 void decrement() { 586 ++idx_; 587 iterator_base::increment(); 588 --idx_; 589 } 590 reverse_iterator_base(const BalsaHeaders * headers,HeaderLines::size_type index)591 reverse_iterator_base(const BalsaHeaders* headers, 592 HeaderLines::size_type index) : 593 iterator_base(headers, index) {} 594 }; 595 596 public: 597 class const_header_lines_iterator : public iterator_base { 598 friend class BalsaHeaders; 599 public: 600 typedef const_header_lines_iterator self; const_header_lines_iterator()601 const_header_lines_iterator() : iterator_base() {} 602 const_header_lines_iterator(const const_header_lines_iterator & it)603 const_header_lines_iterator(const const_header_lines_iterator& it) : 604 iterator_base(it.headers_, it.idx_) {} 605 606 self& operator++() { 607 iterator_base::increment(); 608 return *this; 609 } 610 611 self& operator--() { 612 iterator_base::decrement(); 613 return *this; 614 } 615 protected: const_header_lines_iterator(const BalsaHeaders * headers,HeaderLines::size_type index)616 const_header_lines_iterator(const BalsaHeaders* headers, 617 HeaderLines::size_type index) : 618 iterator_base(headers, index) {} 619 }; 620 621 class const_reverse_header_lines_iterator : public reverse_iterator_base { 622 public: 623 typedef const_reverse_header_lines_iterator self; const_reverse_header_lines_iterator()624 const_reverse_header_lines_iterator() : reverse_iterator_base() {} 625 const_reverse_header_lines_iterator(const const_header_lines_iterator & it)626 const_reverse_header_lines_iterator( 627 const const_header_lines_iterator& it) : 628 reverse_iterator_base(it.headers_, it.idx_) {} 629 const_reverse_header_lines_iterator(const const_reverse_header_lines_iterator & it)630 const_reverse_header_lines_iterator( 631 const const_reverse_header_lines_iterator& it) : 632 reverse_iterator_base(it.headers_, it.idx_) {} 633 base()634 const_header_lines_iterator base() { 635 return const_header_lines_iterator(headers_, idx_); 636 } 637 638 self& operator++() { 639 reverse_iterator_base::increment(); 640 return *this; 641 } 642 643 self& operator--() { 644 reverse_iterator_base::decrement(); 645 return *this; 646 } 647 protected: const_reverse_header_lines_iterator(const BalsaHeaders * headers,HeaderLines::size_type index)648 const_reverse_header_lines_iterator(const BalsaHeaders* headers, 649 HeaderLines::size_type index) : 650 reverse_iterator_base(headers, index) {} 651 652 friend class BalsaHeaders; 653 }; 654 655 // An iterator that only stops at lines with a particular key. 656 // See also GetIteratorForKey. 657 // 658 // Check against header_lines_key_end() to determine when iteration is 659 // finished. header_lines_end() will also work. 660 class const_header_lines_key_iterator : public iterator_base { 661 friend class BalsaHeaders; 662 public: 663 typedef const_header_lines_key_iterator self; 664 665 self& operator++() { 666 do { 667 iterator_base::increment(); 668 } while (!AtEnd() && 669 !StringPieceUtils::EqualIgnoreCase(key_, (**this).first)); 670 return *this; 671 } 672 673 void operator++(int ignore) { 674 ++(*this); 675 } 676 677 // Only forward-iteration makes sense, so no operator-- defined. 678 679 private: const_header_lines_key_iterator(const BalsaHeaders * headers,HeaderLines::size_type index,const base::StringPiece & key)680 const_header_lines_key_iterator(const BalsaHeaders* headers, 681 HeaderLines::size_type index, 682 const base::StringPiece& key) 683 : iterator_base(headers, index), 684 key_(key) { 685 } 686 687 // Should only be used for creating an end iterator. const_header_lines_key_iterator(const BalsaHeaders * headers,HeaderLines::size_type index)688 const_header_lines_key_iterator(const BalsaHeaders* headers, 689 HeaderLines::size_type index) 690 : iterator_base(headers, index) { 691 } 692 AtEnd()693 bool AtEnd() const { 694 return *this >= headers_->header_lines_end(); 695 } 696 697 base::StringPiece key_; 698 }; 699 700 // TODO(fenix): Revisit the amount of bytes initially allocated to the second 701 // block of the balsa_buffer_. It may make sense to pre-allocate some amount 702 // (roughly the amount we'd append in new headers such as X-User-Ip, etc.) BalsaHeaders()703 BalsaHeaders() : 704 balsa_buffer_(4096), 705 content_length_(0), 706 content_length_status_(BalsaHeadersEnums::NO_CONTENT_LENGTH), 707 parsed_response_code_(0), 708 firstline_buffer_base_idx_(0), 709 whitespace_1_idx_(0), 710 non_whitespace_1_idx_(0), 711 whitespace_2_idx_(0), 712 non_whitespace_2_idx_(0), 713 whitespace_3_idx_(0), 714 non_whitespace_3_idx_(0), 715 whitespace_4_idx_(0), 716 end_of_firstline_idx_(0), 717 transfer_encoding_is_chunked_(false) { } 718 header_lines_begin()719 const_header_lines_iterator header_lines_begin() { 720 return HeaderLinesBeginHelper<const_header_lines_iterator>(); 721 } 722 header_lines_begin()723 const_header_lines_iterator header_lines_begin() const { 724 return HeaderLinesBeginHelper<const_header_lines_iterator>(); 725 } 726 header_lines_end()727 const_header_lines_iterator header_lines_end() { 728 return HeaderLinesEndHelper<const_header_lines_iterator>(); 729 } 730 header_lines_end()731 const_header_lines_iterator header_lines_end() const { 732 return HeaderLinesEndHelper<const_header_lines_iterator>(); 733 } 734 header_lines_rbegin()735 const_reverse_header_lines_iterator header_lines_rbegin() { 736 return const_reverse_header_lines_iterator(header_lines_end()); 737 } 738 header_lines_rbegin()739 const_reverse_header_lines_iterator header_lines_rbegin() const { 740 return const_reverse_header_lines_iterator(header_lines_end()); 741 } 742 header_lines_rend()743 const_reverse_header_lines_iterator header_lines_rend() { 744 return const_reverse_header_lines_iterator(header_lines_begin()); 745 } 746 header_lines_rend()747 const_reverse_header_lines_iterator header_lines_rend() const { 748 return const_reverse_header_lines_iterator(header_lines_begin()); 749 } 750 header_lines_key_end()751 const_header_lines_key_iterator header_lines_key_end() const { 752 return HeaderLinesEndHelper<const_header_lines_key_iterator>(); 753 } 754 erase(const const_header_lines_iterator & it)755 void erase(const const_header_lines_iterator& it) { 756 DCHECK_EQ(it.headers_, this); 757 DCHECK_LT(it.idx_, header_lines_.size()); 758 DCHECK_GE(it.idx_, 0u); 759 header_lines_[it.idx_].skip = true; 760 } 761 762 void Clear(); 763 764 void Swap(BalsaHeaders* other); 765 766 void CopyFrom(const BalsaHeaders& other); 767 768 void HackHeader(const base::StringPiece& key, const base::StringPiece& value); 769 770 // Same as AppendToHeader, except that it will attempt to preserve 771 // header ordering. 772 // Note that this will always append to an existing header, if available, 773 // without moving the header around, or collapsing multiple header lines 774 // with the same key together. For this reason, it only 'attempts' to 775 // preserve header ordering. 776 // TODO(fenix): remove this function and rename all occurances 777 // of it in the code to AppendToHeader when the condition above 778 // has been satisified. 779 void HackAppendToHeader(const base::StringPiece& key, 780 const base::StringPiece& value); 781 782 // Replaces header entries with key 'key' if they exist, or appends 783 // a new header if none exist. See 'AppendHeader' below for additional 784 // comments about ContentLength and TransferEncoding headers. Note that this 785 // will allocate new storage every time that it is called. 786 // TODO(fenix): modify this function to reuse existing storage 787 // if it is available. 788 void ReplaceOrAppendHeader(const base::StringPiece& key, 789 const base::StringPiece& value); 790 791 // Append a new header entry to the header object. Clients who wish to append 792 // Content-Length header should use SetContentLength() method instead of 793 // adding the content length header using AppendHeader (manually adding the 794 // content length header will not update the content_length_ and 795 // content_length_status_ values). 796 // Similarly, clients who wish to add or remove the transfer encoding header 797 // in order to apply or remove chunked encoding should use SetChunkEncoding() 798 // instead. 799 void AppendHeader(const base::StringPiece& key, 800 const base::StringPiece& value); 801 802 // Appends ',value' to an existing header named 'key'. If no header with the 803 // correct key exists, it will call AppendHeader(key, value). Calling this 804 // function on a key which exists several times in the headers will produce 805 // unpredictable results. 806 void AppendToHeader(const base::StringPiece& key, 807 const base::StringPiece& value); 808 809 // Prepends 'value,' to an existing header named 'key'. If no header with the 810 // correct key exists, it will call AppendHeader(key, value). Calling this 811 // function on a key which exists several times in the headers will produce 812 // unpredictable results. 813 void PrependToHeader(const base::StringPiece& key, 814 const base::StringPiece& value); 815 816 const base::StringPiece GetHeader(const base::StringPiece& key) const; 817 818 // Iterates over all currently valid header lines, appending their 819 // values into the vector 'out', in top-to-bottom order. 820 // Header-lines which have been erased are not currently valid, and 821 // will not have their values appended. Empty values will be 822 // represented as empty string. If 'key' doesn't exist in the headers at 823 // all, out will not be changed. We do not clear the vector out 824 // before adding new entries. If there are header lines with matching 825 // key but empty value then they are also added to the vector out. 826 // (Basically empty values are not treated in any special manner). 827 // 828 // Example: 829 // Input header: 830 // "GET / HTTP/1.0\r\n" 831 // "key1: v1\r\n" 832 // "key1: \r\n" 833 // "key1:\r\n" 834 // "key1: v1\r\n" 835 // "key1:v2\r\n" 836 // 837 // vector out is initially: ["foo"] 838 // vector out after GetAllOfHeader("key1", &out) is: 839 // ["foo", "v1", "", "", "v2", "v1", "v2"] 840 841 void GetAllOfHeader(const base::StringPiece& key, 842 std::vector<base::StringPiece>* out) const; 843 844 // Joins all values for key into a comma-separated string in out. 845 // More efficient than calling JoinStrings on result of GetAllOfHeader if 846 // you don't need the intermediate vector<StringPiece>. 847 void GetAllOfHeaderAsString(const base::StringPiece& key, 848 std::string* out) const; 849 850 // Returns true if RFC 2616 Section 14 indicates that header can 851 // have multiple values. 852 static bool IsMultivaluedHeader(const base::StringPiece& header); 853 854 // Determine if a given header is present. HasHeader(const base::StringPiece & key)855 inline bool HasHeader(const base::StringPiece& key) const { 856 return (GetConstHeaderLinesIterator(key, header_lines_.begin()) != 857 header_lines_.end()); 858 } 859 860 // Returns true iff any header 'key' exists with non-empty value. 861 bool HasNonEmptyHeader(const base::StringPiece& key) const; 862 863 const_header_lines_iterator GetHeaderPosition( 864 const base::StringPiece& key) const; 865 866 // Returns a forward-only iterator that only stops at lines matching key. 867 // String backing 'key' must remain valid for lifetime of iterator. 868 // 869 // Check returned iterator against header_lines_key_end() to determine when 870 // iteration is finished. 871 const_header_lines_key_iterator GetIteratorForKey( 872 const base::StringPiece& key) const; 873 874 void RemoveAllOfHeader(const base::StringPiece& key); 875 876 // Removes all headers starting with 'key' [case insensitive] 877 void RemoveAllHeadersWithPrefix(const base::StringPiece& key); 878 879 // Returns the lower bound of memory used by this header object, including 880 // all internal buffers and data structure. Some of the memory used cannot be 881 // directly measure. For example, memory used for bookkeeping by standard 882 // containers. 883 size_t GetMemoryUsedLowerBound() const; 884 885 // Returns the upper bound on the required buffer space to fully write out 886 // the header object (this include the first line, all header lines, and the 887 // final CRLF that marks the ending of the header). 888 size_t GetSizeForWriteBuffer() const; 889 890 // The following WriteHeader* methods are template member functions that 891 // place one requirement on the Buffer class: it must implement a Write 892 // method that takes a pointer and a length. The buffer passed in is not 893 // required to be stretchable. For non-stretchable buffers, the user must 894 // call GetSizeForWriteBuffer() to find out the upper bound on the output 895 // buffer space required to make sure that the entire header is serialized. 896 // BalsaHeaders will not check that there is adequate space in the buffer 897 // object during the write. 898 899 // Writes the entire header and the final CRLF that marks the end of the HTTP 900 // header section to the buffer. After this method returns, no more header 901 // data should be written to the buffer. 902 template <typename Buffer> WriteHeaderAndEndingToBuffer(Buffer * buffer)903 void WriteHeaderAndEndingToBuffer(Buffer* buffer) const { 904 WriteToBuffer(buffer); 905 WriteHeaderEndingToBuffer(buffer); 906 } 907 908 // Writes the final CRLF to the buffer to terminate the HTTP header section. 909 // After this method returns, no more header data should be written to the 910 // buffer. 911 template <typename Buffer> WriteHeaderEndingToBuffer(Buffer * buffer)912 static void WriteHeaderEndingToBuffer(Buffer* buffer) { 913 buffer->Write("\r\n", 2); 914 } 915 916 // Writes the entire header to the buffer without the CRLF that terminates 917 // the HTTP header. This lets users append additional header lines using 918 // WriteHeaderLineToBuffer and then terminate the header with 919 // WriteHeaderEndingToBuffer as the header is serialized to the 920 // buffer, without having to first copy the header. 921 template <typename Buffer> WriteToBuffer(Buffer * buffer)922 void WriteToBuffer(Buffer* buffer) const { 923 // write the first line. 924 const size_t firstline_len = whitespace_4_idx_ - non_whitespace_1_idx_; 925 const char* stream_begin = GetPtr(firstline_buffer_base_idx_); 926 buffer->Write(stream_begin + non_whitespace_1_idx_, firstline_len); 927 buffer->Write("\r\n", 2); 928 const HeaderLines::size_type end = header_lines_.size(); 929 for (HeaderLines::size_type i = 0; i < end; ++i) { 930 const HeaderLineDescription& line = header_lines_[i]; 931 if (line.skip) { 932 continue; 933 } 934 const char* line_ptr = GetPtr(line.buffer_base_idx); 935 WriteHeaderLineToBuffer( 936 buffer, 937 base::StringPiece(line_ptr + line.first_char_idx, 938 line.key_end_idx - line.first_char_idx), 939 base::StringPiece(line_ptr + line.value_begin_idx, 940 line.last_char_idx - line.value_begin_idx)); 941 } 942 } 943 944 // Takes a header line in the form of a key/value pair and append it to the 945 // buffer. This function should be called after WriteToBuffer to 946 // append additional header lines to the header without copying the header. 947 // When the user is done with appending to the buffer, 948 // WriteHeaderEndingToBuffer must be used to terminate the HTTP 949 // header in the buffer. This method is a no-op if key is empty. 950 template <typename Buffer> WriteHeaderLineToBuffer(Buffer * buffer,const base::StringPiece & key,const base::StringPiece & value)951 static void WriteHeaderLineToBuffer(Buffer* buffer, 952 const base::StringPiece& key, 953 const base::StringPiece& value) { 954 // if the key is empty, we don't want to write the rest because it 955 // will not be a well-formed header line. 956 if (key.size() > 0) { 957 buffer->Write(key.data(), key.size()); 958 buffer->Write(": ", 2); 959 buffer->Write(value.data(), value.size()); 960 buffer->Write("\r\n", 2); 961 } 962 } 963 964 // Dump the textural representation of the header object to a string, which 965 // is suitable for writing out to logs. All CRLF will be printed out as \n. 966 // This function can be called on a header object in any state. Raw header 967 // data will be printed out if the header object is not completely parsed, 968 // e.g., when there was an error in the middle of parsing. 969 // The header content is appended to the string; the original content is not 970 // cleared. 971 void DumpToString(std::string* str) const; 972 first_line()973 const base::StringPiece first_line() const { 974 DCHECK_GE(whitespace_4_idx_, non_whitespace_1_idx_); 975 return base::StringPiece(BeginningOfFirstLine() + non_whitespace_1_idx_, 976 whitespace_4_idx_ - non_whitespace_1_idx_); 977 } 978 979 // Returns the parsed value of the response code if it has been parsed. 980 // Guaranteed to return 0 when unparsed (though it is a much better idea to 981 // verify that the BalsaFrame had no errors while parsing). 982 // This may return response codes which are outside the normal bounds of 983 // HTTP response codes-- it is up to the user of this class to ensure that 984 // the response code is one which is interpretable. parsed_response_code()985 size_t parsed_response_code() const { return parsed_response_code_; } 986 request_method()987 const base::StringPiece request_method() const { 988 DCHECK_GE(whitespace_2_idx_, non_whitespace_1_idx_); 989 return base::StringPiece(BeginningOfFirstLine() + non_whitespace_1_idx_, 990 whitespace_2_idx_ - non_whitespace_1_idx_); 991 } 992 response_version()993 const base::StringPiece response_version() const { 994 // Note: There is no difference between request_method() and 995 // response_version(). They both could be called 996 // GetFirstTokenFromFirstline()... but that wouldn't be anywhere near as 997 // descriptive. 998 return request_method(); 999 } 1000 request_uri()1001 const base::StringPiece request_uri() const { 1002 DCHECK_GE(whitespace_3_idx_, non_whitespace_2_idx_); 1003 return base::StringPiece(BeginningOfFirstLine() + non_whitespace_2_idx_, 1004 whitespace_3_idx_ - non_whitespace_2_idx_); 1005 } 1006 response_code()1007 const base::StringPiece response_code() const { 1008 // Note: There is no difference between request_uri() and response_code(). 1009 // They both could be called GetSecondtTokenFromFirstline(), but, as noted 1010 // in an earlier comment, that wouldn't be as descriptive. 1011 return request_uri(); 1012 } 1013 request_version()1014 const base::StringPiece request_version() const { 1015 DCHECK_GE(whitespace_4_idx_, non_whitespace_3_idx_); 1016 return base::StringPiece(BeginningOfFirstLine() + non_whitespace_3_idx_, 1017 whitespace_4_idx_ - non_whitespace_3_idx_); 1018 } 1019 response_reason_phrase()1020 const base::StringPiece response_reason_phrase() const { 1021 // Note: There is no difference between request_version() and 1022 // response_reason_phrase(). They both could be called 1023 // GetThirdTokenFromFirstline(), but, as noted in an earlier comment, that 1024 // wouldn't be as descriptive. 1025 return request_version(); 1026 } 1027 1028 // Note that SetFirstLine will not update the internal indices for the 1029 // various bits of the first-line (and may set them all to zero). 1030 // If you'd like to use the accessors for the various bits of the firstline, 1031 // then you should use the Set* functions, or SetFirstlineFromStringPieces, 1032 // below, instead. 1033 // 1034 void SetFirstlineFromStringPieces(const base::StringPiece& firstline_a, 1035 const base::StringPiece& firstline_b, 1036 const base::StringPiece& firstline_c); 1037 SetRequestFirstlineFromStringPieces(const base::StringPiece & method,const base::StringPiece & uri,const base::StringPiece & version)1038 void SetRequestFirstlineFromStringPieces(const base::StringPiece& method, 1039 const base::StringPiece& uri, 1040 const base::StringPiece& version) { 1041 SetFirstlineFromStringPieces(method, uri, version); 1042 } 1043 SetResponseFirstlineFromStringPieces(const base::StringPiece & version,const base::StringPiece & code,const base::StringPiece & reason_phrase)1044 void SetResponseFirstlineFromStringPieces( 1045 const base::StringPiece& version, 1046 const base::StringPiece& code, 1047 const base::StringPiece& reason_phrase) { 1048 SetFirstlineFromStringPieces(version, code, reason_phrase); 1049 } 1050 1051 // These functions are exactly the same, except that their names are 1052 // different. This is done so that the code using this class is more 1053 // expressive. 1054 void SetRequestMethod(const base::StringPiece& method); 1055 void SetResponseVersion(const base::StringPiece& version); 1056 1057 void SetRequestUri(const base::StringPiece& uri); 1058 void SetResponseCode(const base::StringPiece& code); set_parsed_response_code(size_t parsed_response_code)1059 void set_parsed_response_code(size_t parsed_response_code) { 1060 parsed_response_code_ = parsed_response_code; 1061 } 1062 void SetParsedResponseCodeAndUpdateFirstline(size_t parsed_response_code); 1063 1064 // These functions are exactly the same, except that their names are 1065 // different. This is done so that the code using this class is more 1066 // expressive. 1067 void SetRequestVersion(const base::StringPiece& version); 1068 void SetResponseReasonPhrase(const base::StringPiece& reason_phrase); 1069 1070 // The biggest problem with SetFirstLine is that we don't want to use a 1071 // separate buffer for it. The second biggest problem with it is that the 1072 // first biggest problem requires that we store offsets into a buffer instead 1073 // of pointers into a buffer. Cuteness aside, SetFirstLine doesn't parse 1074 // the individual fields of the firstline, and so accessors to those fields 1075 // will not work properly after calling SetFirstLine. If you want those 1076 // accessors to work, use the Set* functions above this one. 1077 // SetFirstLine is stuff useful, however, if all you care about is correct 1078 // serialization with the rest of the header object. 1079 void SetFirstLine(const base::StringPiece& line); 1080 1081 // Simple accessors to some of the internal state transfer_encoding_is_chunked()1082 bool transfer_encoding_is_chunked() const { 1083 return transfer_encoding_is_chunked_; 1084 } 1085 ResponseCodeImpliesNoBody(int code)1086 static bool ResponseCodeImpliesNoBody(int code) { 1087 // From HTTP spec section 6.1.1 all 1xx responses must not have a body, 1088 // as well as 204 No Content and 304 Not Modified. 1089 return ((code >= 100) && (code <= 199)) || (code == 204) || (code == 304); 1090 } 1091 1092 // Note: never check this for requests. Nothing bad will happen if you do, 1093 // but spec does not allow requests framed by connection close. 1094 // TODO(vitaliyl): refactor. is_framed_by_connection_close()1095 bool is_framed_by_connection_close() const { 1096 // We declare that response is framed by connection close if it has no 1097 // content-length, no transfer encoding, and is allowed to have a body by 1098 // the HTTP spec. 1099 // parsed_response_code_ is 0 for requests, so ResponseCodeImpliesNoBody 1100 // will return false. 1101 return (content_length_status_ == BalsaHeadersEnums::NO_CONTENT_LENGTH) && 1102 !transfer_encoding_is_chunked_ && 1103 !ResponseCodeImpliesNoBody(parsed_response_code_); 1104 } 1105 content_length()1106 size_t content_length() const { return content_length_; } content_length_status()1107 BalsaHeadersEnums::ContentLengthStatus content_length_status() const { 1108 return content_length_status_; 1109 } 1110 1111 // SetContentLength and SetChunkEncoding modifies the header object to use 1112 // content-length and transfer-encoding headers in a consistent manner. They 1113 // set all internal flags and status so client can get a consistent view from 1114 // various accessors. 1115 void SetContentLength(size_t length); 1116 void SetChunkEncoding(bool chunk_encode); 1117 1118 protected: 1119 friend class BalsaFrame; 1120 friend class FlipFrame; 1121 friend class HTTPMessage; 1122 friend class BalsaHeadersTokenUtils; 1123 BeginningOfFirstLine()1124 const char* BeginningOfFirstLine() const { 1125 return GetPtr(firstline_buffer_base_idx_); 1126 } 1127 GetPtr(BalsaBuffer::Blocks::size_type block_idx)1128 char* GetPtr(BalsaBuffer::Blocks::size_type block_idx) { 1129 return balsa_buffer_.GetPtr(block_idx); 1130 } 1131 GetPtr(BalsaBuffer::Blocks::size_type block_idx)1132 const char* GetPtr(BalsaBuffer::Blocks::size_type block_idx) const { 1133 return balsa_buffer_.GetPtr(block_idx); 1134 } 1135 WriteFromFramer(const char * ptr,size_t size)1136 void WriteFromFramer(const char* ptr, size_t size) { 1137 balsa_buffer_.WriteToContiguousBuffer(base::StringPiece(ptr, size)); 1138 } 1139 DoneWritingFromFramer()1140 void DoneWritingFromFramer() { 1141 balsa_buffer_.NoMoreWriteToContiguousBuffer(); 1142 } 1143 OriginalHeaderStreamBegin()1144 const char* OriginalHeaderStreamBegin() const { 1145 return balsa_buffer_.StartOfFirstBlock(); 1146 } 1147 OriginalHeaderStreamEnd()1148 const char* OriginalHeaderStreamEnd() const { 1149 return balsa_buffer_.EndOfFirstBlock(); 1150 } 1151 GetReadableBytesFromHeaderStream()1152 size_t GetReadableBytesFromHeaderStream() const { 1153 return OriginalHeaderStreamEnd() - OriginalHeaderStreamBegin(); 1154 } 1155 GetReadablePtrFromHeaderStream(const char ** p,size_t * s)1156 void GetReadablePtrFromHeaderStream(const char** p, size_t* s) { 1157 *p = OriginalHeaderStreamBegin(); 1158 *s = GetReadableBytesFromHeaderStream(); 1159 } 1160 1161 base::StringPiece GetValueFromHeaderLineDescription( 1162 const HeaderLineDescription& line) const; 1163 1164 void AddAndMakeDescription(const base::StringPiece& key, 1165 const base::StringPiece& value, 1166 HeaderLineDescription* d); 1167 1168 void AppendOrPrependAndMakeDescription(const base::StringPiece& key, 1169 const base::StringPiece& value, 1170 bool append, 1171 HeaderLineDescription* d); 1172 1173 // Removes all header lines with the given key starting at start. 1174 void RemoveAllOfHeaderStartingAt(const base::StringPiece& key, 1175 HeaderLines::iterator start); 1176 1177 // If the 'key' does not exist in the headers, calls 1178 // AppendHeader(key, value). Otherwise if append is true, appends ',value' 1179 // to the first existing header with key 'key'. If append is false, prepends 1180 // 'value,' to the first existing header with key 'key'. 1181 void AppendOrPrependToHeader(const base::StringPiece& key, 1182 const base::StringPiece& value, 1183 bool append); 1184 1185 HeaderLines::const_iterator GetConstHeaderLinesIterator( 1186 const base::StringPiece& key, 1187 HeaderLines::const_iterator start) const; 1188 1189 HeaderLines::iterator GetHeaderLinesIteratorNoSkip( 1190 const base::StringPiece& key, 1191 HeaderLines::iterator start); 1192 1193 HeaderLines::iterator GetHeaderLinesIterator( 1194 const base::StringPiece& key, 1195 HeaderLines::iterator start); 1196 1197 template <typename IteratorType> HeaderLinesBeginHelper()1198 const IteratorType HeaderLinesBeginHelper() const { 1199 if (header_lines_.empty()) { 1200 return IteratorType(this, 0); 1201 } 1202 const HeaderLines::size_type header_lines_size = header_lines_.size(); 1203 for (HeaderLines::size_type i = 0; i < header_lines_size; ++i) { 1204 if (header_lines_[i].skip == false) { 1205 return IteratorType(this, i); 1206 } 1207 } 1208 return IteratorType(this, 0); 1209 } 1210 1211 template <typename IteratorType> HeaderLinesEndHelper()1212 const IteratorType HeaderLinesEndHelper() const { 1213 if (header_lines_.empty()) { 1214 return IteratorType(this, 0); 1215 } 1216 const HeaderLines::size_type header_lines_size = header_lines_.size(); 1217 HeaderLines::size_type i = header_lines_size; 1218 do { 1219 --i; 1220 if (header_lines_[i].skip == false) { 1221 return IteratorType(this, i + 1); 1222 } 1223 } while (i != 0); 1224 return IteratorType(this, 0); 1225 } 1226 1227 // At the moment, this function will always return the original headers. 1228 // In the future, it may not do so after erasing header lines, modifying 1229 // header lines, or modifying the first line. 1230 // For this reason, it is strongly suggested that use of this function is 1231 // only acceptable for the purpose of debugging parse errors seen by the 1232 // BalsaFrame class. OriginalHeadersForDebugging()1233 base::StringPiece OriginalHeadersForDebugging() const { 1234 return base::StringPiece(OriginalHeaderStreamBegin(), 1235 OriginalHeaderStreamEnd() - OriginalHeaderStreamBegin()); 1236 } 1237 1238 BalsaBuffer balsa_buffer_; 1239 1240 size_t content_length_; 1241 BalsaHeadersEnums::ContentLengthStatus content_length_status_; 1242 size_t parsed_response_code_; 1243 // HTTP firstlines all have the following structure: 1244 // LWS NONWS LWS NONWS LWS NONWS NOTCRLF CRLF 1245 // [\t \r\n]+ [^\t ]+ [\t ]+ [^\t ]+ [\t ]+ [^\t ]+ [^\r\n]+ "\r\n" 1246 // ws1 nws1 ws2 nws2 ws3 nws3 ws4 1247 // | [-------) [-------) [----------------) 1248 // REQ: method request_uri version 1249 // RESP: version statuscode reason 1250 // 1251 // The first NONWS->LWS component we'll call firstline_a. 1252 // The second firstline_b, and the third firstline_c. 1253 // 1254 // firstline_a goes from nws1 to (but not including) ws2 1255 // firstline_b goes from nws2 to (but not including) ws3 1256 // firstline_c goes from nws3 to (but not including) ws4 1257 // 1258 // In the code: 1259 // ws1 == whitespace_1_idx_ 1260 // nws1 == non_whitespace_1_idx_ 1261 // ws2 == whitespace_2_idx_ 1262 // nws2 == non_whitespace_2_idx_ 1263 // ws3 == whitespace_3_idx_ 1264 // nws3 == non_whitespace_3_idx_ 1265 // ws4 == whitespace_4_idx_ 1266 BalsaBuffer::Blocks::size_type firstline_buffer_base_idx_; 1267 size_t whitespace_1_idx_; 1268 size_t non_whitespace_1_idx_; 1269 size_t whitespace_2_idx_; 1270 size_t non_whitespace_2_idx_; 1271 size_t whitespace_3_idx_; 1272 size_t non_whitespace_3_idx_; 1273 size_t whitespace_4_idx_; 1274 size_t end_of_firstline_idx_; 1275 1276 bool transfer_encoding_is_chunked_; 1277 1278 HeaderLines header_lines_; 1279 }; 1280 1281 } // namespace net 1282 1283 #endif // NET_TOOLS_FLIP_SERVER_BALSA_HEADERS_H_ 1284 1285