• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/message_pump_win.h"
6 
7 #include <math.h>
8 
9 #include "base/histogram.h"
10 #include "base/win_util.h"
11 
12 using base::Time;
13 
14 namespace base {
15 
16 static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow";
17 
18 // Message sent to get an additional time slice for pumping (processing) another
19 // task (a series of such messages creates a continuous task pump).
20 static const int kMsgHaveWork = WM_USER + 1;
21 
22 //-----------------------------------------------------------------------------
23 // MessagePumpWin public:
24 
AddObserver(Observer * observer)25 void MessagePumpWin::AddObserver(Observer* observer) {
26   observers_.AddObserver(observer);
27 }
28 
RemoveObserver(Observer * observer)29 void MessagePumpWin::RemoveObserver(Observer* observer) {
30   observers_.RemoveObserver(observer);
31 }
32 
WillProcessMessage(const MSG & msg)33 void MessagePumpWin::WillProcessMessage(const MSG& msg) {
34   FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg));
35 }
36 
DidProcessMessage(const MSG & msg)37 void MessagePumpWin::DidProcessMessage(const MSG& msg) {
38   FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg));
39 }
40 
RunWithDispatcher(Delegate * delegate,Dispatcher * dispatcher)41 void MessagePumpWin::RunWithDispatcher(
42     Delegate* delegate, Dispatcher* dispatcher) {
43   RunState s;
44   s.delegate = delegate;
45   s.dispatcher = dispatcher;
46   s.should_quit = false;
47   s.run_depth = state_ ? state_->run_depth + 1 : 1;
48 
49   RunState* previous_state = state_;
50   state_ = &s;
51 
52   DoRunLoop();
53 
54   state_ = previous_state;
55 }
56 
Quit()57 void MessagePumpWin::Quit() {
58   DCHECK(state_);
59   state_->should_quit = true;
60 }
61 
62 //-----------------------------------------------------------------------------
63 // MessagePumpWin protected:
64 
GetCurrentDelay() const65 int MessagePumpWin::GetCurrentDelay() const {
66   if (delayed_work_time_.is_null())
67     return -1;
68 
69   // Be careful here.  TimeDelta has a precision of microseconds, but we want a
70   // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
71   // 6?  It should be 6 to avoid executing delayed work too early.
72   double timeout = ceil((delayed_work_time_ - Time::Now()).InMillisecondsF());
73 
74   // If this value is negative, then we need to run delayed work soon.
75   int delay = static_cast<int>(timeout);
76   if (delay < 0)
77     delay = 0;
78 
79   return delay;
80 }
81 
82 //-----------------------------------------------------------------------------
83 // MessagePumpForUI public:
84 
MessagePumpForUI()85 MessagePumpForUI::MessagePumpForUI() {
86   InitMessageWnd();
87 }
88 
~MessagePumpForUI()89 MessagePumpForUI::~MessagePumpForUI() {
90   DestroyWindow(message_hwnd_);
91   UnregisterClass(kWndClass, GetModuleHandle(NULL));
92 }
93 
ScheduleWork()94 void MessagePumpForUI::ScheduleWork() {
95   if (InterlockedExchange(&have_work_, 1))
96     return;  // Someone else continued the pumping.
97 
98   // Make sure the MessagePump does some work for us.
99   PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0);
100 }
101 
ScheduleDelayedWork(const Time & delayed_work_time)102 void MessagePumpForUI::ScheduleDelayedWork(const Time& delayed_work_time) {
103   //
104   // We would *like* to provide high resolution timers.  Windows timers using
105   // SetTimer() have a 10ms granularity.  We have to use WM_TIMER as a wakeup
106   // mechanism because the application can enter modal windows loops where it
107   // is not running our MessageLoop; the only way to have our timers fire in
108   // these cases is to post messages there.
109   //
110   // To provide sub-10ms timers, we process timers directly from our run loop.
111   // For the common case, timers will be processed there as the run loop does
112   // its normal work.  However, we *also* set the system timer so that WM_TIMER
113   // events fire.  This mops up the case of timers not being able to work in
114   // modal message loops.  It is possible for the SetTimer to pop and have no
115   // pending timers, because they could have already been processed by the
116   // run loop itself.
117   //
118   // We use a single SetTimer corresponding to the timer that will expire
119   // soonest.  As new timers are created and destroyed, we update SetTimer.
120   // Getting a spurrious SetTimer event firing is benign, as we'll just be
121   // processing an empty timer queue.
122   //
123   delayed_work_time_ = delayed_work_time;
124 
125   int delay_msec = GetCurrentDelay();
126   DCHECK(delay_msec >= 0);
127   if (delay_msec < USER_TIMER_MINIMUM)
128     delay_msec = USER_TIMER_MINIMUM;
129 
130   // Create a WM_TIMER event that will wake us up to check for any pending
131   // timers (in case we are running within a nested, external sub-pump).
132   SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL);
133 }
134 
PumpOutPendingPaintMessages()135 void MessagePumpForUI::PumpOutPendingPaintMessages() {
136   // If we are being called outside of the context of Run, then don't try to do
137   // any work.
138   if (!state_)
139     return;
140 
141   // Create a mini-message-pump to force immediate processing of only Windows
142   // WM_PAINT messages.  Don't provide an infinite loop, but do enough peeking
143   // to get the job done.  Actual common max is 4 peeks, but we'll be a little
144   // safe here.
145   const int kMaxPeekCount = 20;
146   bool win2k = win_util::GetWinVersion() <= win_util::WINVERSION_2000;
147   int peek_count;
148   for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
149     MSG msg;
150     if (win2k) {
151       if (!PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE))
152         break;
153     } else {
154       if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
155         break;
156     }
157     ProcessMessageHelper(msg);
158     if (state_->should_quit)  // Handle WM_QUIT.
159       break;
160   }
161   // Histogram what was really being used, to help to adjust kMaxPeekCount.
162   DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count);
163 }
164 
165 //-----------------------------------------------------------------------------
166 // MessagePumpForUI private:
167 
168 // static
WndProcThunk(HWND hwnd,UINT message,WPARAM wparam,LPARAM lparam)169 LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
170     HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
171   switch (message) {
172     case kMsgHaveWork:
173       reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
174       break;
175     case WM_TIMER:
176       reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
177       break;
178   }
179   return DefWindowProc(hwnd, message, wparam, lparam);
180 }
181 
DoRunLoop()182 void MessagePumpForUI::DoRunLoop() {
183   // IF this was just a simple PeekMessage() loop (servicing all possible work
184   // queues), then Windows would try to achieve the following order according
185   // to MSDN documentation about PeekMessage with no filter):
186   //    * Sent messages
187   //    * Posted messages
188   //    * Sent messages (again)
189   //    * WM_PAINT messages
190   //    * WM_TIMER messages
191   //
192   // Summary: none of the above classes is starved, and sent messages has twice
193   // the chance of being processed (i.e., reduced service time).
194 
195   for (;;) {
196     // If we do any work, we may create more messages etc., and more work may
197     // possibly be waiting in another task group.  When we (for example)
198     // ProcessNextWindowsMessage(), there is a good chance there are still more
199     // messages waiting.  On the other hand, when any of these methods return
200     // having done no work, then it is pretty unlikely that calling them again
201     // quickly will find any work to do.  Finally, if they all say they had no
202     // work, then it is a good time to consider sleeping (waiting) for more
203     // work.
204 
205     bool more_work_is_plausible = ProcessNextWindowsMessage();
206     if (state_->should_quit)
207       break;
208 
209     more_work_is_plausible |= state_->delegate->DoWork();
210     if (state_->should_quit)
211       break;
212 
213     more_work_is_plausible |=
214         state_->delegate->DoDelayedWork(&delayed_work_time_);
215     // If we did not process any delayed work, then we can assume that our
216     // existing WM_TIMER if any will fire when delayed work should run.  We
217     // don't want to disturb that timer if it is already in flight.  However,
218     // if we did do all remaining delayed work, then lets kill the WM_TIMER.
219     if (more_work_is_plausible && delayed_work_time_.is_null())
220       KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
221     if (state_->should_quit)
222       break;
223 
224     if (more_work_is_plausible)
225       continue;
226 
227     more_work_is_plausible = state_->delegate->DoIdleWork();
228     if (state_->should_quit)
229       break;
230 
231     if (more_work_is_plausible)
232       continue;
233 
234     WaitForWork();  // Wait (sleep) until we have work to do again.
235   }
236 }
237 
InitMessageWnd()238 void MessagePumpForUI::InitMessageWnd() {
239   HINSTANCE hinst = GetModuleHandle(NULL);
240 
241   WNDCLASSEX wc = {0};
242   wc.cbSize = sizeof(wc);
243   wc.lpfnWndProc = WndProcThunk;
244   wc.hInstance = hinst;
245   wc.lpszClassName = kWndClass;
246   RegisterClassEx(&wc);
247 
248   message_hwnd_ =
249       CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0);
250   DCHECK(message_hwnd_);
251 }
252 
WaitForWork()253 void MessagePumpForUI::WaitForWork() {
254   // Wait until a message is available, up to the time needed by the timer
255   // manager to fire the next set of timers.
256   int delay = GetCurrentDelay();
257   if (delay < 0)  // Negative value means no timers waiting.
258     delay = INFINITE;
259 
260   DWORD result;
261   result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
262                                        MWMO_INPUTAVAILABLE);
263 
264   if (WAIT_OBJECT_0 == result) {
265     // A WM_* message is available.
266     // If a parent child relationship exists between windows across threads
267     // then their thread inputs are implicitly attached.
268     // This causes the MsgWaitForMultipleObjectsEx API to return indicating
269     // that messages are ready for processing (specifically mouse messages
270     // intended for the child window. Occurs if the child window has capture)
271     // The subsequent PeekMessages call fails to return any messages thus
272     // causing us to enter a tight loop at times.
273     // The WaitMessage call below is a workaround to give the child window
274     // sometime to process its input messages.
275     MSG msg = {0};
276     DWORD queue_status = GetQueueStatus(QS_MOUSE);
277     if (HIWORD(queue_status) & QS_MOUSE &&
278        !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
279       WaitMessage();
280     }
281     return;
282   }
283 
284   DCHECK_NE(WAIT_FAILED, result) << GetLastError();
285 }
286 
HandleWorkMessage()287 void MessagePumpForUI::HandleWorkMessage() {
288   // If we are being called outside of the context of Run, then don't try to do
289   // any work.  This could correspond to a MessageBox call or something of that
290   // sort.
291   if (!state_) {
292     // Since we handled a kMsgHaveWork message, we must still update this flag.
293     InterlockedExchange(&have_work_, 0);
294     return;
295   }
296 
297   // Let whatever would have run had we not been putting messages in the queue
298   // run now.  This is an attempt to make our dummy message not starve other
299   // messages that may be in the Windows message queue.
300   ProcessPumpReplacementMessage();
301 
302   // Now give the delegate a chance to do some work.  He'll let us know if he
303   // needs to do more work.
304   if (state_->delegate->DoWork())
305     ScheduleWork();
306 }
307 
HandleTimerMessage()308 void MessagePumpForUI::HandleTimerMessage() {
309   KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
310 
311   // If we are being called outside of the context of Run, then don't do
312   // anything.  This could correspond to a MessageBox call or something of
313   // that sort.
314   if (!state_)
315     return;
316 
317   state_->delegate->DoDelayedWork(&delayed_work_time_);
318   if (!delayed_work_time_.is_null()) {
319     // A bit gratuitous to set delayed_work_time_ again, but oh well.
320     ScheduleDelayedWork(delayed_work_time_);
321   }
322 }
323 
ProcessNextWindowsMessage()324 bool MessagePumpForUI::ProcessNextWindowsMessage() {
325   // If there are sent messages in the queue then PeekMessage internally
326   // dispatches the message and returns false. We return true in this
327   // case to ensure that the message loop peeks again instead of calling
328   // MsgWaitForMultipleObjectsEx again.
329   bool sent_messages_in_queue = false;
330   DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
331   if (HIWORD(queue_status) & QS_SENDMESSAGE)
332     sent_messages_in_queue = true;
333 
334   MSG msg;
335   if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
336     return ProcessMessageHelper(msg);
337 
338   return sent_messages_in_queue;
339 }
340 
ProcessMessageHelper(const MSG & msg)341 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
342   if (WM_QUIT == msg.message) {
343     // Repost the QUIT message so that it will be retrieved by the primary
344     // GetMessage() loop.
345     state_->should_quit = true;
346     PostQuitMessage(static_cast<int>(msg.wParam));
347     return false;
348   }
349 
350   // While running our main message pump, we discard kMsgHaveWork messages.
351   if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
352     return ProcessPumpReplacementMessage();
353 
354   if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
355     return true;
356 
357   WillProcessMessage(msg);
358 
359   if (state_->dispatcher) {
360     if (!state_->dispatcher->Dispatch(msg))
361       state_->should_quit = true;
362   } else {
363     TranslateMessage(&msg);
364     DispatchMessage(&msg);
365   }
366 
367   DidProcessMessage(msg);
368   return true;
369 }
370 
ProcessPumpReplacementMessage()371 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
372   // When we encounter a kMsgHaveWork message, this method is called to peek
373   // and process a replacement message, such as a WM_PAINT or WM_TIMER.  The
374   // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
375   // a continuous stream of such messages are posted.  This method carefully
376   // peeks a message while there is no chance for a kMsgHaveWork to be pending,
377   // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
378   // possibly be posted), and finally dispatches that peeked replacement.  Note
379   // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
380 
381   MSG msg;
382   bool have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
383   DCHECK(!have_message || kMsgHaveWork != msg.message ||
384          msg.hwnd != message_hwnd_);
385 
386   // Since we discarded a kMsgHaveWork message, we must update the flag.
387   int old_have_work = InterlockedExchange(&have_work_, 0);
388   DCHECK(old_have_work);
389 
390   // We don't need a special time slice if we didn't have_message to process.
391   if (!have_message)
392     return false;
393 
394   // Guarantee we'll get another time slice in the case where we go into native
395   // windows code.   This ScheduleWork() may hurt performance a tiny bit when
396   // tasks appear very infrequently, but when the event queue is busy, the
397   // kMsgHaveWork events get (percentage wise) rarer and rarer.
398   ScheduleWork();
399   return ProcessMessageHelper(msg);
400 }
401 
402 //-----------------------------------------------------------------------------
403 // MessagePumpForIO public:
404 
MessagePumpForIO()405 MessagePumpForIO::MessagePumpForIO() {
406   port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
407   DCHECK(port_.IsValid());
408 }
409 
ScheduleWork()410 void MessagePumpForIO::ScheduleWork() {
411   if (InterlockedExchange(&have_work_, 1))
412     return;  // Someone else continued the pumping.
413 
414   // Make sure the MessagePump does some work for us.
415   BOOL ret = PostQueuedCompletionStatus(port_, 0,
416                                         reinterpret_cast<ULONG_PTR>(this),
417                                         reinterpret_cast<OVERLAPPED*>(this));
418   DCHECK(ret);
419 }
420 
ScheduleDelayedWork(const Time & delayed_work_time)421 void MessagePumpForIO::ScheduleDelayedWork(const Time& delayed_work_time) {
422   // We know that we can't be blocked right now since this method can only be
423   // called on the same thread as Run, so we only need to update our record of
424   // how long to sleep when we do sleep.
425   delayed_work_time_ = delayed_work_time;
426 }
427 
RegisterIOHandler(HANDLE file_handle,IOHandler * handler)428 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
429                                          IOHandler* handler) {
430   ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
431   HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
432   DCHECK(port == port_.Get());
433 }
434 
435 //-----------------------------------------------------------------------------
436 // MessagePumpForIO private:
437 
DoRunLoop()438 void MessagePumpForIO::DoRunLoop() {
439   for (;;) {
440     // If we do any work, we may create more messages etc., and more work may
441     // possibly be waiting in another task group.  When we (for example)
442     // WaitForIOCompletion(), there is a good chance there are still more
443     // messages waiting.  On the other hand, when any of these methods return
444     // having done no work, then it is pretty unlikely that calling them
445     // again quickly will find any work to do.  Finally, if they all say they
446     // had no work, then it is a good time to consider sleeping (waiting) for
447     // more work.
448 
449     bool more_work_is_plausible = state_->delegate->DoWork();
450     if (state_->should_quit)
451       break;
452 
453     more_work_is_plausible |= WaitForIOCompletion(0, NULL);
454     if (state_->should_quit)
455       break;
456 
457     more_work_is_plausible |=
458         state_->delegate->DoDelayedWork(&delayed_work_time_);
459     if (state_->should_quit)
460       break;
461 
462     if (more_work_is_plausible)
463       continue;
464 
465     more_work_is_plausible = state_->delegate->DoIdleWork();
466     if (state_->should_quit)
467       break;
468 
469     if (more_work_is_plausible)
470       continue;
471 
472     WaitForWork();  // Wait (sleep) until we have work to do again.
473   }
474 }
475 
476 // Wait until IO completes, up to the time needed by the timer manager to fire
477 // the next set of timers.
WaitForWork()478 void MessagePumpForIO::WaitForWork() {
479   // We do not support nested IO message loops. This is to avoid messy
480   // recursion problems.
481   DCHECK(state_->run_depth == 1) << "Cannot nest an IO message loop!";
482 
483   int timeout = GetCurrentDelay();
484   if (timeout < 0)  // Negative value means no timers waiting.
485     timeout = INFINITE;
486 
487   WaitForIOCompletion(timeout, NULL);
488 }
489 
WaitForIOCompletion(DWORD timeout,IOHandler * filter)490 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
491   IOItem item;
492   if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
493     // We have to ask the system for another IO completion.
494     if (!GetIOItem(timeout, &item))
495       return false;
496 
497     if (ProcessInternalIOItem(item))
498       return true;
499   }
500 
501   if (item.context->handler) {
502     if (filter && item.handler != filter) {
503       // Save this item for later
504       completed_io_.push_back(item);
505     } else {
506       DCHECK(item.context->handler == item.handler);
507       item.handler->OnIOCompleted(item.context, item.bytes_transfered,
508                                   item.error);
509     }
510   } else {
511     // The handler must be gone by now, just cleanup the mess.
512     delete item.context;
513   }
514   return true;
515 }
516 
517 // Asks the OS for another IO completion result.
GetIOItem(DWORD timeout,IOItem * item)518 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
519   memset(item, 0, sizeof(*item));
520   ULONG_PTR key = NULL;
521   OVERLAPPED* overlapped = NULL;
522   if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
523                                  &overlapped, timeout)) {
524     if (!overlapped)
525       return false;  // Nothing in the queue.
526     item->error = GetLastError();
527     item->bytes_transfered = 0;
528   }
529 
530   item->handler = reinterpret_cast<IOHandler*>(key);
531   item->context = reinterpret_cast<IOContext*>(overlapped);
532   return true;
533 }
534 
ProcessInternalIOItem(const IOItem & item)535 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
536   if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
537       this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
538     // This is our internal completion.
539     DCHECK(!item.bytes_transfered);
540     InterlockedExchange(&have_work_, 0);
541     return true;
542   }
543   return false;
544 }
545 
546 // Returns a completion item that was previously received.
MatchCompletedIOItem(IOHandler * filter,IOItem * item)547 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
548   DCHECK(!completed_io_.empty());
549   for (std::list<IOItem>::iterator it = completed_io_.begin();
550        it != completed_io_.end(); ++it) {
551     if (!filter || it->handler == filter) {
552       *item = *it;
553       completed_io_.erase(it);
554       return true;
555     }
556   }
557   return false;
558 }
559 
560 }  // namespace base
561