• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_MESSAGE_PUMP_WIN_H_
6 #define BASE_MESSAGE_PUMP_WIN_H_
7 
8 #include <windows.h>
9 
10 #include <list>
11 
12 #include "base/lock.h"
13 #include "base/message_pump.h"
14 #include "base/observer_list.h"
15 #include "base/scoped_handle.h"
16 #include "base/time.h"
17 
18 namespace base {
19 
20 // MessagePumpWin serves as the base for specialized versions of the MessagePump
21 // for Windows. It provides basic functionality like handling of observers and
22 // controlling the lifetime of the message pump.
23 class MessagePumpWin : public MessagePump {
24  public:
25   // An Observer is an object that receives global notifications from the
26   // MessageLoop.
27   //
28   // NOTE: An Observer implementation should be extremely fast!
29   //
30   class Observer {
31    public:
~Observer()32     virtual ~Observer() {}
33 
34     // This method is called before processing a message.
35     // The message may be undefined in which case msg.message is 0
36     virtual void WillProcessMessage(const MSG& msg) = 0;
37 
38     // This method is called when control returns from processing a UI message.
39     // The message may be undefined in which case msg.message is 0
40     virtual void DidProcessMessage(const MSG& msg) = 0;
41   };
42 
43   // Dispatcher is used during a nested invocation of Run to dispatch events.
44   // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not
45   // dispatch events (or invoke TranslateMessage), rather every message is
46   // passed to Dispatcher's Dispatch method for dispatch. It is up to the
47   // Dispatcher to dispatch, or not, the event.
48   //
49   // The nested loop is exited by either posting a quit, or returning false
50   // from Dispatch.
51   class Dispatcher {
52    public:
~Dispatcher()53     virtual ~Dispatcher() {}
54     // Dispatches the event. If true is returned processing continues as
55     // normal. If false is returned, the nested loop exits immediately.
56     virtual bool Dispatch(const MSG& msg) = 0;
57   };
58 
MessagePumpWin()59   MessagePumpWin() : have_work_(0), state_(NULL) {}
~MessagePumpWin()60   virtual ~MessagePumpWin() {}
61 
62   // Add an Observer, which will start receiving notifications immediately.
63   void AddObserver(Observer* observer);
64 
65   // Remove an Observer.  It is safe to call this method while an Observer is
66   // receiving a notification callback.
67   void RemoveObserver(Observer* observer);
68 
69   // Give a chance to code processing additional messages to notify the
70   // message loop observers that another message has been processed.
71   void WillProcessMessage(const MSG& msg);
72   void DidProcessMessage(const MSG& msg);
73 
74   // Like MessagePump::Run, but MSG objects are routed through dispatcher.
75   void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher);
76 
77   // MessagePump methods:
Run(Delegate * delegate)78   virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
79   virtual void Quit();
80 
81  protected:
82   struct RunState {
83     Delegate* delegate;
84     Dispatcher* dispatcher;
85 
86     // Used to flag that the current Run() invocation should return ASAP.
87     bool should_quit;
88 
89     // Used to count how many Run() invocations are on the stack.
90     int run_depth;
91   };
92 
93   virtual void DoRunLoop() = 0;
94   int GetCurrentDelay() const;
95 
96   ObserverList<Observer> observers_;
97 
98   // The time at which delayed work should run.
99   Time delayed_work_time_;
100 
101   // A boolean value used to indicate if there is a kMsgDoWork message pending
102   // in the Windows Message queue.  There is at most one such message, and it
103   // can drive execution of tasks when a native message pump is running.
104   LONG have_work_;
105 
106   // State for the current invocation of Run.
107   RunState* state_;
108 };
109 
110 //-----------------------------------------------------------------------------
111 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a
112 // MessageLoop instantiated with TYPE_UI.
113 //
114 // MessagePumpForUI implements a "traditional" Windows message pump. It contains
115 // a nearly infinite loop that peeks out messages, and then dispatches them.
116 // Intermixed with those peeks are callouts to DoWork for pending tasks, and
117 // DoDelayedWork for pending timers. When there are no events to be serviced,
118 // this pump goes into a wait state. In most cases, this message pump handles
119 // all processing.
120 //
121 // However, when a task, or windows event, invokes on the stack a native dialog
122 // box or such, that window typically provides a bare bones (native?) message
123 // pump.  That bare-bones message pump generally supports little more than a
124 // peek of the Windows message queue, followed by a dispatch of the peeked
125 // message.  MessageLoop extends that bare-bones message pump to also service
126 // Tasks, at the cost of some complexity.
127 //
128 // The basic structure of the extension (refered to as a sub-pump) is that a
129 // special message, kMsgHaveWork, is repeatedly injected into the Windows
130 // Message queue.  Each time the kMsgHaveWork message is peeked, checks are
131 // made for an extended set of events, including the availability of Tasks to
132 // run.
133 //
134 // After running a task, the special message kMsgHaveWork is again posted to
135 // the Windows Message queue, ensuring a future time slice for processing a
136 // future event.  To prevent flooding the Windows Message queue, care is taken
137 // to be sure that at most one kMsgHaveWork message is EVER pending in the
138 // Window's Message queue.
139 //
140 // There are a few additional complexities in this system where, when there are
141 // no Tasks to run, this otherwise infinite stream of messages which drives the
142 // sub-pump is halted.  The pump is automatically re-started when Tasks are
143 // queued.
144 //
145 // A second complexity is that the presence of this stream of posted tasks may
146 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
147 // Such paint and timer events always give priority to a posted message, such as
148 // kMsgHaveWork messages.  As a result, care is taken to do some peeking in
149 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
150 // is peeked, and before a replacement kMsgHaveWork is posted).
151 //
152 // NOTE: Although it may seem odd that messages are used to start and stop this
153 // flow (as opposed to signaling objects, etc.), it should be understood that
154 // the native message pump will *only* respond to messages.  As a result, it is
155 // an excellent choice.  It is also helpful that the starter messages that are
156 // placed in the queue when new task arrive also awakens DoRunLoop.
157 //
158 class MessagePumpForUI : public MessagePumpWin {
159  public:
160   // The application-defined code passed to the hook procedure.
161   static const int kMessageFilterCode = 0x5001;
162 
163   MessagePumpForUI();
164   virtual ~MessagePumpForUI();
165 
166   // MessagePump methods:
167   virtual void ScheduleWork();
168   virtual void ScheduleDelayedWork(const Time& delayed_work_time);
169 
170   // Applications can call this to encourage us to process all pending WM_PAINT
171   // messages.  This method will process all paint messages the Windows Message
172   // queue can provide, up to some fixed number (to avoid any infinite loops).
173   void PumpOutPendingPaintMessages();
174 
175  private:
176   static LRESULT CALLBACK WndProcThunk(
177       HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam);
178   virtual void DoRunLoop();
179   void InitMessageWnd();
180   void WaitForWork();
181   void HandleWorkMessage();
182   void HandleTimerMessage();
183   bool ProcessNextWindowsMessage();
184   bool ProcessMessageHelper(const MSG& msg);
185   bool ProcessPumpReplacementMessage();
186 
187   // A hidden message-only window.
188   HWND message_hwnd_;
189 };
190 
191 //-----------------------------------------------------------------------------
192 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a
193 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
194 // deal with Windows mesagges, and instead has a Run loop based on Completion
195 // Ports so it is better suited for IO operations.
196 //
197 class MessagePumpForIO : public MessagePumpWin {
198  public:
199   struct IOContext;
200 
201   // Clients interested in receiving OS notifications when asynchronous IO
202   // operations complete should implement this interface and register themselves
203   // with the message pump.
204   //
205   // Typical use #1:
206   //   // Use only when there are no user's buffers involved on the actual IO,
207   //   // so that all the cleanup can be done by the message pump.
208   //   class MyFile : public IOHandler {
209   //     MyFile() {
210   //       ...
211   //       context_ = new IOContext;
212   //       context_->handler = this;
213   //       message_pump->RegisterIOHandler(file_, this);
214   //     }
215   //     ~MyFile() {
216   //       if (pending_) {
217   //         // By setting the handler to NULL, we're asking for this context
218   //         // to be deleted when received, without calling back to us.
219   //         context_->handler = NULL;
220   //       } else {
221   //         delete context_;
222   //      }
223   //     }
224   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
225   //                                DWORD error) {
226   //         pending_ = false;
227   //     }
228   //     void DoSomeIo() {
229   //       ...
230   //       // The only buffer required for this operation is the overlapped
231   //       // structure.
232   //       ConnectNamedPipe(file_, &context_->overlapped);
233   //       pending_ = true;
234   //     }
235   //     bool pending_;
236   //     IOContext* context_;
237   //     HANDLE file_;
238   //   };
239   //
240   // Typical use #2:
241   //   class MyFile : public IOHandler {
242   //     MyFile() {
243   //       ...
244   //       message_pump->RegisterIOHandler(file_, this);
245   //     }
246   //     // Plus some code to make sure that this destructor is not called
247   //     // while there are pending IO operations.
248   //     ~MyFile() {
249   //     }
250   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
251   //                                DWORD error) {
252   //       ...
253   //       delete context;
254   //     }
255   //     void DoSomeIo() {
256   //       ...
257   //       IOContext* context = new IOContext;
258   //       // This is not used for anything. It just prevents the context from
259   //       // being considered "abandoned".
260   //       context->handler = this;
261   //       ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
262   //     }
263   //     HANDLE file_;
264   //   };
265   //
266   // Typical use #3:
267   // Same as the previous example, except that in order to deal with the
268   // requirement stated for the destructor, the class calls WaitForIOCompletion
269   // from the destructor to block until all IO finishes.
270   //     ~MyFile() {
271   //       while(pending_)
272   //         message_pump->WaitForIOCompletion(INFINITE, this);
273   //     }
274   //
275   class IOHandler {
276    public:
~IOHandler()277     virtual ~IOHandler() {}
278     // This will be called once the pending IO operation associated with
279     // |context| completes. |error| is the Win32 error code of the IO operation
280     // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
281     // on error.
282     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
283                                DWORD error) = 0;
284   };
285 
286   // The extended context that should be used as the base structure on every
287   // overlapped IO operation. |handler| must be set to the registered IOHandler
288   // for the given file when the operation is started, and it can be set to NULL
289   // before the operation completes to indicate that the handler should not be
290   // called anymore, and instead, the IOContext should be deleted when the OS
291   // notifies the completion of this operation. Please remember that any buffers
292   // involved with an IO operation should be around until the callback is
293   // received, so this technique can only be used for IO that do not involve
294   // additional buffers (other than the overlapped structure itself).
295   struct IOContext {
296     OVERLAPPED overlapped;
297     IOHandler* handler;
298   };
299 
300   MessagePumpForIO();
~MessagePumpForIO()301   virtual ~MessagePumpForIO() {}
302 
303   // MessagePump methods:
304   virtual void ScheduleWork();
305   virtual void ScheduleDelayedWork(const Time& delayed_work_time);
306 
307   // Register the handler to be used when asynchronous IO for the given file
308   // completes. The registration persists as long as |file_handle| is valid, so
309   // |handler| must be valid as long as there is pending IO for the given file.
310   void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
311 
312   // Waits for the next IO completion that should be processed by |filter|, for
313   // up to |timeout| milliseconds. Return true if any IO operation completed,
314   // regardless of the involved handler, and false if the timeout expired. If
315   // the completion port received any message and the involved IO handler
316   // matches |filter|, the callback is called before returning from this code;
317   // if the handler is not the one that we are looking for, the callback will
318   // be postponed for another time, so reentrancy problems can be avoided.
319   // External use of this method should be reserved for the rare case when the
320   // caller is willing to allow pausing regular task dispatching on this thread.
321   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
322 
323  private:
324   struct IOItem {
325     IOHandler* handler;
326     IOContext* context;
327     DWORD bytes_transfered;
328     DWORD error;
329   };
330 
331   virtual void DoRunLoop();
332   void WaitForWork();
333   bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
334   bool GetIOItem(DWORD timeout, IOItem* item);
335   bool ProcessInternalIOItem(const IOItem& item);
336 
337   // The completion port associated with this thread.
338   ScopedHandle port_;
339   // This list will be empty almost always. It stores IO completions that have
340   // not been delivered yet because somebody was doing cleanup.
341   std::list<IOItem> completed_io_;
342 };
343 
344 }  // namespace base
345 
346 #endif  // BASE_MESSAGE_PUMP_WIN_H_
347