1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef BASE_MESSAGE_PUMP_WIN_H_ 6 #define BASE_MESSAGE_PUMP_WIN_H_ 7 8 #include <windows.h> 9 10 #include <list> 11 12 #include "base/lock.h" 13 #include "base/message_pump.h" 14 #include "base/observer_list.h" 15 #include "base/scoped_handle.h" 16 #include "base/time.h" 17 18 namespace base { 19 20 // MessagePumpWin serves as the base for specialized versions of the MessagePump 21 // for Windows. It provides basic functionality like handling of observers and 22 // controlling the lifetime of the message pump. 23 class MessagePumpWin : public MessagePump { 24 public: 25 // An Observer is an object that receives global notifications from the 26 // MessageLoop. 27 // 28 // NOTE: An Observer implementation should be extremely fast! 29 // 30 class Observer { 31 public: ~Observer()32 virtual ~Observer() {} 33 34 // This method is called before processing a message. 35 // The message may be undefined in which case msg.message is 0 36 virtual void WillProcessMessage(const MSG& msg) = 0; 37 38 // This method is called when control returns from processing a UI message. 39 // The message may be undefined in which case msg.message is 0 40 virtual void DidProcessMessage(const MSG& msg) = 0; 41 }; 42 43 // Dispatcher is used during a nested invocation of Run to dispatch events. 44 // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not 45 // dispatch events (or invoke TranslateMessage), rather every message is 46 // passed to Dispatcher's Dispatch method for dispatch. It is up to the 47 // Dispatcher to dispatch, or not, the event. 48 // 49 // The nested loop is exited by either posting a quit, or returning false 50 // from Dispatch. 51 class Dispatcher { 52 public: ~Dispatcher()53 virtual ~Dispatcher() {} 54 // Dispatches the event. If true is returned processing continues as 55 // normal. If false is returned, the nested loop exits immediately. 56 virtual bool Dispatch(const MSG& msg) = 0; 57 }; 58 MessagePumpWin()59 MessagePumpWin() : have_work_(0), state_(NULL) {} ~MessagePumpWin()60 virtual ~MessagePumpWin() {} 61 62 // Add an Observer, which will start receiving notifications immediately. 63 void AddObserver(Observer* observer); 64 65 // Remove an Observer. It is safe to call this method while an Observer is 66 // receiving a notification callback. 67 void RemoveObserver(Observer* observer); 68 69 // Give a chance to code processing additional messages to notify the 70 // message loop observers that another message has been processed. 71 void WillProcessMessage(const MSG& msg); 72 void DidProcessMessage(const MSG& msg); 73 74 // Like MessagePump::Run, but MSG objects are routed through dispatcher. 75 void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher); 76 77 // MessagePump methods: Run(Delegate * delegate)78 virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); } 79 virtual void Quit(); 80 81 protected: 82 struct RunState { 83 Delegate* delegate; 84 Dispatcher* dispatcher; 85 86 // Used to flag that the current Run() invocation should return ASAP. 87 bool should_quit; 88 89 // Used to count how many Run() invocations are on the stack. 90 int run_depth; 91 }; 92 93 virtual void DoRunLoop() = 0; 94 int GetCurrentDelay() const; 95 96 ObserverList<Observer> observers_; 97 98 // The time at which delayed work should run. 99 Time delayed_work_time_; 100 101 // A boolean value used to indicate if there is a kMsgDoWork message pending 102 // in the Windows Message queue. There is at most one such message, and it 103 // can drive execution of tasks when a native message pump is running. 104 LONG have_work_; 105 106 // State for the current invocation of Run. 107 RunState* state_; 108 }; 109 110 //----------------------------------------------------------------------------- 111 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a 112 // MessageLoop instantiated with TYPE_UI. 113 // 114 // MessagePumpForUI implements a "traditional" Windows message pump. It contains 115 // a nearly infinite loop that peeks out messages, and then dispatches them. 116 // Intermixed with those peeks are callouts to DoWork for pending tasks, and 117 // DoDelayedWork for pending timers. When there are no events to be serviced, 118 // this pump goes into a wait state. In most cases, this message pump handles 119 // all processing. 120 // 121 // However, when a task, or windows event, invokes on the stack a native dialog 122 // box or such, that window typically provides a bare bones (native?) message 123 // pump. That bare-bones message pump generally supports little more than a 124 // peek of the Windows message queue, followed by a dispatch of the peeked 125 // message. MessageLoop extends that bare-bones message pump to also service 126 // Tasks, at the cost of some complexity. 127 // 128 // The basic structure of the extension (refered to as a sub-pump) is that a 129 // special message, kMsgHaveWork, is repeatedly injected into the Windows 130 // Message queue. Each time the kMsgHaveWork message is peeked, checks are 131 // made for an extended set of events, including the availability of Tasks to 132 // run. 133 // 134 // After running a task, the special message kMsgHaveWork is again posted to 135 // the Windows Message queue, ensuring a future time slice for processing a 136 // future event. To prevent flooding the Windows Message queue, care is taken 137 // to be sure that at most one kMsgHaveWork message is EVER pending in the 138 // Window's Message queue. 139 // 140 // There are a few additional complexities in this system where, when there are 141 // no Tasks to run, this otherwise infinite stream of messages which drives the 142 // sub-pump is halted. The pump is automatically re-started when Tasks are 143 // queued. 144 // 145 // A second complexity is that the presence of this stream of posted tasks may 146 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER. 147 // Such paint and timer events always give priority to a posted message, such as 148 // kMsgHaveWork messages. As a result, care is taken to do some peeking in 149 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork 150 // is peeked, and before a replacement kMsgHaveWork is posted). 151 // 152 // NOTE: Although it may seem odd that messages are used to start and stop this 153 // flow (as opposed to signaling objects, etc.), it should be understood that 154 // the native message pump will *only* respond to messages. As a result, it is 155 // an excellent choice. It is also helpful that the starter messages that are 156 // placed in the queue when new task arrive also awakens DoRunLoop. 157 // 158 class MessagePumpForUI : public MessagePumpWin { 159 public: 160 // The application-defined code passed to the hook procedure. 161 static const int kMessageFilterCode = 0x5001; 162 163 MessagePumpForUI(); 164 virtual ~MessagePumpForUI(); 165 166 // MessagePump methods: 167 virtual void ScheduleWork(); 168 virtual void ScheduleDelayedWork(const Time& delayed_work_time); 169 170 // Applications can call this to encourage us to process all pending WM_PAINT 171 // messages. This method will process all paint messages the Windows Message 172 // queue can provide, up to some fixed number (to avoid any infinite loops). 173 void PumpOutPendingPaintMessages(); 174 175 private: 176 static LRESULT CALLBACK WndProcThunk( 177 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam); 178 virtual void DoRunLoop(); 179 void InitMessageWnd(); 180 void WaitForWork(); 181 void HandleWorkMessage(); 182 void HandleTimerMessage(); 183 bool ProcessNextWindowsMessage(); 184 bool ProcessMessageHelper(const MSG& msg); 185 bool ProcessPumpReplacementMessage(); 186 187 // A hidden message-only window. 188 HWND message_hwnd_; 189 }; 190 191 //----------------------------------------------------------------------------- 192 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a 193 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not 194 // deal with Windows mesagges, and instead has a Run loop based on Completion 195 // Ports so it is better suited for IO operations. 196 // 197 class MessagePumpForIO : public MessagePumpWin { 198 public: 199 struct IOContext; 200 201 // Clients interested in receiving OS notifications when asynchronous IO 202 // operations complete should implement this interface and register themselves 203 // with the message pump. 204 // 205 // Typical use #1: 206 // // Use only when there are no user's buffers involved on the actual IO, 207 // // so that all the cleanup can be done by the message pump. 208 // class MyFile : public IOHandler { 209 // MyFile() { 210 // ... 211 // context_ = new IOContext; 212 // context_->handler = this; 213 // message_pump->RegisterIOHandler(file_, this); 214 // } 215 // ~MyFile() { 216 // if (pending_) { 217 // // By setting the handler to NULL, we're asking for this context 218 // // to be deleted when received, without calling back to us. 219 // context_->handler = NULL; 220 // } else { 221 // delete context_; 222 // } 223 // } 224 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, 225 // DWORD error) { 226 // pending_ = false; 227 // } 228 // void DoSomeIo() { 229 // ... 230 // // The only buffer required for this operation is the overlapped 231 // // structure. 232 // ConnectNamedPipe(file_, &context_->overlapped); 233 // pending_ = true; 234 // } 235 // bool pending_; 236 // IOContext* context_; 237 // HANDLE file_; 238 // }; 239 // 240 // Typical use #2: 241 // class MyFile : public IOHandler { 242 // MyFile() { 243 // ... 244 // message_pump->RegisterIOHandler(file_, this); 245 // } 246 // // Plus some code to make sure that this destructor is not called 247 // // while there are pending IO operations. 248 // ~MyFile() { 249 // } 250 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, 251 // DWORD error) { 252 // ... 253 // delete context; 254 // } 255 // void DoSomeIo() { 256 // ... 257 // IOContext* context = new IOContext; 258 // // This is not used for anything. It just prevents the context from 259 // // being considered "abandoned". 260 // context->handler = this; 261 // ReadFile(file_, buffer, num_bytes, &read, &context->overlapped); 262 // } 263 // HANDLE file_; 264 // }; 265 // 266 // Typical use #3: 267 // Same as the previous example, except that in order to deal with the 268 // requirement stated for the destructor, the class calls WaitForIOCompletion 269 // from the destructor to block until all IO finishes. 270 // ~MyFile() { 271 // while(pending_) 272 // message_pump->WaitForIOCompletion(INFINITE, this); 273 // } 274 // 275 class IOHandler { 276 public: ~IOHandler()277 virtual ~IOHandler() {} 278 // This will be called once the pending IO operation associated with 279 // |context| completes. |error| is the Win32 error code of the IO operation 280 // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero 281 // on error. 282 virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, 283 DWORD error) = 0; 284 }; 285 286 // The extended context that should be used as the base structure on every 287 // overlapped IO operation. |handler| must be set to the registered IOHandler 288 // for the given file when the operation is started, and it can be set to NULL 289 // before the operation completes to indicate that the handler should not be 290 // called anymore, and instead, the IOContext should be deleted when the OS 291 // notifies the completion of this operation. Please remember that any buffers 292 // involved with an IO operation should be around until the callback is 293 // received, so this technique can only be used for IO that do not involve 294 // additional buffers (other than the overlapped structure itself). 295 struct IOContext { 296 OVERLAPPED overlapped; 297 IOHandler* handler; 298 }; 299 300 MessagePumpForIO(); ~MessagePumpForIO()301 virtual ~MessagePumpForIO() {} 302 303 // MessagePump methods: 304 virtual void ScheduleWork(); 305 virtual void ScheduleDelayedWork(const Time& delayed_work_time); 306 307 // Register the handler to be used when asynchronous IO for the given file 308 // completes. The registration persists as long as |file_handle| is valid, so 309 // |handler| must be valid as long as there is pending IO for the given file. 310 void RegisterIOHandler(HANDLE file_handle, IOHandler* handler); 311 312 // Waits for the next IO completion that should be processed by |filter|, for 313 // up to |timeout| milliseconds. Return true if any IO operation completed, 314 // regardless of the involved handler, and false if the timeout expired. If 315 // the completion port received any message and the involved IO handler 316 // matches |filter|, the callback is called before returning from this code; 317 // if the handler is not the one that we are looking for, the callback will 318 // be postponed for another time, so reentrancy problems can be avoided. 319 // External use of this method should be reserved for the rare case when the 320 // caller is willing to allow pausing regular task dispatching on this thread. 321 bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); 322 323 private: 324 struct IOItem { 325 IOHandler* handler; 326 IOContext* context; 327 DWORD bytes_transfered; 328 DWORD error; 329 }; 330 331 virtual void DoRunLoop(); 332 void WaitForWork(); 333 bool MatchCompletedIOItem(IOHandler* filter, IOItem* item); 334 bool GetIOItem(DWORD timeout, IOItem* item); 335 bool ProcessInternalIOItem(const IOItem& item); 336 337 // The completion port associated with this thread. 338 ScopedHandle port_; 339 // This list will be empty almost always. It stores IO completions that have 340 // not been delivered yet because somebody was doing cleanup. 341 std::list<IOItem> completed_io_; 342 }; 343 344 } // namespace base 345 346 #endif // BASE_MESSAGE_PUMP_WIN_H_ 347