• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/include/asm-arm/pgtable.h
3  *
4  *  Copyright (C) 1995-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #ifndef _ASMARM_PGTABLE_H
11 #define _ASMARM_PGTABLE_H
12 
13 #include <asm-generic/4level-fixup.h>
14 #include <asm/proc-fns.h>
15 
16 #ifndef CONFIG_MMU
17 
18 #include "pgtable-nommu.h"
19 
20 #else
21 
22 #include <asm/memory.h>
23 #include <asm/arch/vmalloc.h>
24 
25 /*
26  * Just any arbitrary offset to the start of the vmalloc VM area: the
27  * current 8MB value just means that there will be a 8MB "hole" after the
28  * physical memory until the kernel virtual memory starts.  That means that
29  * any out-of-bounds memory accesses will hopefully be caught.
30  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
31  * area for the same reason. ;)
32  *
33  * Note that platforms may override VMALLOC_START, but they must provide
34  * VMALLOC_END.  VMALLOC_END defines the (exclusive) limit of this space,
35  * which may not overlap IO space.
36  */
37 #ifndef VMALLOC_START
38 #define VMALLOC_OFFSET		(8*1024*1024)
39 #define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
40 #endif
41 
42 /*
43  * Hardware-wise, we have a two level page table structure, where the first
44  * level has 4096 entries, and the second level has 256 entries.  Each entry
45  * is one 32-bit word.  Most of the bits in the second level entry are used
46  * by hardware, and there aren't any "accessed" and "dirty" bits.
47  *
48  * Linux on the other hand has a three level page table structure, which can
49  * be wrapped to fit a two level page table structure easily - using the PGD
50  * and PTE only.  However, Linux also expects one "PTE" table per page, and
51  * at least a "dirty" bit.
52  *
53  * Therefore, we tweak the implementation slightly - we tell Linux that we
54  * have 2048 entries in the first level, each of which is 8 bytes (iow, two
55  * hardware pointers to the second level.)  The second level contains two
56  * hardware PTE tables arranged contiguously, followed by Linux versions
57  * which contain the state information Linux needs.  We, therefore, end up
58  * with 512 entries in the "PTE" level.
59  *
60  * This leads to the page tables having the following layout:
61  *
62  *    pgd             pte
63  * |        |
64  * +--------+ +0
65  * |        |-----> +------------+ +0
66  * +- - - - + +4    |  h/w pt 0  |
67  * |        |-----> +------------+ +1024
68  * +--------+ +8    |  h/w pt 1  |
69  * |        |       +------------+ +2048
70  * +- - - - +       | Linux pt 0 |
71  * |        |       +------------+ +3072
72  * +--------+       | Linux pt 1 |
73  * |        |       +------------+ +4096
74  *
75  * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
76  * PTE_xxx for definitions of bits appearing in the "h/w pt".
77  *
78  * PMD_xxx definitions refer to bits in the first level page table.
79  *
80  * The "dirty" bit is emulated by only granting hardware write permission
81  * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
82  * means that a write to a clean page will cause a permission fault, and
83  * the Linux MM layer will mark the page dirty via handle_pte_fault().
84  * For the hardware to notice the permission change, the TLB entry must
85  * be flushed, and ptep_establish() does that for us.
86  *
87  * The "accessed" or "young" bit is emulated by a similar method; we only
88  * allow accesses to the page if the "young" bit is set.  Accesses to the
89  * page will cause a fault, and handle_pte_fault() will set the young bit
90  * for us as long as the page is marked present in the corresponding Linux
91  * PTE entry.  Again, ptep_establish() will ensure that the TLB is up to
92  * date.
93  *
94  * However, when the "young" bit is cleared, we deny access to the page
95  * by clearing the hardware PTE.  Currently Linux does not flush the TLB
96  * for us in this case, which means the TLB will retain the transation
97  * until either the TLB entry is evicted under pressure, or a context
98  * switch which changes the user space mapping occurs.
99  */
100 #define PTRS_PER_PTE		512
101 #define PTRS_PER_PMD		1
102 #define PTRS_PER_PGD		2048
103 
104 /*
105  * PMD_SHIFT determines the size of the area a second-level page table can map
106  * PGDIR_SHIFT determines what a third-level page table entry can map
107  */
108 #define PMD_SHIFT		21
109 #define PGDIR_SHIFT		21
110 
111 #define LIBRARY_TEXT_START	0x0c000000
112 
113 #ifndef __ASSEMBLY__
114 extern void __pte_error(const char *file, int line, unsigned long val);
115 extern void __pmd_error(const char *file, int line, unsigned long val);
116 extern void __pgd_error(const char *file, int line, unsigned long val);
117 
118 #define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte_val(pte))
119 #define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd_val(pmd))
120 #define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd_val(pgd))
121 #endif /* !__ASSEMBLY__ */
122 
123 #define PMD_SIZE		(1UL << PMD_SHIFT)
124 #define PMD_MASK		(~(PMD_SIZE-1))
125 #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
126 #define PGDIR_MASK		(~(PGDIR_SIZE-1))
127 
128 /*
129  * This is the lowest virtual address we can permit any user space
130  * mapping to be mapped at.  This is particularly important for
131  * non-high vector CPUs.
132  */
133 #define FIRST_USER_ADDRESS	PAGE_SIZE
134 
135 #define FIRST_USER_PGD_NR	1
136 #define USER_PTRS_PER_PGD	((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
137 
138 /*
139  * ARMv6 supersection address mask and size definitions.
140  */
141 #define SUPERSECTION_SHIFT	24
142 #define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
143 #define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))
144 
145 /*
146  * "Linux" PTE definitions.
147  *
148  * We keep two sets of PTEs - the hardware and the linux version.
149  * This allows greater flexibility in the way we map the Linux bits
150  * onto the hardware tables, and allows us to have YOUNG and DIRTY
151  * bits.
152  *
153  * The PTE table pointer refers to the hardware entries; the "Linux"
154  * entries are stored 1024 bytes below.
155  */
156 #define L_PTE_PRESENT		(1 << 0)
157 #define L_PTE_FILE		(1 << 1)	/* only when !PRESENT */
158 #define L_PTE_YOUNG		(1 << 1)
159 #define L_PTE_BUFFERABLE	(1 << 2)	/* matches PTE */
160 #define L_PTE_CACHEABLE		(1 << 3)	/* matches PTE */
161 #define L_PTE_USER		(1 << 4)
162 #define L_PTE_WRITE		(1 << 5)
163 #define L_PTE_EXEC		(1 << 6)
164 #define L_PTE_DIRTY		(1 << 7)
165 #define L_PTE_COHERENT		(1 << 9)	/* I/O coherent (xsc3) */
166 #define L_PTE_SHARED		(1 << 10)	/* shared between CPUs (v6) */
167 #define L_PTE_ASID		(1 << 11)	/* non-global (use ASID, v6) */
168 
169 #ifndef __ASSEMBLY__
170 
171 /*
172  * The following macros handle the cache and bufferable bits...
173  */
174 #define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE
175 #define _L_PTE_READ	L_PTE_USER | L_PTE_EXEC
176 
177 extern pgprot_t		pgprot_kernel;
178 
179 #define PAGE_NONE       __pgprot(_L_PTE_DEFAULT)
180 #define PAGE_COPY       __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
181 #define PAGE_SHARED     __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE)
182 #define PAGE_READONLY   __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
183 #define PAGE_KERNEL	pgprot_kernel
184 
185 #endif /* __ASSEMBLY__ */
186 
187 /*
188  * The table below defines the page protection levels that we insert into our
189  * Linux page table version.  These get translated into the best that the
190  * architecture can perform.  Note that on most ARM hardware:
191  *  1) We cannot do execute protection
192  *  2) If we could do execute protection, then read is implied
193  *  3) write implies read permissions
194  */
195 #define __P000  PAGE_NONE
196 #define __P001  PAGE_READONLY
197 #define __P010  PAGE_COPY
198 #define __P011  PAGE_COPY
199 #define __P100  PAGE_READONLY
200 #define __P101  PAGE_READONLY
201 #define __P110  PAGE_COPY
202 #define __P111  PAGE_COPY
203 
204 #define __S000  PAGE_NONE
205 #define __S001  PAGE_READONLY
206 #define __S010  PAGE_SHARED
207 #define __S011  PAGE_SHARED
208 #define __S100  PAGE_READONLY
209 #define __S101  PAGE_READONLY
210 #define __S110  PAGE_SHARED
211 #define __S111  PAGE_SHARED
212 
213 #ifndef __ASSEMBLY__
214 /*
215  * ZERO_PAGE is a global shared page that is always zero: used
216  * for zero-mapped memory areas etc..
217  */
218 extern struct page *empty_zero_page;
219 #define ZERO_PAGE(vaddr)	(empty_zero_page)
220 
221 #define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
222 #define pfn_pte(pfn,prot)	(__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
223 
224 #define pte_none(pte)		(!pte_val(pte))
225 #define pte_clear(mm,addr,ptep)	set_pte_at((mm),(addr),(ptep), __pte(0))
226 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
227 #define pte_offset_kernel(dir,addr)	(pmd_page_kernel(*(dir)) + __pte_index(addr))
228 #define pte_offset_map(dir,addr)	(pmd_page_kernel(*(dir)) + __pte_index(addr))
229 #define pte_offset_map_nested(dir,addr)	(pmd_page_kernel(*(dir)) + __pte_index(addr))
230 #define pte_unmap(pte)		do { } while (0)
231 #define pte_unmap_nested(pte)	do { } while (0)
232 
233 #define set_pte(ptep, pte)	cpu_set_pte(ptep,pte)
234 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
235 
236 /*
237  * The following only work if pte_present() is true.
238  * Undefined behaviour if not..
239  */
240 #define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)
241 #define pte_read(pte)		(pte_val(pte) & L_PTE_USER)
242 #define pte_write(pte)		(pte_val(pte) & L_PTE_WRITE)
243 #define pte_exec(pte)		(pte_val(pte) & L_PTE_EXEC)
244 #define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)
245 #define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)
246 
247 /*
248  * The following only works if pte_present() is not true.
249  */
250 #define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)
251 #define pte_to_pgoff(x)		(pte_val(x) >> 2)
252 #define pgoff_to_pte(x)		__pte(((x) << 2) | L_PTE_FILE)
253 
254 #define PTE_FILE_MAX_BITS	30
255 
256 #define PTE_BIT_FUNC(fn,op) \
257 static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
258 
259 /*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/
260 /*PTE_BIT_FUNC(mkread,    |= L_PTE_USER);*/
261 PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
262 PTE_BIT_FUNC(mkwrite,   |= L_PTE_WRITE);
263 PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC);
264 PTE_BIT_FUNC(mkexec,    |= L_PTE_EXEC);
265 PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
266 PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
267 PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
268 PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);
269 
270 /*
271  * Mark the prot value as uncacheable and unbufferable.
272  */
273 #define pgprot_noncached(prot)	__pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE))
274 #define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE)
275 
276 #define pmd_none(pmd)		(!pmd_val(pmd))
277 #define pmd_present(pmd)	(pmd_val(pmd))
278 #define pmd_bad(pmd)		(pmd_val(pmd) & 2)
279 
280 #define copy_pmd(pmdpd,pmdps)		\
281 	do {				\
282 		pmdpd[0] = pmdps[0];	\
283 		pmdpd[1] = pmdps[1];	\
284 		flush_pmd_entry(pmdpd);	\
285 	} while (0)
286 
287 #define pmd_clear(pmdp)			\
288 	do {				\
289 		pmdp[0] = __pmd(0);	\
290 		pmdp[1] = __pmd(0);	\
291 		clean_pmd_entry(pmdp);	\
292 	} while (0)
293 
pmd_page_kernel(pmd_t pmd)294 static inline pte_t *pmd_page_kernel(pmd_t pmd)
295 {
296 	unsigned long ptr;
297 
298 	ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
299 	ptr += PTRS_PER_PTE * sizeof(void *);
300 
301 	return __va(ptr);
302 }
303 
304 #define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))
305 
306 /*
307  * Permanent address of a page. We never have highmem, so this is trivial.
308  */
309 #define pages_to_mb(x)		((x) >> (20 - PAGE_SHIFT))
310 
311 /*
312  * Conversion functions: convert a page and protection to a page entry,
313  * and a page entry and page directory to the page they refer to.
314  */
315 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
316 
317 /*
318  * The "pgd_xxx()" functions here are trivial for a folded two-level
319  * setup: the pgd is never bad, and a pmd always exists (as it's folded
320  * into the pgd entry)
321  */
322 #define pgd_none(pgd)		(0)
323 #define pgd_bad(pgd)		(0)
324 #define pgd_present(pgd)	(1)
325 #define pgd_clear(pgdp)		do { } while (0)
326 #define set_pgd(pgd,pgdp)	do { } while (0)
327 
328 /* to find an entry in a page-table-directory */
329 #define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
330 
331 #define pgd_offset(mm, addr)	((mm)->pgd+pgd_index(addr))
332 
333 /* to find an entry in a kernel page-table-directory */
334 #define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
335 
336 /* Find an entry in the second-level page table.. */
337 #define pmd_offset(dir, addr)	((pmd_t *)(dir))
338 
339 /* Find an entry in the third-level page table.. */
340 #define __pte_index(addr)	(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
341 
pte_modify(pte_t pte,pgprot_t newprot)342 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
343 {
344 	const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
345 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
346 	return pte;
347 }
348 
349 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
350 
351 /* Encode and decode a swap entry.
352  *
353  * We support up to 32GB of swap on 4k machines
354  */
355 #define __swp_type(x)		(((x).val >> 2) & 0x7f)
356 #define __swp_offset(x)		((x).val >> 9)
357 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) })
358 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
359 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
360 
361 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
362 /* FIXME: this is not correct */
363 #define kern_addr_valid(addr)	(1)
364 
365 #include <asm-generic/pgtable.h>
366 
367 /*
368  * We provide our own arch_get_unmapped_area to cope with VIPT caches.
369  */
370 #define HAVE_ARCH_UNMAPPED_AREA
371 
372 /*
373  * remap a physical page `pfn' of size `size' with page protection `prot'
374  * into virtual address `from'
375  */
376 #define io_remap_pfn_range(vma,from,pfn,size,prot) \
377 		remap_pfn_range(vma, from, pfn, size, prot)
378 
379 #define MK_IOSPACE_PFN(space, pfn)	(pfn)
380 #define GET_IOSPACE(pfn)		0
381 #define GET_PFN(pfn)			(pfn)
382 
383 #define pgtable_cache_init() do { } while (0)
384 
385 #endif /* !__ASSEMBLY__ */
386 
387 #endif /* CONFIG_MMU */
388 
389 #endif /* _ASMARM_PGTABLE_H */
390