1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_JSREGEXP_H_
29 #define V8_JSREGEXP_H_
30
31 #include "macro-assembler.h"
32
33 namespace v8 {
34 namespace internal {
35
36
37 class RegExpMacroAssembler;
38
39
40 class RegExpImpl {
41 public:
42 // Whether V8 is compiled with native regexp support or not.
UsesNativeRegExp()43 static bool UsesNativeRegExp() {
44 #ifdef V8_NATIVE_REGEXP
45 return true;
46 #else
47 return false;
48 #endif
49 }
50
51 // Creates a regular expression literal in the old space.
52 // This function calls the garbage collector if necessary.
53 static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
54 Handle<String> pattern,
55 Handle<String> flags,
56 bool* has_pending_exception);
57
58 // Returns a string representation of a regular expression.
59 // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
60 // This function calls the garbage collector if necessary.
61 static Handle<String> ToString(Handle<Object> value);
62
63 // Parses the RegExp pattern and prepares the JSRegExp object with
64 // generic data and choice of implementation - as well as what
65 // the implementation wants to store in the data field.
66 // Returns false if compilation fails.
67 static Handle<Object> Compile(Handle<JSRegExp> re,
68 Handle<String> pattern,
69 Handle<String> flags);
70
71 // See ECMA-262 section 15.10.6.2.
72 // This function calls the garbage collector if necessary.
73 static Handle<Object> Exec(Handle<JSRegExp> regexp,
74 Handle<String> subject,
75 int index,
76 Handle<JSArray> lastMatchInfo);
77
78 // Prepares a JSRegExp object with Irregexp-specific data.
79 static void IrregexpPrepare(Handle<JSRegExp> re,
80 Handle<String> pattern,
81 JSRegExp::Flags flags,
82 int capture_register_count);
83
84
85 static void AtomCompile(Handle<JSRegExp> re,
86 Handle<String> pattern,
87 JSRegExp::Flags flags,
88 Handle<String> match_pattern);
89
90 static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
91 Handle<String> subject,
92 int index,
93 Handle<JSArray> lastMatchInfo);
94
95 // Execute an Irregexp bytecode pattern.
96 // On a successful match, the result is a JSArray containing
97 // captured positions. On a failure, the result is the null value.
98 // Returns an empty handle in case of an exception.
99 static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
100 Handle<String> subject,
101 int index,
102 Handle<JSArray> lastMatchInfo);
103
104 // Array index in the lastMatchInfo array.
105 static const int kLastCaptureCount = 0;
106 static const int kLastSubject = 1;
107 static const int kLastInput = 2;
108 static const int kFirstCapture = 3;
109 static const int kLastMatchOverhead = 3;
110
111 // Direct offset into the lastMatchInfo array.
112 static const int kLastCaptureCountOffset =
113 FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
114 static const int kLastSubjectOffset =
115 FixedArray::kHeaderSize + kLastSubject * kPointerSize;
116 static const int kLastInputOffset =
117 FixedArray::kHeaderSize + kLastInput * kPointerSize;
118 static const int kFirstCaptureOffset =
119 FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
120
121 // Used to access the lastMatchInfo array.
GetCapture(FixedArray * array,int index)122 static int GetCapture(FixedArray* array, int index) {
123 return Smi::cast(array->get(index + kFirstCapture))->value();
124 }
125
SetLastCaptureCount(FixedArray * array,int to)126 static void SetLastCaptureCount(FixedArray* array, int to) {
127 array->set(kLastCaptureCount, Smi::FromInt(to));
128 }
129
SetLastSubject(FixedArray * array,String * to)130 static void SetLastSubject(FixedArray* array, String* to) {
131 array->set(kLastSubject, to);
132 }
133
SetLastInput(FixedArray * array,String * to)134 static void SetLastInput(FixedArray* array, String* to) {
135 array->set(kLastInput, to);
136 }
137
SetCapture(FixedArray * array,int index,int to)138 static void SetCapture(FixedArray* array, int index, int to) {
139 array->set(index + kFirstCapture, Smi::FromInt(to));
140 }
141
GetLastCaptureCount(FixedArray * array)142 static int GetLastCaptureCount(FixedArray* array) {
143 return Smi::cast(array->get(kLastCaptureCount))->value();
144 }
145
146 // For acting on the JSRegExp data FixedArray.
147 static int IrregexpMaxRegisterCount(FixedArray* re);
148 static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
149 static int IrregexpNumberOfCaptures(FixedArray* re);
150 static int IrregexpNumberOfRegisters(FixedArray* re);
151 static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
152 static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
153
154 private:
155 static String* last_ascii_string_;
156 static String* two_byte_cached_string_;
157
158 static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii);
159 static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii);
160
161
162 // Set the subject cache. The previous string buffer is not deleted, so the
163 // caller should ensure that it doesn't leak.
164 static void SetSubjectCache(String* subject,
165 char* utf8_subject,
166 int uft8_length,
167 int character_position,
168 int utf8_position);
169
170 // A one element cache of the last utf8_subject string and its length. The
171 // subject JS String object is cached in the heap. We also cache a
172 // translation between position and utf8 position.
173 static char* utf8_subject_cache_;
174 static int utf8_length_cache_;
175 static int utf8_position_;
176 static int character_position_;
177 };
178
179
180 // Represents the location of one element relative to the intersection of
181 // two sets. Corresponds to the four areas of a Venn diagram.
182 enum ElementInSetsRelation {
183 kInsideNone = 0,
184 kInsideFirst = 1,
185 kInsideSecond = 2,
186 kInsideBoth = 3
187 };
188
189
190 // Represents the relation of two sets.
191 // Sets can be either disjoint, partially or fully overlapping, or equal.
192 class SetRelation BASE_EMBEDDED {
193 public:
194 // Relation is represented by a bit saying whether there are elements in
195 // one set that is not in the other, and a bit saying that there are elements
196 // that are in both sets.
197
198 // Location of an element. Corresponds to the internal areas of
199 // a Venn diagram.
200 enum {
201 kInFirst = 1 << kInsideFirst,
202 kInSecond = 1 << kInsideSecond,
203 kInBoth = 1 << kInsideBoth
204 };
SetRelation()205 SetRelation() : bits_(0) {}
~SetRelation()206 ~SetRelation() {}
207 // Add the existence of objects in a particular
SetElementsInFirstSet()208 void SetElementsInFirstSet() { bits_ |= kInFirst; }
SetElementsInSecondSet()209 void SetElementsInSecondSet() { bits_ |= kInSecond; }
SetElementsInBothSets()210 void SetElementsInBothSets() { bits_ |= kInBoth; }
211 // Check the currently known relation of the sets (common functions only,
212 // for other combinations, use value() to get the bits and check them
213 // manually).
214 // Sets are completely disjoint.
Disjoint()215 bool Disjoint() { return (bits_ & kInBoth) == 0; }
216 // Sets are equal.
Equals()217 bool Equals() { return (bits_ & (kInFirst | kInSecond)) == 0; }
218 // First set contains second.
Contains()219 bool Contains() { return (bits_ & kInSecond) == 0; }
220 // Second set contains first.
ContainedIn()221 bool ContainedIn() { return (bits_ & kInFirst) == 0; }
NonTrivialIntersection()222 bool NonTrivialIntersection() {
223 return (bits_ == (kInFirst | kInSecond | kInBoth));
224 }
value()225 int value() { return bits_; }
226 private:
227 int bits_;
228 };
229
230
231 class CharacterRange {
232 public:
CharacterRange()233 CharacterRange() : from_(0), to_(0) { }
234 // For compatibility with the CHECK_OK macro
CharacterRange(void * null)235 CharacterRange(void* null) { ASSERT_EQ(NULL, null); } //NOLINT
CharacterRange(uc16 from,uc16 to)236 CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
237 static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges);
238 static Vector<const uc16> GetWordBounds();
Singleton(uc16 value)239 static inline CharacterRange Singleton(uc16 value) {
240 return CharacterRange(value, value);
241 }
Range(uc16 from,uc16 to)242 static inline CharacterRange Range(uc16 from, uc16 to) {
243 ASSERT(from <= to);
244 return CharacterRange(from, to);
245 }
Everything()246 static inline CharacterRange Everything() {
247 return CharacterRange(0, 0xFFFF);
248 }
Contains(uc16 i)249 bool Contains(uc16 i) { return from_ <= i && i <= to_; }
from()250 uc16 from() const { return from_; }
set_from(uc16 value)251 void set_from(uc16 value) { from_ = value; }
to()252 uc16 to() const { return to_; }
set_to(uc16 value)253 void set_to(uc16 value) { to_ = value; }
is_valid()254 bool is_valid() { return from_ <= to_; }
IsEverything(uc16 max)255 bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
IsSingleton()256 bool IsSingleton() { return (from_ == to_); }
257 void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii);
258 static void Split(ZoneList<CharacterRange>* base,
259 Vector<const uc16> overlay,
260 ZoneList<CharacterRange>** included,
261 ZoneList<CharacterRange>** excluded);
262 // Whether a range list is in canonical form: Ranges ordered by from value,
263 // and ranges non-overlapping and non-adjacent.
264 static bool IsCanonical(ZoneList<CharacterRange>* ranges);
265 // Convert range list to canonical form. The characters covered by the ranges
266 // will still be the same, but no character is in more than one range, and
267 // adjacent ranges are merged. The resulting list may be shorter than the
268 // original, but cannot be longer.
269 static void Canonicalize(ZoneList<CharacterRange>* ranges);
270 // Check how the set of characters defined by a CharacterRange list relates
271 // to the set of word characters. List must be in canonical form.
272 static SetRelation WordCharacterRelation(ZoneList<CharacterRange>* ranges);
273 // Takes two character range lists (representing character sets) in canonical
274 // form and merges them.
275 // The characters that are only covered by the first set are added to
276 // first_set_only_out. the characters that are only in the second set are
277 // added to second_set_only_out, and the characters that are in both are
278 // added to both_sets_out.
279 // The pointers to first_set_only_out, second_set_only_out and both_sets_out
280 // should be to empty lists, but they need not be distinct, and may be NULL.
281 // If NULL, the characters are dropped, and if two arguments are the same
282 // pointer, the result is the union of the two sets that would be created
283 // if the pointers had been distinct.
284 // This way, the Merge function can compute all the usual set operations:
285 // union (all three out-sets are equal), intersection (only both_sets_out is
286 // non-NULL), and set difference (only first_set is non-NULL).
287 static void Merge(ZoneList<CharacterRange>* first_set,
288 ZoneList<CharacterRange>* second_set,
289 ZoneList<CharacterRange>* first_set_only_out,
290 ZoneList<CharacterRange>* second_set_only_out,
291 ZoneList<CharacterRange>* both_sets_out);
292 // Negate the contents of a character range in canonical form.
293 static void Negate(ZoneList<CharacterRange>* src,
294 ZoneList<CharacterRange>* dst);
295 static const int kRangeCanonicalizeMax = 0x346;
296 static const int kStartMarker = (1 << 24);
297 static const int kPayloadMask = (1 << 24) - 1;
298
299 private:
300 uc16 from_;
301 uc16 to_;
302 };
303
304
305 // A set of unsigned integers that behaves especially well on small
306 // integers (< 32). May do zone-allocation.
307 class OutSet: public ZoneObject {
308 public:
OutSet()309 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
310 OutSet* Extend(unsigned value);
311 bool Get(unsigned value);
312 static const unsigned kFirstLimit = 32;
313
314 private:
315 // Destructively set a value in this set. In most cases you want
316 // to use Extend instead to ensure that only one instance exists
317 // that contains the same values.
318 void Set(unsigned value);
319
320 // The successors are a list of sets that contain the same values
321 // as this set and the one more value that is not present in this
322 // set.
successors()323 ZoneList<OutSet*>* successors() { return successors_; }
324
OutSet(uint32_t first,ZoneList<unsigned> * remaining)325 OutSet(uint32_t first, ZoneList<unsigned>* remaining)
326 : first_(first), remaining_(remaining), successors_(NULL) { }
327 uint32_t first_;
328 ZoneList<unsigned>* remaining_;
329 ZoneList<OutSet*>* successors_;
330 friend class Trace;
331 };
332
333
334 // A mapping from integers, specified as ranges, to a set of integers.
335 // Used for mapping character ranges to choices.
336 class DispatchTable : public ZoneObject {
337 public:
338 class Entry {
339 public:
Entry()340 Entry() : from_(0), to_(0), out_set_(NULL) { }
Entry(uc16 from,uc16 to,OutSet * out_set)341 Entry(uc16 from, uc16 to, OutSet* out_set)
342 : from_(from), to_(to), out_set_(out_set) { }
from()343 uc16 from() { return from_; }
to()344 uc16 to() { return to_; }
set_to(uc16 value)345 void set_to(uc16 value) { to_ = value; }
AddValue(int value)346 void AddValue(int value) { out_set_ = out_set_->Extend(value); }
out_set()347 OutSet* out_set() { return out_set_; }
348 private:
349 uc16 from_;
350 uc16 to_;
351 OutSet* out_set_;
352 };
353
354 class Config {
355 public:
356 typedef uc16 Key;
357 typedef Entry Value;
358 static const uc16 kNoKey;
359 static const Entry kNoValue;
Compare(uc16 a,uc16 b)360 static inline int Compare(uc16 a, uc16 b) {
361 if (a == b)
362 return 0;
363 else if (a < b)
364 return -1;
365 else
366 return 1;
367 }
368 };
369
370 void AddRange(CharacterRange range, int value);
371 OutSet* Get(uc16 value);
372 void Dump();
373
374 template <typename Callback>
ForEach(Callback * callback)375 void ForEach(Callback* callback) { return tree()->ForEach(callback); }
376 private:
377 // There can't be a static empty set since it allocates its
378 // successors in a zone and caches them.
empty()379 OutSet* empty() { return &empty_; }
380 OutSet empty_;
tree()381 ZoneSplayTree<Config>* tree() { return &tree_; }
382 ZoneSplayTree<Config> tree_;
383 };
384
385
386 #define FOR_EACH_NODE_TYPE(VISIT) \
387 VISIT(End) \
388 VISIT(Action) \
389 VISIT(Choice) \
390 VISIT(BackReference) \
391 VISIT(Assertion) \
392 VISIT(Text)
393
394
395 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
396 VISIT(Disjunction) \
397 VISIT(Alternative) \
398 VISIT(Assertion) \
399 VISIT(CharacterClass) \
400 VISIT(Atom) \
401 VISIT(Quantifier) \
402 VISIT(Capture) \
403 VISIT(Lookahead) \
404 VISIT(BackReference) \
405 VISIT(Empty) \
406 VISIT(Text)
407
408
409 #define FORWARD_DECLARE(Name) class RegExp##Name;
FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)410 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
411 #undef FORWARD_DECLARE
412
413
414 class TextElement {
415 public:
416 enum Type {UNINITIALIZED, ATOM, CHAR_CLASS};
417 TextElement() : type(UNINITIALIZED) { }
418 explicit TextElement(Type t) : type(t), cp_offset(-1) { }
419 static TextElement Atom(RegExpAtom* atom);
420 static TextElement CharClass(RegExpCharacterClass* char_class);
421 int length();
422 Type type;
423 union {
424 RegExpAtom* u_atom;
425 RegExpCharacterClass* u_char_class;
426 } data;
427 int cp_offset;
428 };
429
430
431 class Trace;
432
433
434 struct NodeInfo {
NodeInfoNodeInfo435 NodeInfo()
436 : being_analyzed(false),
437 been_analyzed(false),
438 follows_word_interest(false),
439 follows_newline_interest(false),
440 follows_start_interest(false),
441 at_end(false),
442 visited(false) { }
443
444 // Returns true if the interests and assumptions of this node
445 // matches the given one.
MatchesNodeInfo446 bool Matches(NodeInfo* that) {
447 return (at_end == that->at_end) &&
448 (follows_word_interest == that->follows_word_interest) &&
449 (follows_newline_interest == that->follows_newline_interest) &&
450 (follows_start_interest == that->follows_start_interest);
451 }
452
453 // Updates the interests of this node given the interests of the
454 // node preceding it.
AddFromPrecedingNodeInfo455 void AddFromPreceding(NodeInfo* that) {
456 at_end |= that->at_end;
457 follows_word_interest |= that->follows_word_interest;
458 follows_newline_interest |= that->follows_newline_interest;
459 follows_start_interest |= that->follows_start_interest;
460 }
461
HasLookbehindNodeInfo462 bool HasLookbehind() {
463 return follows_word_interest ||
464 follows_newline_interest ||
465 follows_start_interest;
466 }
467
468 // Sets the interests of this node to include the interests of the
469 // following node.
AddFromFollowingNodeInfo470 void AddFromFollowing(NodeInfo* that) {
471 follows_word_interest |= that->follows_word_interest;
472 follows_newline_interest |= that->follows_newline_interest;
473 follows_start_interest |= that->follows_start_interest;
474 }
475
ResetCompilationStateNodeInfo476 void ResetCompilationState() {
477 being_analyzed = false;
478 been_analyzed = false;
479 }
480
481 bool being_analyzed: 1;
482 bool been_analyzed: 1;
483
484 // These bits are set of this node has to know what the preceding
485 // character was.
486 bool follows_word_interest: 1;
487 bool follows_newline_interest: 1;
488 bool follows_start_interest: 1;
489
490 bool at_end: 1;
491 bool visited: 1;
492 };
493
494
495 class SiblingList {
496 public:
SiblingList()497 SiblingList() : list_(NULL) { }
length()498 int length() {
499 return list_ == NULL ? 0 : list_->length();
500 }
Ensure(RegExpNode * parent)501 void Ensure(RegExpNode* parent) {
502 if (list_ == NULL) {
503 list_ = new ZoneList<RegExpNode*>(2);
504 list_->Add(parent);
505 }
506 }
Add(RegExpNode * node)507 void Add(RegExpNode* node) { list_->Add(node); }
Get(int index)508 RegExpNode* Get(int index) { return list_->at(index); }
509 private:
510 ZoneList<RegExpNode*>* list_;
511 };
512
513
514 // Details of a quick mask-compare check that can look ahead in the
515 // input stream.
516 class QuickCheckDetails {
517 public:
QuickCheckDetails()518 QuickCheckDetails()
519 : characters_(0),
520 mask_(0),
521 value_(0),
522 cannot_match_(false) { }
QuickCheckDetails(int characters)523 explicit QuickCheckDetails(int characters)
524 : characters_(characters),
525 mask_(0),
526 value_(0),
527 cannot_match_(false) { }
528 bool Rationalize(bool ascii);
529 // Merge in the information from another branch of an alternation.
530 void Merge(QuickCheckDetails* other, int from_index);
531 // Advance the current position by some amount.
532 void Advance(int by, bool ascii);
533 void Clear();
cannot_match()534 bool cannot_match() { return cannot_match_; }
set_cannot_match()535 void set_cannot_match() { cannot_match_ = true; }
536 struct Position {
PositionPosition537 Position() : mask(0), value(0), determines_perfectly(false) { }
538 uc16 mask;
539 uc16 value;
540 bool determines_perfectly;
541 };
characters()542 int characters() { return characters_; }
set_characters(int characters)543 void set_characters(int characters) { characters_ = characters; }
positions(int index)544 Position* positions(int index) {
545 ASSERT(index >= 0);
546 ASSERT(index < characters_);
547 return positions_ + index;
548 }
mask()549 uint32_t mask() { return mask_; }
value()550 uint32_t value() { return value_; }
551
552 private:
553 // How many characters do we have quick check information from. This is
554 // the same for all branches of a choice node.
555 int characters_;
556 Position positions_[4];
557 // These values are the condensate of the above array after Rationalize().
558 uint32_t mask_;
559 uint32_t value_;
560 // If set to true, there is no way this quick check can match at all.
561 // E.g., if it requires to be at the start of the input, and isn't.
562 bool cannot_match_;
563 };
564
565
566 class RegExpNode: public ZoneObject {
567 public:
RegExpNode()568 RegExpNode() : first_character_set_(NULL), trace_count_(0) { }
569 virtual ~RegExpNode();
570 virtual void Accept(NodeVisitor* visitor) = 0;
571 // Generates a goto to this node or actually generates the code at this point.
572 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
573 // How many characters must this node consume at a minimum in order to
574 // succeed. If we have found at least 'still_to_find' characters that
575 // must be consumed there is no need to ask any following nodes whether
576 // they are sure to eat any more characters.
577 virtual int EatsAtLeast(int still_to_find, int recursion_depth) = 0;
578 // Emits some quick code that checks whether the preloaded characters match.
579 // Falls through on certain failure, jumps to the label on possible success.
580 // If the node cannot make a quick check it does nothing and returns false.
581 bool EmitQuickCheck(RegExpCompiler* compiler,
582 Trace* trace,
583 bool preload_has_checked_bounds,
584 Label* on_possible_success,
585 QuickCheckDetails* details_return,
586 bool fall_through_on_failure);
587 // For a given number of characters this returns a mask and a value. The
588 // next n characters are anded with the mask and compared with the value.
589 // A comparison failure indicates the node cannot match the next n characters.
590 // A comparison success indicates the node may match.
591 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
592 RegExpCompiler* compiler,
593 int characters_filled_in,
594 bool not_at_start) = 0;
595 static const int kNodeIsTooComplexForGreedyLoops = -1;
GreedyLoopTextLength()596 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
label()597 Label* label() { return &label_; }
598 // If non-generic code is generated for a node (ie the node is not at the
599 // start of the trace) then it cannot be reused. This variable sets a limit
600 // on how often we allow that to happen before we insist on starting a new
601 // trace and generating generic code for a node that can be reused by flushing
602 // the deferred actions in the current trace and generating a goto.
603 static const int kMaxCopiesCodeGenerated = 10;
604
info()605 NodeInfo* info() { return &info_; }
606
AddSibling(RegExpNode * node)607 void AddSibling(RegExpNode* node) { siblings_.Add(node); }
608
609 // Static version of EnsureSibling that expresses the fact that the
610 // result has the same type as the input.
611 template <class C>
EnsureSibling(C * node,NodeInfo * info,bool * cloned)612 static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) {
613 return static_cast<C*>(node->EnsureSibling(info, cloned));
614 }
615
siblings()616 SiblingList* siblings() { return &siblings_; }
set_siblings(SiblingList * other)617 void set_siblings(SiblingList* other) { siblings_ = *other; }
618
619 // Return the set of possible next characters recognized by the regexp
620 // (or a safe subset, potentially the set of all characters).
621 ZoneList<CharacterRange>* FirstCharacterSet();
622
623 // Compute (if possible within the budget of traversed nodes) the
624 // possible first characters of the input matched by this node and
625 // its continuation. Returns the remaining budget after the computation.
626 // If the budget is spent, the result is negative, and the cached
627 // first_character_set_ value isn't set.
628 virtual int ComputeFirstCharacterSet(int budget);
629
630 // Get and set the cached first character set value.
first_character_set()631 ZoneList<CharacterRange>* first_character_set() {
632 return first_character_set_;
633 }
set_first_character_set(ZoneList<CharacterRange> * character_set)634 void set_first_character_set(ZoneList<CharacterRange>* character_set) {
635 first_character_set_ = character_set;
636 }
637
638 protected:
639 enum LimitResult { DONE, CONTINUE };
640 static const int kComputeFirstCharacterSetFail = -1;
641
642 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
643
644 // Returns a sibling of this node whose interests and assumptions
645 // match the ones in the given node info. If no sibling exists NULL
646 // is returned.
647 RegExpNode* TryGetSibling(NodeInfo* info);
648
649 // Returns a sibling of this node whose interests match the ones in
650 // the given node info. The info must not contain any assertions.
651 // If no node exists a new one will be created by cloning the current
652 // node. The result will always be an instance of the same concrete
653 // class as this node.
654 RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned);
655
656 // Returns a clone of this node initialized using the copy constructor
657 // of its concrete class. Note that the node may have to be pre-
658 // processed before it is on a usable state.
659 virtual RegExpNode* Clone() = 0;
660
661 private:
662 static const int kFirstCharBudget = 10;
663 Label label_;
664 NodeInfo info_;
665 SiblingList siblings_;
666 ZoneList<CharacterRange>* first_character_set_;
667 // This variable keeps track of how many times code has been generated for
668 // this node (in different traces). We don't keep track of where the
669 // generated code is located unless the code is generated at the start of
670 // a trace, in which case it is generic and can be reused by flushing the
671 // deferred operations in the current trace and generating a goto.
672 int trace_count_;
673 };
674
675
676 // A simple closed interval.
677 class Interval {
678 public:
Interval()679 Interval() : from_(kNone), to_(kNone) { }
Interval(int from,int to)680 Interval(int from, int to) : from_(from), to_(to) { }
Union(Interval that)681 Interval Union(Interval that) {
682 if (that.from_ == kNone)
683 return *this;
684 else if (from_ == kNone)
685 return that;
686 else
687 return Interval(Min(from_, that.from_), Max(to_, that.to_));
688 }
Contains(int value)689 bool Contains(int value) {
690 return (from_ <= value) && (value <= to_);
691 }
is_empty()692 bool is_empty() { return from_ == kNone; }
from()693 int from() { return from_; }
to()694 int to() { return to_; }
Empty()695 static Interval Empty() { return Interval(); }
696 static const int kNone = -1;
697 private:
698 int from_;
699 int to_;
700 };
701
702
703 class SeqRegExpNode: public RegExpNode {
704 public:
SeqRegExpNode(RegExpNode * on_success)705 explicit SeqRegExpNode(RegExpNode* on_success)
706 : on_success_(on_success) { }
on_success()707 RegExpNode* on_success() { return on_success_; }
set_on_success(RegExpNode * node)708 void set_on_success(RegExpNode* node) { on_success_ = node; }
709 private:
710 RegExpNode* on_success_;
711 };
712
713
714 class ActionNode: public SeqRegExpNode {
715 public:
716 enum Type {
717 SET_REGISTER,
718 INCREMENT_REGISTER,
719 STORE_POSITION,
720 BEGIN_SUBMATCH,
721 POSITIVE_SUBMATCH_SUCCESS,
722 EMPTY_MATCH_CHECK,
723 CLEAR_CAPTURES
724 };
725 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
726 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
727 static ActionNode* StorePosition(int reg,
728 bool is_capture,
729 RegExpNode* on_success);
730 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
731 static ActionNode* BeginSubmatch(int stack_pointer_reg,
732 int position_reg,
733 RegExpNode* on_success);
734 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
735 int restore_reg,
736 int clear_capture_count,
737 int clear_capture_from,
738 RegExpNode* on_success);
739 static ActionNode* EmptyMatchCheck(int start_register,
740 int repetition_register,
741 int repetition_limit,
742 RegExpNode* on_success);
743 virtual void Accept(NodeVisitor* visitor);
744 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
745 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int filled_in,bool not_at_start)746 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
747 RegExpCompiler* compiler,
748 int filled_in,
749 bool not_at_start) {
750 return on_success()->GetQuickCheckDetails(
751 details, compiler, filled_in, not_at_start);
752 }
type()753 Type type() { return type_; }
754 // TODO(erikcorry): We should allow some action nodes in greedy loops.
GreedyLoopTextLength()755 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
Clone()756 virtual ActionNode* Clone() { return new ActionNode(*this); }
757 virtual int ComputeFirstCharacterSet(int budget);
758 private:
759 union {
760 struct {
761 int reg;
762 int value;
763 } u_store_register;
764 struct {
765 int reg;
766 } u_increment_register;
767 struct {
768 int reg;
769 bool is_capture;
770 } u_position_register;
771 struct {
772 int stack_pointer_register;
773 int current_position_register;
774 int clear_register_count;
775 int clear_register_from;
776 } u_submatch;
777 struct {
778 int start_register;
779 int repetition_register;
780 int repetition_limit;
781 } u_empty_match_check;
782 struct {
783 int range_from;
784 int range_to;
785 } u_clear_captures;
786 } data_;
ActionNode(Type type,RegExpNode * on_success)787 ActionNode(Type type, RegExpNode* on_success)
788 : SeqRegExpNode(on_success),
789 type_(type) { }
790 Type type_;
791 friend class DotPrinter;
792 };
793
794
795 class TextNode: public SeqRegExpNode {
796 public:
TextNode(ZoneList<TextElement> * elms,RegExpNode * on_success)797 TextNode(ZoneList<TextElement>* elms,
798 RegExpNode* on_success)
799 : SeqRegExpNode(on_success),
800 elms_(elms) { }
TextNode(RegExpCharacterClass * that,RegExpNode * on_success)801 TextNode(RegExpCharacterClass* that,
802 RegExpNode* on_success)
803 : SeqRegExpNode(on_success),
804 elms_(new ZoneList<TextElement>(1)) {
805 elms_->Add(TextElement::CharClass(that));
806 }
807 virtual void Accept(NodeVisitor* visitor);
808 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
809 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
810 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
811 RegExpCompiler* compiler,
812 int characters_filled_in,
813 bool not_at_start);
elements()814 ZoneList<TextElement>* elements() { return elms_; }
815 void MakeCaseIndependent(bool is_ascii);
816 virtual int GreedyLoopTextLength();
Clone()817 virtual TextNode* Clone() {
818 TextNode* result = new TextNode(*this);
819 result->CalculateOffsets();
820 return result;
821 }
822 void CalculateOffsets();
823 virtual int ComputeFirstCharacterSet(int budget);
824 private:
825 enum TextEmitPassType {
826 NON_ASCII_MATCH, // Check for characters that can't match.
827 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
828 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
829 CASE_CHARACTER_MATCH, // Case-independent single character check.
830 CHARACTER_CLASS_MATCH // Character class.
831 };
832 static bool SkipPass(int pass, bool ignore_case);
833 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
834 static const int kLastPass = CHARACTER_CLASS_MATCH;
835 void TextEmitPass(RegExpCompiler* compiler,
836 TextEmitPassType pass,
837 bool preloaded,
838 Trace* trace,
839 bool first_element_checked,
840 int* checked_up_to);
841 int Length();
842 ZoneList<TextElement>* elms_;
843 };
844
845
846 class AssertionNode: public SeqRegExpNode {
847 public:
848 enum AssertionNodeType {
849 AT_END,
850 AT_START,
851 AT_BOUNDARY,
852 AT_NON_BOUNDARY,
853 AFTER_NEWLINE,
854 // Types not directly expressible in regexp syntax.
855 // Used for modifying a boundary node if its following character is
856 // known to be word and/or non-word.
857 AFTER_NONWORD_CHARACTER,
858 AFTER_WORD_CHARACTER
859 };
AtEnd(RegExpNode * on_success)860 static AssertionNode* AtEnd(RegExpNode* on_success) {
861 return new AssertionNode(AT_END, on_success);
862 }
AtStart(RegExpNode * on_success)863 static AssertionNode* AtStart(RegExpNode* on_success) {
864 return new AssertionNode(AT_START, on_success);
865 }
AtBoundary(RegExpNode * on_success)866 static AssertionNode* AtBoundary(RegExpNode* on_success) {
867 return new AssertionNode(AT_BOUNDARY, on_success);
868 }
AtNonBoundary(RegExpNode * on_success)869 static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
870 return new AssertionNode(AT_NON_BOUNDARY, on_success);
871 }
AfterNewline(RegExpNode * on_success)872 static AssertionNode* AfterNewline(RegExpNode* on_success) {
873 return new AssertionNode(AFTER_NEWLINE, on_success);
874 }
875 virtual void Accept(NodeVisitor* visitor);
876 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
877 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
878 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
879 RegExpCompiler* compiler,
880 int filled_in,
881 bool not_at_start);
882 virtual int ComputeFirstCharacterSet(int budget);
Clone()883 virtual AssertionNode* Clone() { return new AssertionNode(*this); }
type()884 AssertionNodeType type() { return type_; }
set_type(AssertionNodeType type)885 void set_type(AssertionNodeType type) { type_ = type; }
886 private:
AssertionNode(AssertionNodeType t,RegExpNode * on_success)887 AssertionNode(AssertionNodeType t, RegExpNode* on_success)
888 : SeqRegExpNode(on_success), type_(t) { }
889 AssertionNodeType type_;
890 };
891
892
893 class BackReferenceNode: public SeqRegExpNode {
894 public:
BackReferenceNode(int start_reg,int end_reg,RegExpNode * on_success)895 BackReferenceNode(int start_reg,
896 int end_reg,
897 RegExpNode* on_success)
898 : SeqRegExpNode(on_success),
899 start_reg_(start_reg),
900 end_reg_(end_reg) { }
901 virtual void Accept(NodeVisitor* visitor);
start_register()902 int start_register() { return start_reg_; }
end_register()903 int end_register() { return end_reg_; }
904 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
905 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)906 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
907 RegExpCompiler* compiler,
908 int characters_filled_in,
909 bool not_at_start) {
910 return;
911 }
Clone()912 virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); }
913 virtual int ComputeFirstCharacterSet(int budget);
914 private:
915 int start_reg_;
916 int end_reg_;
917 };
918
919
920 class EndNode: public RegExpNode {
921 public:
922 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
EndNode(Action action)923 explicit EndNode(Action action) : action_(action) { }
924 virtual void Accept(NodeVisitor* visitor);
925 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
EatsAtLeast(int still_to_find,int recursion_depth)926 virtual int EatsAtLeast(int still_to_find, int recursion_depth) { return 0; }
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)927 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
928 RegExpCompiler* compiler,
929 int characters_filled_in,
930 bool not_at_start) {
931 // Returning 0 from EatsAtLeast should ensure we never get here.
932 UNREACHABLE();
933 }
Clone()934 virtual EndNode* Clone() { return new EndNode(*this); }
935 private:
936 Action action_;
937 };
938
939
940 class NegativeSubmatchSuccess: public EndNode {
941 public:
NegativeSubmatchSuccess(int stack_pointer_reg,int position_reg,int clear_capture_count,int clear_capture_start)942 NegativeSubmatchSuccess(int stack_pointer_reg,
943 int position_reg,
944 int clear_capture_count,
945 int clear_capture_start)
946 : EndNode(NEGATIVE_SUBMATCH_SUCCESS),
947 stack_pointer_register_(stack_pointer_reg),
948 current_position_register_(position_reg),
949 clear_capture_count_(clear_capture_count),
950 clear_capture_start_(clear_capture_start) { }
951 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
952
953 private:
954 int stack_pointer_register_;
955 int current_position_register_;
956 int clear_capture_count_;
957 int clear_capture_start_;
958 };
959
960
961 class Guard: public ZoneObject {
962 public:
963 enum Relation { LT, GEQ };
Guard(int reg,Relation op,int value)964 Guard(int reg, Relation op, int value)
965 : reg_(reg),
966 op_(op),
967 value_(value) { }
reg()968 int reg() { return reg_; }
op()969 Relation op() { return op_; }
value()970 int value() { return value_; }
971
972 private:
973 int reg_;
974 Relation op_;
975 int value_;
976 };
977
978
979 class GuardedAlternative {
980 public:
GuardedAlternative(RegExpNode * node)981 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
982 void AddGuard(Guard* guard);
node()983 RegExpNode* node() { return node_; }
set_node(RegExpNode * node)984 void set_node(RegExpNode* node) { node_ = node; }
guards()985 ZoneList<Guard*>* guards() { return guards_; }
986
987 private:
988 RegExpNode* node_;
989 ZoneList<Guard*>* guards_;
990 };
991
992
993 class AlternativeGeneration;
994
995
996 class ChoiceNode: public RegExpNode {
997 public:
ChoiceNode(int expected_size)998 explicit ChoiceNode(int expected_size)
999 : alternatives_(new ZoneList<GuardedAlternative>(expected_size)),
1000 table_(NULL),
1001 not_at_start_(false),
1002 being_calculated_(false) { }
1003 virtual void Accept(NodeVisitor* visitor);
AddAlternative(GuardedAlternative node)1004 void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
alternatives()1005 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
1006 DispatchTable* GetTable(bool ignore_case);
1007 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1008 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
1009 int EatsAtLeastHelper(int still_to_find,
1010 int recursion_depth,
1011 RegExpNode* ignore_this_node);
1012 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1013 RegExpCompiler* compiler,
1014 int characters_filled_in,
1015 bool not_at_start);
Clone()1016 virtual ChoiceNode* Clone() { return new ChoiceNode(*this); }
1017
being_calculated()1018 bool being_calculated() { return being_calculated_; }
not_at_start()1019 bool not_at_start() { return not_at_start_; }
set_not_at_start()1020 void set_not_at_start() { not_at_start_ = true; }
set_being_calculated(bool b)1021 void set_being_calculated(bool b) { being_calculated_ = b; }
try_to_emit_quick_check_for_alternative(int i)1022 virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
1023
1024 protected:
1025 int GreedyLoopTextLength(GuardedAlternative* alternative);
1026 ZoneList<GuardedAlternative>* alternatives_;
1027
1028 private:
1029 friend class DispatchTableConstructor;
1030 friend class Analysis;
1031 void GenerateGuard(RegExpMacroAssembler* macro_assembler,
1032 Guard* guard,
1033 Trace* trace);
1034 int CalculatePreloadCharacters(RegExpCompiler* compiler);
1035 void EmitOutOfLineContinuation(RegExpCompiler* compiler,
1036 Trace* trace,
1037 GuardedAlternative alternative,
1038 AlternativeGeneration* alt_gen,
1039 int preload_characters,
1040 bool next_expects_preload);
1041 DispatchTable* table_;
1042 // If true, this node is never checked at the start of the input.
1043 // Allows a new trace to start with at_start() set to false.
1044 bool not_at_start_;
1045 bool being_calculated_;
1046 };
1047
1048
1049 class NegativeLookaheadChoiceNode: public ChoiceNode {
1050 public:
NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,GuardedAlternative then_do_this)1051 explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
1052 GuardedAlternative then_do_this)
1053 : ChoiceNode(2) {
1054 AddAlternative(this_must_fail);
1055 AddAlternative(then_do_this);
1056 }
1057 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
1058 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1059 RegExpCompiler* compiler,
1060 int characters_filled_in,
1061 bool not_at_start);
1062 // For a negative lookahead we don't emit the quick check for the
1063 // alternative that is expected to fail. This is because quick check code
1064 // starts by loading enough characters for the alternative that takes fewest
1065 // characters, but on a negative lookahead the negative branch did not take
1066 // part in that calculation (EatsAtLeast) so the assumptions don't hold.
try_to_emit_quick_check_for_alternative(int i)1067 virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
1068 virtual int ComputeFirstCharacterSet(int budget);
1069 };
1070
1071
1072 class LoopChoiceNode: public ChoiceNode {
1073 public:
LoopChoiceNode(bool body_can_be_zero_length)1074 explicit LoopChoiceNode(bool body_can_be_zero_length)
1075 : ChoiceNode(2),
1076 loop_node_(NULL),
1077 continue_node_(NULL),
1078 body_can_be_zero_length_(body_can_be_zero_length) { }
1079 void AddLoopAlternative(GuardedAlternative alt);
1080 void AddContinueAlternative(GuardedAlternative alt);
1081 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1082 virtual int EatsAtLeast(int still_to_find, int recursion_depth);
1083 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1084 RegExpCompiler* compiler,
1085 int characters_filled_in,
1086 bool not_at_start);
1087 virtual int ComputeFirstCharacterSet(int budget);
Clone()1088 virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); }
loop_node()1089 RegExpNode* loop_node() { return loop_node_; }
continue_node()1090 RegExpNode* continue_node() { return continue_node_; }
body_can_be_zero_length()1091 bool body_can_be_zero_length() { return body_can_be_zero_length_; }
1092 virtual void Accept(NodeVisitor* visitor);
1093
1094 private:
1095 // AddAlternative is made private for loop nodes because alternatives
1096 // should not be added freely, we need to keep track of which node
1097 // goes back to the node itself.
AddAlternative(GuardedAlternative node)1098 void AddAlternative(GuardedAlternative node) {
1099 ChoiceNode::AddAlternative(node);
1100 }
1101
1102 RegExpNode* loop_node_;
1103 RegExpNode* continue_node_;
1104 bool body_can_be_zero_length_;
1105 };
1106
1107
1108 // There are many ways to generate code for a node. This class encapsulates
1109 // the current way we should be generating. In other words it encapsulates
1110 // the current state of the code generator. The effect of this is that we
1111 // generate code for paths that the matcher can take through the regular
1112 // expression. A given node in the regexp can be code-generated several times
1113 // as it can be part of several traces. For example for the regexp:
1114 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1115 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
1116 // to match foo is generated only once (the traces have a common prefix). The
1117 // code to store the capture is deferred and generated (twice) after the places
1118 // where baz has been matched.
1119 class Trace {
1120 public:
1121 // A value for a property that is either known to be true, know to be false,
1122 // or not known.
1123 enum TriBool {
1124 UNKNOWN = -1, FALSE = 0, TRUE = 1
1125 };
1126
1127 class DeferredAction {
1128 public:
DeferredAction(ActionNode::Type type,int reg)1129 DeferredAction(ActionNode::Type type, int reg)
1130 : type_(type), reg_(reg), next_(NULL) { }
next()1131 DeferredAction* next() { return next_; }
1132 bool Mentions(int reg);
reg()1133 int reg() { return reg_; }
type()1134 ActionNode::Type type() { return type_; }
1135 private:
1136 ActionNode::Type type_;
1137 int reg_;
1138 DeferredAction* next_;
1139 friend class Trace;
1140 };
1141
1142 class DeferredCapture : public DeferredAction {
1143 public:
DeferredCapture(int reg,bool is_capture,Trace * trace)1144 DeferredCapture(int reg, bool is_capture, Trace* trace)
1145 : DeferredAction(ActionNode::STORE_POSITION, reg),
1146 cp_offset_(trace->cp_offset()),
1147 is_capture_(is_capture) { }
cp_offset()1148 int cp_offset() { return cp_offset_; }
is_capture()1149 bool is_capture() { return is_capture_; }
1150 private:
1151 int cp_offset_;
1152 bool is_capture_;
set_cp_offset(int cp_offset)1153 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1154 };
1155
1156 class DeferredSetRegister : public DeferredAction {
1157 public:
DeferredSetRegister(int reg,int value)1158 DeferredSetRegister(int reg, int value)
1159 : DeferredAction(ActionNode::SET_REGISTER, reg),
1160 value_(value) { }
value()1161 int value() { return value_; }
1162 private:
1163 int value_;
1164 };
1165
1166 class DeferredClearCaptures : public DeferredAction {
1167 public:
DeferredClearCaptures(Interval range)1168 explicit DeferredClearCaptures(Interval range)
1169 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1170 range_(range) { }
range()1171 Interval range() { return range_; }
1172 private:
1173 Interval range_;
1174 };
1175
1176 class DeferredIncrementRegister : public DeferredAction {
1177 public:
DeferredIncrementRegister(int reg)1178 explicit DeferredIncrementRegister(int reg)
1179 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1180 };
1181
Trace()1182 Trace()
1183 : cp_offset_(0),
1184 actions_(NULL),
1185 backtrack_(NULL),
1186 stop_node_(NULL),
1187 loop_label_(NULL),
1188 characters_preloaded_(0),
1189 bound_checked_up_to_(0),
1190 flush_budget_(100),
1191 at_start_(UNKNOWN) { }
1192
1193 // End the trace. This involves flushing the deferred actions in the trace
1194 // and pushing a backtrack location onto the backtrack stack. Once this is
1195 // done we can start a new trace or go to one that has already been
1196 // generated.
1197 void Flush(RegExpCompiler* compiler, RegExpNode* successor);
cp_offset()1198 int cp_offset() { return cp_offset_; }
actions()1199 DeferredAction* actions() { return actions_; }
1200 // A trivial trace is one that has no deferred actions or other state that
1201 // affects the assumptions used when generating code. There is no recorded
1202 // backtrack location in a trivial trace, so with a trivial trace we will
1203 // generate code that, on a failure to match, gets the backtrack location
1204 // from the backtrack stack rather than using a direct jump instruction. We
1205 // always start code generation with a trivial trace and non-trivial traces
1206 // are created as we emit code for nodes or add to the list of deferred
1207 // actions in the trace. The location of the code generated for a node using
1208 // a trivial trace is recorded in a label in the node so that gotos can be
1209 // generated to that code.
is_trivial()1210 bool is_trivial() {
1211 return backtrack_ == NULL &&
1212 actions_ == NULL &&
1213 cp_offset_ == 0 &&
1214 characters_preloaded_ == 0 &&
1215 bound_checked_up_to_ == 0 &&
1216 quick_check_performed_.characters() == 0 &&
1217 at_start_ == UNKNOWN;
1218 }
at_start()1219 TriBool at_start() { return at_start_; }
set_at_start(bool at_start)1220 void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; }
backtrack()1221 Label* backtrack() { return backtrack_; }
loop_label()1222 Label* loop_label() { return loop_label_; }
stop_node()1223 RegExpNode* stop_node() { return stop_node_; }
characters_preloaded()1224 int characters_preloaded() { return characters_preloaded_; }
bound_checked_up_to()1225 int bound_checked_up_to() { return bound_checked_up_to_; }
flush_budget()1226 int flush_budget() { return flush_budget_; }
quick_check_performed()1227 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1228 bool mentions_reg(int reg);
1229 // Returns true if a deferred position store exists to the specified
1230 // register and stores the offset in the out-parameter. Otherwise
1231 // returns false.
1232 bool GetStoredPosition(int reg, int* cp_offset);
1233 // These set methods and AdvanceCurrentPositionInTrace should be used only on
1234 // new traces - the intention is that traces are immutable after creation.
add_action(DeferredAction * new_action)1235 void add_action(DeferredAction* new_action) {
1236 ASSERT(new_action->next_ == NULL);
1237 new_action->next_ = actions_;
1238 actions_ = new_action;
1239 }
set_backtrack(Label * backtrack)1240 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
set_stop_node(RegExpNode * node)1241 void set_stop_node(RegExpNode* node) { stop_node_ = node; }
set_loop_label(Label * label)1242 void set_loop_label(Label* label) { loop_label_ = label; }
set_characters_preloaded(int count)1243 void set_characters_preloaded(int count) { characters_preloaded_ = count; }
set_bound_checked_up_to(int to)1244 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
set_flush_budget(int to)1245 void set_flush_budget(int to) { flush_budget_ = to; }
set_quick_check_performed(QuickCheckDetails * d)1246 void set_quick_check_performed(QuickCheckDetails* d) {
1247 quick_check_performed_ = *d;
1248 }
1249 void InvalidateCurrentCharacter();
1250 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1251 private:
1252 int FindAffectedRegisters(OutSet* affected_registers);
1253 void PerformDeferredActions(RegExpMacroAssembler* macro,
1254 int max_register,
1255 OutSet& affected_registers,
1256 OutSet* registers_to_pop,
1257 OutSet* registers_to_clear);
1258 void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1259 int max_register,
1260 OutSet& registers_to_pop,
1261 OutSet& registers_to_clear);
1262 int cp_offset_;
1263 DeferredAction* actions_;
1264 Label* backtrack_;
1265 RegExpNode* stop_node_;
1266 Label* loop_label_;
1267 int characters_preloaded_;
1268 int bound_checked_up_to_;
1269 QuickCheckDetails quick_check_performed_;
1270 int flush_budget_;
1271 TriBool at_start_;
1272 };
1273
1274
1275 class NodeVisitor {
1276 public:
~NodeVisitor()1277 virtual ~NodeVisitor() { }
1278 #define DECLARE_VISIT(Type) \
1279 virtual void Visit##Type(Type##Node* that) = 0;
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1280 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1281 #undef DECLARE_VISIT
1282 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1283 };
1284
1285
1286 // Node visitor used to add the start set of the alternatives to the
1287 // dispatch table of a choice node.
1288 class DispatchTableConstructor: public NodeVisitor {
1289 public:
DispatchTableConstructor(DispatchTable * table,bool ignore_case)1290 DispatchTableConstructor(DispatchTable* table, bool ignore_case)
1291 : table_(table),
1292 choice_index_(-1),
1293 ignore_case_(ignore_case) { }
1294
1295 void BuildTable(ChoiceNode* node);
1296
AddRange(CharacterRange range)1297 void AddRange(CharacterRange range) {
1298 table()->AddRange(range, choice_index_);
1299 }
1300
1301 void AddInverse(ZoneList<CharacterRange>* ranges);
1302
1303 #define DECLARE_VISIT(Type) \
1304 virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1305 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1306 #undef DECLARE_VISIT
1307
1308 DispatchTable* table() { return table_; }
set_choice_index(int value)1309 void set_choice_index(int value) { choice_index_ = value; }
1310
1311 protected:
1312 DispatchTable* table_;
1313 int choice_index_;
1314 bool ignore_case_;
1315 };
1316
1317
1318 // Assertion propagation moves information about assertions such as
1319 // \b to the affected nodes. For instance, in /.\b./ information must
1320 // be propagated to the first '.' that whatever follows needs to know
1321 // if it matched a word or a non-word, and to the second '.' that it
1322 // has to check if it succeeds a word or non-word. In this case the
1323 // result will be something like:
1324 //
1325 // +-------+ +------------+
1326 // | . | | . |
1327 // +-------+ ---> +------------+
1328 // | word? | | check word |
1329 // +-------+ +------------+
1330 class Analysis: public NodeVisitor {
1331 public:
Analysis(bool ignore_case,bool is_ascii)1332 Analysis(bool ignore_case, bool is_ascii)
1333 : ignore_case_(ignore_case),
1334 is_ascii_(is_ascii),
1335 error_message_(NULL) { }
1336 void EnsureAnalyzed(RegExpNode* node);
1337
1338 #define DECLARE_VISIT(Type) \
1339 virtual void Visit##Type(Type##Node* that);
1340 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1341 #undef DECLARE_VISIT
1342 virtual void VisitLoopChoice(LoopChoiceNode* that);
1343
has_failed()1344 bool has_failed() { return error_message_ != NULL; }
error_message()1345 const char* error_message() {
1346 ASSERT(error_message_ != NULL);
1347 return error_message_;
1348 }
fail(const char * error_message)1349 void fail(const char* error_message) {
1350 error_message_ = error_message;
1351 }
1352 private:
1353 bool ignore_case_;
1354 bool is_ascii_;
1355 const char* error_message_;
1356
1357 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1358 };
1359
1360
1361 struct RegExpCompileData {
RegExpCompileDataRegExpCompileData1362 RegExpCompileData()
1363 : tree(NULL),
1364 node(NULL),
1365 simple(true),
1366 contains_anchor(false),
1367 capture_count(0) { }
1368 RegExpTree* tree;
1369 RegExpNode* node;
1370 bool simple;
1371 bool contains_anchor;
1372 Handle<String> error;
1373 int capture_count;
1374 };
1375
1376
1377 class RegExpEngine: public AllStatic {
1378 public:
1379 struct CompilationResult {
CompilationResultCompilationResult1380 explicit CompilationResult(const char* error_message)
1381 : error_message(error_message),
1382 code(Heap::the_hole_value()),
1383 num_registers(0) {}
CompilationResultCompilationResult1384 CompilationResult(Object* code, int registers)
1385 : error_message(NULL),
1386 code(code),
1387 num_registers(registers) {}
1388 const char* error_message;
1389 Object* code;
1390 int num_registers;
1391 };
1392
1393 static CompilationResult Compile(RegExpCompileData* input,
1394 bool ignore_case,
1395 bool multiline,
1396 Handle<String> pattern,
1397 bool is_ascii);
1398
1399 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1400 };
1401
1402
1403 class OffsetsVector {
1404 public:
OffsetsVector(int num_registers)1405 inline OffsetsVector(int num_registers)
1406 : offsets_vector_length_(num_registers) {
1407 if (offsets_vector_length_ > kStaticOffsetsVectorSize) {
1408 vector_ = NewArray<int>(offsets_vector_length_);
1409 } else {
1410 vector_ = static_offsets_vector_;
1411 }
1412 }
~OffsetsVector()1413 inline ~OffsetsVector() {
1414 if (offsets_vector_length_ > kStaticOffsetsVectorSize) {
1415 DeleteArray(vector_);
1416 vector_ = NULL;
1417 }
1418 }
vector()1419 inline int* vector() { return vector_; }
length()1420 inline int length() { return offsets_vector_length_; }
1421
1422 static const int kStaticOffsetsVectorSize = 50;
1423
1424 private:
static_offsets_vector_address()1425 static Address static_offsets_vector_address() {
1426 return reinterpret_cast<Address>(&static_offsets_vector_);
1427 }
1428
1429 int* vector_;
1430 int offsets_vector_length_;
1431 static int static_offsets_vector_[kStaticOffsetsVectorSize];
1432
1433 friend class ExternalReference;
1434 };
1435
1436
1437 } } // namespace v8::internal
1438
1439 #endif // V8_JSREGEXP_H_
1440