• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_JSREGEXP_H_
29 #define V8_JSREGEXP_H_
30 
31 #include "macro-assembler.h"
32 
33 namespace v8 {
34 namespace internal {
35 
36 
37 class RegExpMacroAssembler;
38 
39 
40 class RegExpImpl {
41  public:
42   // Whether V8 is compiled with native regexp support or not.
UsesNativeRegExp()43   static bool UsesNativeRegExp() {
44 #ifdef V8_NATIVE_REGEXP
45     return true;
46 #else
47     return false;
48 #endif
49   }
50 
51   // Creates a regular expression literal in the old space.
52   // This function calls the garbage collector if necessary.
53   static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
54                                             Handle<String> pattern,
55                                             Handle<String> flags,
56                                             bool* has_pending_exception);
57 
58   // Returns a string representation of a regular expression.
59   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
60   // This function calls the garbage collector if necessary.
61   static Handle<String> ToString(Handle<Object> value);
62 
63   // Parses the RegExp pattern and prepares the JSRegExp object with
64   // generic data and choice of implementation - as well as what
65   // the implementation wants to store in the data field.
66   // Returns false if compilation fails.
67   static Handle<Object> Compile(Handle<JSRegExp> re,
68                                 Handle<String> pattern,
69                                 Handle<String> flags);
70 
71   // See ECMA-262 section 15.10.6.2.
72   // This function calls the garbage collector if necessary.
73   static Handle<Object> Exec(Handle<JSRegExp> regexp,
74                              Handle<String> subject,
75                              int index,
76                              Handle<JSArray> lastMatchInfo);
77 
78   // Prepares a JSRegExp object with Irregexp-specific data.
79   static void IrregexpPrepare(Handle<JSRegExp> re,
80                               Handle<String> pattern,
81                               JSRegExp::Flags flags,
82                               int capture_register_count);
83 
84 
85   static void AtomCompile(Handle<JSRegExp> re,
86                           Handle<String> pattern,
87                           JSRegExp::Flags flags,
88                           Handle<String> match_pattern);
89 
90   static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
91                                  Handle<String> subject,
92                                  int index,
93                                  Handle<JSArray> lastMatchInfo);
94 
95   // Execute an Irregexp bytecode pattern.
96   // On a successful match, the result is a JSArray containing
97   // captured positions. On a failure, the result is the null value.
98   // Returns an empty handle in case of an exception.
99   static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
100                                      Handle<String> subject,
101                                      int index,
102                                      Handle<JSArray> lastMatchInfo);
103 
104   // Array index in the lastMatchInfo array.
105   static const int kLastCaptureCount = 0;
106   static const int kLastSubject = 1;
107   static const int kLastInput = 2;
108   static const int kFirstCapture = 3;
109   static const int kLastMatchOverhead = 3;
110 
111   // Direct offset into the lastMatchInfo array.
112   static const int kLastCaptureCountOffset =
113       FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
114   static const int kLastSubjectOffset =
115       FixedArray::kHeaderSize + kLastSubject * kPointerSize;
116   static const int kLastInputOffset =
117       FixedArray::kHeaderSize + kLastInput * kPointerSize;
118   static const int kFirstCaptureOffset =
119       FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
120 
121   // Used to access the lastMatchInfo array.
GetCapture(FixedArray * array,int index)122   static int GetCapture(FixedArray* array, int index) {
123     return Smi::cast(array->get(index + kFirstCapture))->value();
124   }
125 
SetLastCaptureCount(FixedArray * array,int to)126   static void SetLastCaptureCount(FixedArray* array, int to) {
127     array->set(kLastCaptureCount, Smi::FromInt(to));
128   }
129 
SetLastSubject(FixedArray * array,String * to)130   static void SetLastSubject(FixedArray* array, String* to) {
131     array->set(kLastSubject, to);
132   }
133 
SetLastInput(FixedArray * array,String * to)134   static void SetLastInput(FixedArray* array, String* to) {
135     array->set(kLastInput, to);
136   }
137 
SetCapture(FixedArray * array,int index,int to)138   static void SetCapture(FixedArray* array, int index, int to) {
139     array->set(index + kFirstCapture, Smi::FromInt(to));
140   }
141 
GetLastCaptureCount(FixedArray * array)142   static int GetLastCaptureCount(FixedArray* array) {
143     return Smi::cast(array->get(kLastCaptureCount))->value();
144   }
145 
146   // For acting on the JSRegExp data FixedArray.
147   static int IrregexpMaxRegisterCount(FixedArray* re);
148   static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
149   static int IrregexpNumberOfCaptures(FixedArray* re);
150   static int IrregexpNumberOfRegisters(FixedArray* re);
151   static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
152   static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
153 
154  private:
155   static String* last_ascii_string_;
156   static String* two_byte_cached_string_;
157 
158   static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii);
159   static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii);
160 
161 
162   // Set the subject cache.  The previous string buffer is not deleted, so the
163   // caller should ensure that it doesn't leak.
164   static void SetSubjectCache(String* subject,
165                               char* utf8_subject,
166                               int uft8_length,
167                               int character_position,
168                               int utf8_position);
169 
170   // A one element cache of the last utf8_subject string and its length.  The
171   // subject JS String object is cached in the heap.  We also cache a
172   // translation between position and utf8 position.
173   static char* utf8_subject_cache_;
174   static int utf8_length_cache_;
175   static int utf8_position_;
176   static int character_position_;
177 };
178 
179 
180 // Represents the location of one element relative to the intersection of
181 // two sets. Corresponds to the four areas of a Venn diagram.
182 enum ElementInSetsRelation {
183   kInsideNone = 0,
184   kInsideFirst = 1,
185   kInsideSecond = 2,
186   kInsideBoth = 3
187 };
188 
189 
190 // Represents the relation of two sets.
191 // Sets can be either disjoint, partially or fully overlapping, or equal.
192 class SetRelation BASE_EMBEDDED {
193  public:
194   // Relation is represented by a bit saying whether there are elements in
195   // one set that is not in the other, and a bit saying that there are elements
196   // that are in both sets.
197 
198   // Location of an element. Corresponds to the internal areas of
199   // a Venn diagram.
200   enum {
201     kInFirst = 1 << kInsideFirst,
202     kInSecond = 1 << kInsideSecond,
203     kInBoth = 1 << kInsideBoth
204   };
SetRelation()205   SetRelation() : bits_(0) {}
~SetRelation()206   ~SetRelation() {}
207   // Add the existence of objects in a particular
SetElementsInFirstSet()208   void SetElementsInFirstSet() { bits_ |= kInFirst; }
SetElementsInSecondSet()209   void SetElementsInSecondSet() { bits_ |= kInSecond; }
SetElementsInBothSets()210   void SetElementsInBothSets() { bits_ |= kInBoth; }
211   // Check the currently known relation of the sets (common functions only,
212   // for other combinations, use value() to get the bits and check them
213   // manually).
214   // Sets are completely disjoint.
Disjoint()215   bool Disjoint() { return (bits_ & kInBoth) == 0; }
216   // Sets are equal.
Equals()217   bool Equals() { return (bits_ & (kInFirst | kInSecond)) == 0; }
218   // First set contains second.
Contains()219   bool Contains() { return (bits_ & kInSecond) == 0; }
220   // Second set contains first.
ContainedIn()221   bool ContainedIn() { return (bits_ & kInFirst) == 0; }
NonTrivialIntersection()222   bool NonTrivialIntersection() {
223     return (bits_ == (kInFirst | kInSecond | kInBoth));
224   }
value()225   int value() { return bits_; }
226  private:
227   int bits_;
228 };
229 
230 
231 class CharacterRange {
232  public:
CharacterRange()233   CharacterRange() : from_(0), to_(0) { }
234   // For compatibility with the CHECK_OK macro
CharacterRange(void * null)235   CharacterRange(void* null) { ASSERT_EQ(NULL, null); }  //NOLINT
CharacterRange(uc16 from,uc16 to)236   CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
237   static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges);
238   static Vector<const uc16> GetWordBounds();
Singleton(uc16 value)239   static inline CharacterRange Singleton(uc16 value) {
240     return CharacterRange(value, value);
241   }
Range(uc16 from,uc16 to)242   static inline CharacterRange Range(uc16 from, uc16 to) {
243     ASSERT(from <= to);
244     return CharacterRange(from, to);
245   }
Everything()246   static inline CharacterRange Everything() {
247     return CharacterRange(0, 0xFFFF);
248   }
Contains(uc16 i)249   bool Contains(uc16 i) { return from_ <= i && i <= to_; }
from()250   uc16 from() const { return from_; }
set_from(uc16 value)251   void set_from(uc16 value) { from_ = value; }
to()252   uc16 to() const { return to_; }
set_to(uc16 value)253   void set_to(uc16 value) { to_ = value; }
is_valid()254   bool is_valid() { return from_ <= to_; }
IsEverything(uc16 max)255   bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
IsSingleton()256   bool IsSingleton() { return (from_ == to_); }
257   void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii);
258   static void Split(ZoneList<CharacterRange>* base,
259                     Vector<const uc16> overlay,
260                     ZoneList<CharacterRange>** included,
261                     ZoneList<CharacterRange>** excluded);
262   // Whether a range list is in canonical form: Ranges ordered by from value,
263   // and ranges non-overlapping and non-adjacent.
264   static bool IsCanonical(ZoneList<CharacterRange>* ranges);
265   // Convert range list to canonical form. The characters covered by the ranges
266   // will still be the same, but no character is in more than one range, and
267   // adjacent ranges are merged. The resulting list may be shorter than the
268   // original, but cannot be longer.
269   static void Canonicalize(ZoneList<CharacterRange>* ranges);
270   // Check how the set of characters defined by a CharacterRange list relates
271   // to the set of word characters. List must be in canonical form.
272   static SetRelation WordCharacterRelation(ZoneList<CharacterRange>* ranges);
273   // Takes two character range lists (representing character sets) in canonical
274   // form and merges them.
275   // The characters that are only covered by the first set are added to
276   // first_set_only_out. the characters that are only in the second set are
277   // added to second_set_only_out, and the characters that are in both are
278   // added to both_sets_out.
279   // The pointers to first_set_only_out, second_set_only_out and both_sets_out
280   // should be to empty lists, but they need not be distinct, and may be NULL.
281   // If NULL, the characters are dropped, and if two arguments are the same
282   // pointer, the result is the union of the two sets that would be created
283   // if the pointers had been distinct.
284   // This way, the Merge function can compute all the usual set operations:
285   // union (all three out-sets are equal), intersection (only both_sets_out is
286   // non-NULL), and set difference (only first_set is non-NULL).
287   static void Merge(ZoneList<CharacterRange>* first_set,
288                     ZoneList<CharacterRange>* second_set,
289                     ZoneList<CharacterRange>* first_set_only_out,
290                     ZoneList<CharacterRange>* second_set_only_out,
291                     ZoneList<CharacterRange>* both_sets_out);
292   // Negate the contents of a character range in canonical form.
293   static void Negate(ZoneList<CharacterRange>* src,
294                      ZoneList<CharacterRange>* dst);
295   static const int kRangeCanonicalizeMax = 0x346;
296   static const int kStartMarker = (1 << 24);
297   static const int kPayloadMask = (1 << 24) - 1;
298 
299  private:
300   uc16 from_;
301   uc16 to_;
302 };
303 
304 
305 // A set of unsigned integers that behaves especially well on small
306 // integers (< 32).  May do zone-allocation.
307 class OutSet: public ZoneObject {
308  public:
OutSet()309   OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
310   OutSet* Extend(unsigned value);
311   bool Get(unsigned value);
312   static const unsigned kFirstLimit = 32;
313 
314  private:
315   // Destructively set a value in this set.  In most cases you want
316   // to use Extend instead to ensure that only one instance exists
317   // that contains the same values.
318   void Set(unsigned value);
319 
320   // The successors are a list of sets that contain the same values
321   // as this set and the one more value that is not present in this
322   // set.
successors()323   ZoneList<OutSet*>* successors() { return successors_; }
324 
OutSet(uint32_t first,ZoneList<unsigned> * remaining)325   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
326       : first_(first), remaining_(remaining), successors_(NULL) { }
327   uint32_t first_;
328   ZoneList<unsigned>* remaining_;
329   ZoneList<OutSet*>* successors_;
330   friend class Trace;
331 };
332 
333 
334 // A mapping from integers, specified as ranges, to a set of integers.
335 // Used for mapping character ranges to choices.
336 class DispatchTable : public ZoneObject {
337  public:
338   class Entry {
339    public:
Entry()340     Entry() : from_(0), to_(0), out_set_(NULL) { }
Entry(uc16 from,uc16 to,OutSet * out_set)341     Entry(uc16 from, uc16 to, OutSet* out_set)
342         : from_(from), to_(to), out_set_(out_set) { }
from()343     uc16 from() { return from_; }
to()344     uc16 to() { return to_; }
set_to(uc16 value)345     void set_to(uc16 value) { to_ = value; }
AddValue(int value)346     void AddValue(int value) { out_set_ = out_set_->Extend(value); }
out_set()347     OutSet* out_set() { return out_set_; }
348    private:
349     uc16 from_;
350     uc16 to_;
351     OutSet* out_set_;
352   };
353 
354   class Config {
355    public:
356     typedef uc16 Key;
357     typedef Entry Value;
358     static const uc16 kNoKey;
359     static const Entry kNoValue;
Compare(uc16 a,uc16 b)360     static inline int Compare(uc16 a, uc16 b) {
361       if (a == b)
362         return 0;
363       else if (a < b)
364         return -1;
365       else
366         return 1;
367     }
368   };
369 
370   void AddRange(CharacterRange range, int value);
371   OutSet* Get(uc16 value);
372   void Dump();
373 
374   template <typename Callback>
ForEach(Callback * callback)375   void ForEach(Callback* callback) { return tree()->ForEach(callback); }
376  private:
377   // There can't be a static empty set since it allocates its
378   // successors in a zone and caches them.
empty()379   OutSet* empty() { return &empty_; }
380   OutSet empty_;
tree()381   ZoneSplayTree<Config>* tree() { return &tree_; }
382   ZoneSplayTree<Config> tree_;
383 };
384 
385 
386 #define FOR_EACH_NODE_TYPE(VISIT)                                    \
387   VISIT(End)                                                         \
388   VISIT(Action)                                                      \
389   VISIT(Choice)                                                      \
390   VISIT(BackReference)                                               \
391   VISIT(Assertion)                                                   \
392   VISIT(Text)
393 
394 
395 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT)                            \
396   VISIT(Disjunction)                                                 \
397   VISIT(Alternative)                                                 \
398   VISIT(Assertion)                                                   \
399   VISIT(CharacterClass)                                              \
400   VISIT(Atom)                                                        \
401   VISIT(Quantifier)                                                  \
402   VISIT(Capture)                                                     \
403   VISIT(Lookahead)                                                   \
404   VISIT(BackReference)                                               \
405   VISIT(Empty)                                                       \
406   VISIT(Text)
407 
408 
409 #define FORWARD_DECLARE(Name) class RegExp##Name;
FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)410 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
411 #undef FORWARD_DECLARE
412 
413 
414 class TextElement {
415  public:
416   enum Type {UNINITIALIZED, ATOM, CHAR_CLASS};
417   TextElement() : type(UNINITIALIZED) { }
418   explicit TextElement(Type t) : type(t), cp_offset(-1) { }
419   static TextElement Atom(RegExpAtom* atom);
420   static TextElement CharClass(RegExpCharacterClass* char_class);
421   int length();
422   Type type;
423   union {
424     RegExpAtom* u_atom;
425     RegExpCharacterClass* u_char_class;
426   } data;
427   int cp_offset;
428 };
429 
430 
431 class Trace;
432 
433 
434 struct NodeInfo {
NodeInfoNodeInfo435   NodeInfo()
436       : being_analyzed(false),
437         been_analyzed(false),
438         follows_word_interest(false),
439         follows_newline_interest(false),
440         follows_start_interest(false),
441         at_end(false),
442         visited(false) { }
443 
444   // Returns true if the interests and assumptions of this node
445   // matches the given one.
MatchesNodeInfo446   bool Matches(NodeInfo* that) {
447     return (at_end == that->at_end) &&
448            (follows_word_interest == that->follows_word_interest) &&
449            (follows_newline_interest == that->follows_newline_interest) &&
450            (follows_start_interest == that->follows_start_interest);
451   }
452 
453   // Updates the interests of this node given the interests of the
454   // node preceding it.
AddFromPrecedingNodeInfo455   void AddFromPreceding(NodeInfo* that) {
456     at_end |= that->at_end;
457     follows_word_interest |= that->follows_word_interest;
458     follows_newline_interest |= that->follows_newline_interest;
459     follows_start_interest |= that->follows_start_interest;
460   }
461 
HasLookbehindNodeInfo462   bool HasLookbehind() {
463     return follows_word_interest ||
464            follows_newline_interest ||
465            follows_start_interest;
466   }
467 
468   // Sets the interests of this node to include the interests of the
469   // following node.
AddFromFollowingNodeInfo470   void AddFromFollowing(NodeInfo* that) {
471     follows_word_interest |= that->follows_word_interest;
472     follows_newline_interest |= that->follows_newline_interest;
473     follows_start_interest |= that->follows_start_interest;
474   }
475 
ResetCompilationStateNodeInfo476   void ResetCompilationState() {
477     being_analyzed = false;
478     been_analyzed = false;
479   }
480 
481   bool being_analyzed: 1;
482   bool been_analyzed: 1;
483 
484   // These bits are set of this node has to know what the preceding
485   // character was.
486   bool follows_word_interest: 1;
487   bool follows_newline_interest: 1;
488   bool follows_start_interest: 1;
489 
490   bool at_end: 1;
491   bool visited: 1;
492 };
493 
494 
495 class SiblingList {
496  public:
SiblingList()497   SiblingList() : list_(NULL) { }
length()498   int length() {
499     return list_ == NULL ? 0 : list_->length();
500   }
Ensure(RegExpNode * parent)501   void Ensure(RegExpNode* parent) {
502     if (list_ == NULL) {
503       list_ = new ZoneList<RegExpNode*>(2);
504       list_->Add(parent);
505     }
506   }
Add(RegExpNode * node)507   void Add(RegExpNode* node) { list_->Add(node); }
Get(int index)508   RegExpNode* Get(int index) { return list_->at(index); }
509  private:
510   ZoneList<RegExpNode*>* list_;
511 };
512 
513 
514 // Details of a quick mask-compare check that can look ahead in the
515 // input stream.
516 class QuickCheckDetails {
517  public:
QuickCheckDetails()518   QuickCheckDetails()
519       : characters_(0),
520         mask_(0),
521         value_(0),
522         cannot_match_(false) { }
QuickCheckDetails(int characters)523   explicit QuickCheckDetails(int characters)
524       : characters_(characters),
525         mask_(0),
526         value_(0),
527         cannot_match_(false) { }
528   bool Rationalize(bool ascii);
529   // Merge in the information from another branch of an alternation.
530   void Merge(QuickCheckDetails* other, int from_index);
531   // Advance the current position by some amount.
532   void Advance(int by, bool ascii);
533   void Clear();
cannot_match()534   bool cannot_match() { return cannot_match_; }
set_cannot_match()535   void set_cannot_match() { cannot_match_ = true; }
536   struct Position {
PositionPosition537     Position() : mask(0), value(0), determines_perfectly(false) { }
538     uc16 mask;
539     uc16 value;
540     bool determines_perfectly;
541   };
characters()542   int characters() { return characters_; }
set_characters(int characters)543   void set_characters(int characters) { characters_ = characters; }
positions(int index)544   Position* positions(int index) {
545     ASSERT(index >= 0);
546     ASSERT(index < characters_);
547     return positions_ + index;
548   }
mask()549   uint32_t mask() { return mask_; }
value()550   uint32_t value() { return value_; }
551 
552  private:
553   // How many characters do we have quick check information from.  This is
554   // the same for all branches of a choice node.
555   int characters_;
556   Position positions_[4];
557   // These values are the condensate of the above array after Rationalize().
558   uint32_t mask_;
559   uint32_t value_;
560   // If set to true, there is no way this quick check can match at all.
561   // E.g., if it requires to be at the start of the input, and isn't.
562   bool cannot_match_;
563 };
564 
565 
566 class RegExpNode: public ZoneObject {
567  public:
RegExpNode()568   RegExpNode() : first_character_set_(NULL), trace_count_(0) { }
569   virtual ~RegExpNode();
570   virtual void Accept(NodeVisitor* visitor) = 0;
571   // Generates a goto to this node or actually generates the code at this point.
572   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
573   // How many characters must this node consume at a minimum in order to
574   // succeed.  If we have found at least 'still_to_find' characters that
575   // must be consumed there is no need to ask any following nodes whether
576   // they are sure to eat any more characters.
577   virtual int EatsAtLeast(int still_to_find, int recursion_depth) = 0;
578   // Emits some quick code that checks whether the preloaded characters match.
579   // Falls through on certain failure, jumps to the label on possible success.
580   // If the node cannot make a quick check it does nothing and returns false.
581   bool EmitQuickCheck(RegExpCompiler* compiler,
582                       Trace* trace,
583                       bool preload_has_checked_bounds,
584                       Label* on_possible_success,
585                       QuickCheckDetails* details_return,
586                       bool fall_through_on_failure);
587   // For a given number of characters this returns a mask and a value.  The
588   // next n characters are anded with the mask and compared with the value.
589   // A comparison failure indicates the node cannot match the next n characters.
590   // A comparison success indicates the node may match.
591   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
592                                     RegExpCompiler* compiler,
593                                     int characters_filled_in,
594                                     bool not_at_start) = 0;
595   static const int kNodeIsTooComplexForGreedyLoops = -1;
GreedyLoopTextLength()596   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
label()597   Label* label() { return &label_; }
598   // If non-generic code is generated for a node (ie the node is not at the
599   // start of the trace) then it cannot be reused.  This variable sets a limit
600   // on how often we allow that to happen before we insist on starting a new
601   // trace and generating generic code for a node that can be reused by flushing
602   // the deferred actions in the current trace and generating a goto.
603   static const int kMaxCopiesCodeGenerated = 10;
604 
info()605   NodeInfo* info() { return &info_; }
606 
AddSibling(RegExpNode * node)607   void AddSibling(RegExpNode* node) { siblings_.Add(node); }
608 
609   // Static version of EnsureSibling that expresses the fact that the
610   // result has the same type as the input.
611   template <class C>
EnsureSibling(C * node,NodeInfo * info,bool * cloned)612   static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) {
613     return static_cast<C*>(node->EnsureSibling(info, cloned));
614   }
615 
siblings()616   SiblingList* siblings() { return &siblings_; }
set_siblings(SiblingList * other)617   void set_siblings(SiblingList* other) { siblings_ = *other; }
618 
619   // Return the set of possible next characters recognized by the regexp
620   // (or a safe subset, potentially the set of all characters).
621   ZoneList<CharacterRange>* FirstCharacterSet();
622 
623   // Compute (if possible within the budget of traversed nodes) the
624   // possible first characters of the input matched by this node and
625   // its continuation. Returns the remaining budget after the computation.
626   // If the budget is spent, the result is negative, and the cached
627   // first_character_set_ value isn't set.
628   virtual int ComputeFirstCharacterSet(int budget);
629 
630   // Get and set the cached first character set value.
first_character_set()631   ZoneList<CharacterRange>* first_character_set() {
632     return first_character_set_;
633   }
set_first_character_set(ZoneList<CharacterRange> * character_set)634   void set_first_character_set(ZoneList<CharacterRange>* character_set) {
635     first_character_set_ = character_set;
636   }
637 
638  protected:
639   enum LimitResult { DONE, CONTINUE };
640   static const int kComputeFirstCharacterSetFail = -1;
641 
642   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
643 
644   // Returns a sibling of this node whose interests and assumptions
645   // match the ones in the given node info.  If no sibling exists NULL
646   // is returned.
647   RegExpNode* TryGetSibling(NodeInfo* info);
648 
649   // Returns a sibling of this node whose interests match the ones in
650   // the given node info.  The info must not contain any assertions.
651   // If no node exists a new one will be created by cloning the current
652   // node.  The result will always be an instance of the same concrete
653   // class as this node.
654   RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned);
655 
656   // Returns a clone of this node initialized using the copy constructor
657   // of its concrete class.  Note that the node may have to be pre-
658   // processed before it is on a usable state.
659   virtual RegExpNode* Clone() = 0;
660 
661  private:
662   static const int kFirstCharBudget = 10;
663   Label label_;
664   NodeInfo info_;
665   SiblingList siblings_;
666   ZoneList<CharacterRange>* first_character_set_;
667   // This variable keeps track of how many times code has been generated for
668   // this node (in different traces).  We don't keep track of where the
669   // generated code is located unless the code is generated at the start of
670   // a trace, in which case it is generic and can be reused by flushing the
671   // deferred operations in the current trace and generating a goto.
672   int trace_count_;
673 };
674 
675 
676 // A simple closed interval.
677 class Interval {
678  public:
Interval()679   Interval() : from_(kNone), to_(kNone) { }
Interval(int from,int to)680   Interval(int from, int to) : from_(from), to_(to) { }
Union(Interval that)681   Interval Union(Interval that) {
682     if (that.from_ == kNone)
683       return *this;
684     else if (from_ == kNone)
685       return that;
686     else
687       return Interval(Min(from_, that.from_), Max(to_, that.to_));
688   }
Contains(int value)689   bool Contains(int value) {
690     return (from_ <= value) && (value <= to_);
691   }
is_empty()692   bool is_empty() { return from_ == kNone; }
from()693   int from() { return from_; }
to()694   int to() { return to_; }
Empty()695   static Interval Empty() { return Interval(); }
696   static const int kNone = -1;
697  private:
698   int from_;
699   int to_;
700 };
701 
702 
703 class SeqRegExpNode: public RegExpNode {
704  public:
SeqRegExpNode(RegExpNode * on_success)705   explicit SeqRegExpNode(RegExpNode* on_success)
706       : on_success_(on_success) { }
on_success()707   RegExpNode* on_success() { return on_success_; }
set_on_success(RegExpNode * node)708   void set_on_success(RegExpNode* node) { on_success_ = node; }
709  private:
710   RegExpNode* on_success_;
711 };
712 
713 
714 class ActionNode: public SeqRegExpNode {
715  public:
716   enum Type {
717     SET_REGISTER,
718     INCREMENT_REGISTER,
719     STORE_POSITION,
720     BEGIN_SUBMATCH,
721     POSITIVE_SUBMATCH_SUCCESS,
722     EMPTY_MATCH_CHECK,
723     CLEAR_CAPTURES
724   };
725   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
726   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
727   static ActionNode* StorePosition(int reg,
728                                    bool is_capture,
729                                    RegExpNode* on_success);
730   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
731   static ActionNode* BeginSubmatch(int stack_pointer_reg,
732                                    int position_reg,
733                                    RegExpNode* on_success);
734   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
735                                              int restore_reg,
736                                              int clear_capture_count,
737                                              int clear_capture_from,
738                                              RegExpNode* on_success);
739   static ActionNode* EmptyMatchCheck(int start_register,
740                                      int repetition_register,
741                                      int repetition_limit,
742                                      RegExpNode* on_success);
743   virtual void Accept(NodeVisitor* visitor);
744   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
745   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int filled_in,bool not_at_start)746   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
747                                     RegExpCompiler* compiler,
748                                     int filled_in,
749                                     bool not_at_start) {
750     return on_success()->GetQuickCheckDetails(
751         details, compiler, filled_in, not_at_start);
752   }
type()753   Type type() { return type_; }
754   // TODO(erikcorry): We should allow some action nodes in greedy loops.
GreedyLoopTextLength()755   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
Clone()756   virtual ActionNode* Clone() { return new ActionNode(*this); }
757   virtual int ComputeFirstCharacterSet(int budget);
758  private:
759   union {
760     struct {
761       int reg;
762       int value;
763     } u_store_register;
764     struct {
765       int reg;
766     } u_increment_register;
767     struct {
768       int reg;
769       bool is_capture;
770     } u_position_register;
771     struct {
772       int stack_pointer_register;
773       int current_position_register;
774       int clear_register_count;
775       int clear_register_from;
776     } u_submatch;
777     struct {
778       int start_register;
779       int repetition_register;
780       int repetition_limit;
781     } u_empty_match_check;
782     struct {
783       int range_from;
784       int range_to;
785     } u_clear_captures;
786   } data_;
ActionNode(Type type,RegExpNode * on_success)787   ActionNode(Type type, RegExpNode* on_success)
788       : SeqRegExpNode(on_success),
789         type_(type) { }
790   Type type_;
791   friend class DotPrinter;
792 };
793 
794 
795 class TextNode: public SeqRegExpNode {
796  public:
TextNode(ZoneList<TextElement> * elms,RegExpNode * on_success)797   TextNode(ZoneList<TextElement>* elms,
798            RegExpNode* on_success)
799       : SeqRegExpNode(on_success),
800         elms_(elms) { }
TextNode(RegExpCharacterClass * that,RegExpNode * on_success)801   TextNode(RegExpCharacterClass* that,
802            RegExpNode* on_success)
803       : SeqRegExpNode(on_success),
804         elms_(new ZoneList<TextElement>(1)) {
805     elms_->Add(TextElement::CharClass(that));
806   }
807   virtual void Accept(NodeVisitor* visitor);
808   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
809   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
810   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
811                                     RegExpCompiler* compiler,
812                                     int characters_filled_in,
813                                     bool not_at_start);
elements()814   ZoneList<TextElement>* elements() { return elms_; }
815   void MakeCaseIndependent(bool is_ascii);
816   virtual int GreedyLoopTextLength();
Clone()817   virtual TextNode* Clone() {
818     TextNode* result = new TextNode(*this);
819     result->CalculateOffsets();
820     return result;
821   }
822   void CalculateOffsets();
823   virtual int ComputeFirstCharacterSet(int budget);
824  private:
825   enum TextEmitPassType {
826     NON_ASCII_MATCH,             // Check for characters that can't match.
827     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
828     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
829     CASE_CHARACTER_MATCH,        // Case-independent single character check.
830     CHARACTER_CLASS_MATCH        // Character class.
831   };
832   static bool SkipPass(int pass, bool ignore_case);
833   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
834   static const int kLastPass = CHARACTER_CLASS_MATCH;
835   void TextEmitPass(RegExpCompiler* compiler,
836                     TextEmitPassType pass,
837                     bool preloaded,
838                     Trace* trace,
839                     bool first_element_checked,
840                     int* checked_up_to);
841   int Length();
842   ZoneList<TextElement>* elms_;
843 };
844 
845 
846 class AssertionNode: public SeqRegExpNode {
847  public:
848   enum AssertionNodeType {
849     AT_END,
850     AT_START,
851     AT_BOUNDARY,
852     AT_NON_BOUNDARY,
853     AFTER_NEWLINE,
854     // Types not directly expressible in regexp syntax.
855     // Used for modifying a boundary node if its following character is
856     // known to be word and/or non-word.
857     AFTER_NONWORD_CHARACTER,
858     AFTER_WORD_CHARACTER
859   };
AtEnd(RegExpNode * on_success)860   static AssertionNode* AtEnd(RegExpNode* on_success) {
861     return new AssertionNode(AT_END, on_success);
862   }
AtStart(RegExpNode * on_success)863   static AssertionNode* AtStart(RegExpNode* on_success) {
864     return new AssertionNode(AT_START, on_success);
865   }
AtBoundary(RegExpNode * on_success)866   static AssertionNode* AtBoundary(RegExpNode* on_success) {
867     return new AssertionNode(AT_BOUNDARY, on_success);
868   }
AtNonBoundary(RegExpNode * on_success)869   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
870     return new AssertionNode(AT_NON_BOUNDARY, on_success);
871   }
AfterNewline(RegExpNode * on_success)872   static AssertionNode* AfterNewline(RegExpNode* on_success) {
873     return new AssertionNode(AFTER_NEWLINE, on_success);
874   }
875   virtual void Accept(NodeVisitor* visitor);
876   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
877   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
878   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
879                                     RegExpCompiler* compiler,
880                                     int filled_in,
881                                     bool not_at_start);
882   virtual int ComputeFirstCharacterSet(int budget);
Clone()883   virtual AssertionNode* Clone() { return new AssertionNode(*this); }
type()884   AssertionNodeType type() { return type_; }
set_type(AssertionNodeType type)885   void set_type(AssertionNodeType type) { type_ = type; }
886  private:
AssertionNode(AssertionNodeType t,RegExpNode * on_success)887   AssertionNode(AssertionNodeType t, RegExpNode* on_success)
888       : SeqRegExpNode(on_success), type_(t) { }
889   AssertionNodeType type_;
890 };
891 
892 
893 class BackReferenceNode: public SeqRegExpNode {
894  public:
BackReferenceNode(int start_reg,int end_reg,RegExpNode * on_success)895   BackReferenceNode(int start_reg,
896                     int end_reg,
897                     RegExpNode* on_success)
898       : SeqRegExpNode(on_success),
899         start_reg_(start_reg),
900         end_reg_(end_reg) { }
901   virtual void Accept(NodeVisitor* visitor);
start_register()902   int start_register() { return start_reg_; }
end_register()903   int end_register() { return end_reg_; }
904   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
905   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)906   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
907                                     RegExpCompiler* compiler,
908                                     int characters_filled_in,
909                                     bool not_at_start) {
910     return;
911   }
Clone()912   virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); }
913   virtual int ComputeFirstCharacterSet(int budget);
914  private:
915   int start_reg_;
916   int end_reg_;
917 };
918 
919 
920 class EndNode: public RegExpNode {
921  public:
922   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
EndNode(Action action)923   explicit EndNode(Action action) : action_(action) { }
924   virtual void Accept(NodeVisitor* visitor);
925   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
EatsAtLeast(int still_to_find,int recursion_depth)926   virtual int EatsAtLeast(int still_to_find, int recursion_depth) { return 0; }
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)927   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
928                                     RegExpCompiler* compiler,
929                                     int characters_filled_in,
930                                     bool not_at_start) {
931     // Returning 0 from EatsAtLeast should ensure we never get here.
932     UNREACHABLE();
933   }
Clone()934   virtual EndNode* Clone() { return new EndNode(*this); }
935  private:
936   Action action_;
937 };
938 
939 
940 class NegativeSubmatchSuccess: public EndNode {
941  public:
NegativeSubmatchSuccess(int stack_pointer_reg,int position_reg,int clear_capture_count,int clear_capture_start)942   NegativeSubmatchSuccess(int stack_pointer_reg,
943                           int position_reg,
944                           int clear_capture_count,
945                           int clear_capture_start)
946       : EndNode(NEGATIVE_SUBMATCH_SUCCESS),
947         stack_pointer_register_(stack_pointer_reg),
948         current_position_register_(position_reg),
949         clear_capture_count_(clear_capture_count),
950         clear_capture_start_(clear_capture_start) { }
951   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
952 
953  private:
954   int stack_pointer_register_;
955   int current_position_register_;
956   int clear_capture_count_;
957   int clear_capture_start_;
958 };
959 
960 
961 class Guard: public ZoneObject {
962  public:
963   enum Relation { LT, GEQ };
Guard(int reg,Relation op,int value)964   Guard(int reg, Relation op, int value)
965       : reg_(reg),
966         op_(op),
967         value_(value) { }
reg()968   int reg() { return reg_; }
op()969   Relation op() { return op_; }
value()970   int value() { return value_; }
971 
972  private:
973   int reg_;
974   Relation op_;
975   int value_;
976 };
977 
978 
979 class GuardedAlternative {
980  public:
GuardedAlternative(RegExpNode * node)981   explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
982   void AddGuard(Guard* guard);
node()983   RegExpNode* node() { return node_; }
set_node(RegExpNode * node)984   void set_node(RegExpNode* node) { node_ = node; }
guards()985   ZoneList<Guard*>* guards() { return guards_; }
986 
987  private:
988   RegExpNode* node_;
989   ZoneList<Guard*>* guards_;
990 };
991 
992 
993 class AlternativeGeneration;
994 
995 
996 class ChoiceNode: public RegExpNode {
997  public:
ChoiceNode(int expected_size)998   explicit ChoiceNode(int expected_size)
999       : alternatives_(new ZoneList<GuardedAlternative>(expected_size)),
1000         table_(NULL),
1001         not_at_start_(false),
1002         being_calculated_(false) { }
1003   virtual void Accept(NodeVisitor* visitor);
AddAlternative(GuardedAlternative node)1004   void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
alternatives()1005   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
1006   DispatchTable* GetTable(bool ignore_case);
1007   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1008   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
1009   int EatsAtLeastHelper(int still_to_find,
1010                         int recursion_depth,
1011                         RegExpNode* ignore_this_node);
1012   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1013                                     RegExpCompiler* compiler,
1014                                     int characters_filled_in,
1015                                     bool not_at_start);
Clone()1016   virtual ChoiceNode* Clone() { return new ChoiceNode(*this); }
1017 
being_calculated()1018   bool being_calculated() { return being_calculated_; }
not_at_start()1019   bool not_at_start() { return not_at_start_; }
set_not_at_start()1020   void set_not_at_start() { not_at_start_ = true; }
set_being_calculated(bool b)1021   void set_being_calculated(bool b) { being_calculated_ = b; }
try_to_emit_quick_check_for_alternative(int i)1022   virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
1023 
1024  protected:
1025   int GreedyLoopTextLength(GuardedAlternative* alternative);
1026   ZoneList<GuardedAlternative>* alternatives_;
1027 
1028  private:
1029   friend class DispatchTableConstructor;
1030   friend class Analysis;
1031   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
1032                      Guard* guard,
1033                      Trace* trace);
1034   int CalculatePreloadCharacters(RegExpCompiler* compiler);
1035   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
1036                                  Trace* trace,
1037                                  GuardedAlternative alternative,
1038                                  AlternativeGeneration* alt_gen,
1039                                  int preload_characters,
1040                                  bool next_expects_preload);
1041   DispatchTable* table_;
1042   // If true, this node is never checked at the start of the input.
1043   // Allows a new trace to start with at_start() set to false.
1044   bool not_at_start_;
1045   bool being_calculated_;
1046 };
1047 
1048 
1049 class NegativeLookaheadChoiceNode: public ChoiceNode {
1050  public:
NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,GuardedAlternative then_do_this)1051   explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
1052                                        GuardedAlternative then_do_this)
1053       : ChoiceNode(2) {
1054     AddAlternative(this_must_fail);
1055     AddAlternative(then_do_this);
1056   }
1057   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
1058   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1059                                     RegExpCompiler* compiler,
1060                                     int characters_filled_in,
1061                                     bool not_at_start);
1062   // For a negative lookahead we don't emit the quick check for the
1063   // alternative that is expected to fail.  This is because quick check code
1064   // starts by loading enough characters for the alternative that takes fewest
1065   // characters, but on a negative lookahead the negative branch did not take
1066   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
try_to_emit_quick_check_for_alternative(int i)1067   virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
1068   virtual int ComputeFirstCharacterSet(int budget);
1069 };
1070 
1071 
1072 class LoopChoiceNode: public ChoiceNode {
1073  public:
LoopChoiceNode(bool body_can_be_zero_length)1074   explicit LoopChoiceNode(bool body_can_be_zero_length)
1075       : ChoiceNode(2),
1076         loop_node_(NULL),
1077         continue_node_(NULL),
1078         body_can_be_zero_length_(body_can_be_zero_length) { }
1079   void AddLoopAlternative(GuardedAlternative alt);
1080   void AddContinueAlternative(GuardedAlternative alt);
1081   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1082   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
1083   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1084                                     RegExpCompiler* compiler,
1085                                     int characters_filled_in,
1086                                     bool not_at_start);
1087   virtual int ComputeFirstCharacterSet(int budget);
Clone()1088   virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); }
loop_node()1089   RegExpNode* loop_node() { return loop_node_; }
continue_node()1090   RegExpNode* continue_node() { return continue_node_; }
body_can_be_zero_length()1091   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
1092   virtual void Accept(NodeVisitor* visitor);
1093 
1094  private:
1095   // AddAlternative is made private for loop nodes because alternatives
1096   // should not be added freely, we need to keep track of which node
1097   // goes back to the node itself.
AddAlternative(GuardedAlternative node)1098   void AddAlternative(GuardedAlternative node) {
1099     ChoiceNode::AddAlternative(node);
1100   }
1101 
1102   RegExpNode* loop_node_;
1103   RegExpNode* continue_node_;
1104   bool body_can_be_zero_length_;
1105 };
1106 
1107 
1108 // There are many ways to generate code for a node.  This class encapsulates
1109 // the current way we should be generating.  In other words it encapsulates
1110 // the current state of the code generator.  The effect of this is that we
1111 // generate code for paths that the matcher can take through the regular
1112 // expression.  A given node in the regexp can be code-generated several times
1113 // as it can be part of several traces.  For example for the regexp:
1114 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1115 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
1116 // to match foo is generated only once (the traces have a common prefix).  The
1117 // code to store the capture is deferred and generated (twice) after the places
1118 // where baz has been matched.
1119 class Trace {
1120  public:
1121   // A value for a property that is either known to be true, know to be false,
1122   // or not known.
1123   enum TriBool {
1124     UNKNOWN = -1, FALSE = 0, TRUE = 1
1125   };
1126 
1127   class DeferredAction {
1128    public:
DeferredAction(ActionNode::Type type,int reg)1129     DeferredAction(ActionNode::Type type, int reg)
1130         : type_(type), reg_(reg), next_(NULL) { }
next()1131     DeferredAction* next() { return next_; }
1132     bool Mentions(int reg);
reg()1133     int reg() { return reg_; }
type()1134     ActionNode::Type type() { return type_; }
1135    private:
1136     ActionNode::Type type_;
1137     int reg_;
1138     DeferredAction* next_;
1139     friend class Trace;
1140   };
1141 
1142   class DeferredCapture : public DeferredAction {
1143    public:
DeferredCapture(int reg,bool is_capture,Trace * trace)1144     DeferredCapture(int reg, bool is_capture, Trace* trace)
1145         : DeferredAction(ActionNode::STORE_POSITION, reg),
1146           cp_offset_(trace->cp_offset()),
1147           is_capture_(is_capture) { }
cp_offset()1148     int cp_offset() { return cp_offset_; }
is_capture()1149     bool is_capture() { return is_capture_; }
1150    private:
1151     int cp_offset_;
1152     bool is_capture_;
set_cp_offset(int cp_offset)1153     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1154   };
1155 
1156   class DeferredSetRegister : public DeferredAction {
1157    public:
DeferredSetRegister(int reg,int value)1158     DeferredSetRegister(int reg, int value)
1159         : DeferredAction(ActionNode::SET_REGISTER, reg),
1160           value_(value) { }
value()1161     int value() { return value_; }
1162    private:
1163     int value_;
1164   };
1165 
1166   class DeferredClearCaptures : public DeferredAction {
1167    public:
DeferredClearCaptures(Interval range)1168     explicit DeferredClearCaptures(Interval range)
1169         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1170           range_(range) { }
range()1171     Interval range() { return range_; }
1172    private:
1173     Interval range_;
1174   };
1175 
1176   class DeferredIncrementRegister : public DeferredAction {
1177    public:
DeferredIncrementRegister(int reg)1178     explicit DeferredIncrementRegister(int reg)
1179         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1180   };
1181 
Trace()1182   Trace()
1183       : cp_offset_(0),
1184         actions_(NULL),
1185         backtrack_(NULL),
1186         stop_node_(NULL),
1187         loop_label_(NULL),
1188         characters_preloaded_(0),
1189         bound_checked_up_to_(0),
1190         flush_budget_(100),
1191         at_start_(UNKNOWN) { }
1192 
1193   // End the trace.  This involves flushing the deferred actions in the trace
1194   // and pushing a backtrack location onto the backtrack stack.  Once this is
1195   // done we can start a new trace or go to one that has already been
1196   // generated.
1197   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
cp_offset()1198   int cp_offset() { return cp_offset_; }
actions()1199   DeferredAction* actions() { return actions_; }
1200   // A trivial trace is one that has no deferred actions or other state that
1201   // affects the assumptions used when generating code.  There is no recorded
1202   // backtrack location in a trivial trace, so with a trivial trace we will
1203   // generate code that, on a failure to match, gets the backtrack location
1204   // from the backtrack stack rather than using a direct jump instruction.  We
1205   // always start code generation with a trivial trace and non-trivial traces
1206   // are created as we emit code for nodes or add to the list of deferred
1207   // actions in the trace.  The location of the code generated for a node using
1208   // a trivial trace is recorded in a label in the node so that gotos can be
1209   // generated to that code.
is_trivial()1210   bool is_trivial() {
1211     return backtrack_ == NULL &&
1212            actions_ == NULL &&
1213            cp_offset_ == 0 &&
1214            characters_preloaded_ == 0 &&
1215            bound_checked_up_to_ == 0 &&
1216            quick_check_performed_.characters() == 0 &&
1217            at_start_ == UNKNOWN;
1218   }
at_start()1219   TriBool at_start() { return at_start_; }
set_at_start(bool at_start)1220   void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; }
backtrack()1221   Label* backtrack() { return backtrack_; }
loop_label()1222   Label* loop_label() { return loop_label_; }
stop_node()1223   RegExpNode* stop_node() { return stop_node_; }
characters_preloaded()1224   int characters_preloaded() { return characters_preloaded_; }
bound_checked_up_to()1225   int bound_checked_up_to() { return bound_checked_up_to_; }
flush_budget()1226   int flush_budget() { return flush_budget_; }
quick_check_performed()1227   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1228   bool mentions_reg(int reg);
1229   // Returns true if a deferred position store exists to the specified
1230   // register and stores the offset in the out-parameter.  Otherwise
1231   // returns false.
1232   bool GetStoredPosition(int reg, int* cp_offset);
1233   // These set methods and AdvanceCurrentPositionInTrace should be used only on
1234   // new traces - the intention is that traces are immutable after creation.
add_action(DeferredAction * new_action)1235   void add_action(DeferredAction* new_action) {
1236     ASSERT(new_action->next_ == NULL);
1237     new_action->next_ = actions_;
1238     actions_ = new_action;
1239   }
set_backtrack(Label * backtrack)1240   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
set_stop_node(RegExpNode * node)1241   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
set_loop_label(Label * label)1242   void set_loop_label(Label* label) { loop_label_ = label; }
set_characters_preloaded(int count)1243   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
set_bound_checked_up_to(int to)1244   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
set_flush_budget(int to)1245   void set_flush_budget(int to) { flush_budget_ = to; }
set_quick_check_performed(QuickCheckDetails * d)1246   void set_quick_check_performed(QuickCheckDetails* d) {
1247     quick_check_performed_ = *d;
1248   }
1249   void InvalidateCurrentCharacter();
1250   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1251  private:
1252   int FindAffectedRegisters(OutSet* affected_registers);
1253   void PerformDeferredActions(RegExpMacroAssembler* macro,
1254                                int max_register,
1255                                OutSet& affected_registers,
1256                                OutSet* registers_to_pop,
1257                                OutSet* registers_to_clear);
1258   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1259                                 int max_register,
1260                                 OutSet& registers_to_pop,
1261                                 OutSet& registers_to_clear);
1262   int cp_offset_;
1263   DeferredAction* actions_;
1264   Label* backtrack_;
1265   RegExpNode* stop_node_;
1266   Label* loop_label_;
1267   int characters_preloaded_;
1268   int bound_checked_up_to_;
1269   QuickCheckDetails quick_check_performed_;
1270   int flush_budget_;
1271   TriBool at_start_;
1272 };
1273 
1274 
1275 class NodeVisitor {
1276  public:
~NodeVisitor()1277   virtual ~NodeVisitor() { }
1278 #define DECLARE_VISIT(Type)                                          \
1279   virtual void Visit##Type(Type##Node* that) = 0;
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1280 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1281 #undef DECLARE_VISIT
1282   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1283 };
1284 
1285 
1286 // Node visitor used to add the start set of the alternatives to the
1287 // dispatch table of a choice node.
1288 class DispatchTableConstructor: public NodeVisitor {
1289  public:
DispatchTableConstructor(DispatchTable * table,bool ignore_case)1290   DispatchTableConstructor(DispatchTable* table, bool ignore_case)
1291       : table_(table),
1292         choice_index_(-1),
1293         ignore_case_(ignore_case) { }
1294 
1295   void BuildTable(ChoiceNode* node);
1296 
AddRange(CharacterRange range)1297   void AddRange(CharacterRange range) {
1298     table()->AddRange(range, choice_index_);
1299   }
1300 
1301   void AddInverse(ZoneList<CharacterRange>* ranges);
1302 
1303 #define DECLARE_VISIT(Type)                                          \
1304   virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1305 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1306 #undef DECLARE_VISIT
1307 
1308   DispatchTable* table() { return table_; }
set_choice_index(int value)1309   void set_choice_index(int value) { choice_index_ = value; }
1310 
1311  protected:
1312   DispatchTable* table_;
1313   int choice_index_;
1314   bool ignore_case_;
1315 };
1316 
1317 
1318 // Assertion propagation moves information about assertions such as
1319 // \b to the affected nodes.  For instance, in /.\b./ information must
1320 // be propagated to the first '.' that whatever follows needs to know
1321 // if it matched a word or a non-word, and to the second '.' that it
1322 // has to check if it succeeds a word or non-word.  In this case the
1323 // result will be something like:
1324 //
1325 //   +-------+        +------------+
1326 //   |   .   |        |      .     |
1327 //   +-------+  --->  +------------+
1328 //   | word? |        | check word |
1329 //   +-------+        +------------+
1330 class Analysis: public NodeVisitor {
1331  public:
Analysis(bool ignore_case,bool is_ascii)1332   Analysis(bool ignore_case, bool is_ascii)
1333       : ignore_case_(ignore_case),
1334         is_ascii_(is_ascii),
1335         error_message_(NULL) { }
1336   void EnsureAnalyzed(RegExpNode* node);
1337 
1338 #define DECLARE_VISIT(Type)                                          \
1339   virtual void Visit##Type(Type##Node* that);
1340 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1341 #undef DECLARE_VISIT
1342   virtual void VisitLoopChoice(LoopChoiceNode* that);
1343 
has_failed()1344   bool has_failed() { return error_message_ != NULL; }
error_message()1345   const char* error_message() {
1346     ASSERT(error_message_ != NULL);
1347     return error_message_;
1348   }
fail(const char * error_message)1349   void fail(const char* error_message) {
1350     error_message_ = error_message;
1351   }
1352  private:
1353   bool ignore_case_;
1354   bool is_ascii_;
1355   const char* error_message_;
1356 
1357   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1358 };
1359 
1360 
1361 struct RegExpCompileData {
RegExpCompileDataRegExpCompileData1362   RegExpCompileData()
1363     : tree(NULL),
1364       node(NULL),
1365       simple(true),
1366       contains_anchor(false),
1367       capture_count(0) { }
1368   RegExpTree* tree;
1369   RegExpNode* node;
1370   bool simple;
1371   bool contains_anchor;
1372   Handle<String> error;
1373   int capture_count;
1374 };
1375 
1376 
1377 class RegExpEngine: public AllStatic {
1378  public:
1379   struct CompilationResult {
CompilationResultCompilationResult1380     explicit CompilationResult(const char* error_message)
1381         : error_message(error_message),
1382           code(Heap::the_hole_value()),
1383           num_registers(0) {}
CompilationResultCompilationResult1384     CompilationResult(Object* code, int registers)
1385       : error_message(NULL),
1386         code(code),
1387         num_registers(registers) {}
1388     const char* error_message;
1389     Object* code;
1390     int num_registers;
1391   };
1392 
1393   static CompilationResult Compile(RegExpCompileData* input,
1394                                    bool ignore_case,
1395                                    bool multiline,
1396                                    Handle<String> pattern,
1397                                    bool is_ascii);
1398 
1399   static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1400 };
1401 
1402 
1403 class OffsetsVector {
1404  public:
OffsetsVector(int num_registers)1405   inline OffsetsVector(int num_registers)
1406       : offsets_vector_length_(num_registers) {
1407     if (offsets_vector_length_ > kStaticOffsetsVectorSize) {
1408       vector_ = NewArray<int>(offsets_vector_length_);
1409     } else {
1410       vector_ = static_offsets_vector_;
1411     }
1412   }
~OffsetsVector()1413   inline ~OffsetsVector() {
1414     if (offsets_vector_length_ > kStaticOffsetsVectorSize) {
1415       DeleteArray(vector_);
1416       vector_ = NULL;
1417     }
1418   }
vector()1419   inline int* vector() { return vector_; }
length()1420   inline int length() { return offsets_vector_length_; }
1421 
1422   static const int kStaticOffsetsVectorSize = 50;
1423 
1424  private:
static_offsets_vector_address()1425   static Address static_offsets_vector_address() {
1426     return reinterpret_cast<Address>(&static_offsets_vector_);
1427   }
1428 
1429   int* vector_;
1430   int offsets_vector_length_;
1431   static int static_offsets_vector_[kStaticOffsetsVectorSize];
1432 
1433   friend class ExternalReference;
1434 };
1435 
1436 
1437 } }  // namespace v8::internal
1438 
1439 #endif  // V8_JSREGEXP_H_
1440